

The structure of homogeneous Riemannian manifolds with nullity

ANTONIO J. DI SCALA, CARLOS E. OLmos AND FRANCISCO VITTONE

Abstract. We find new conditions that the existence of nullity of the curvature tensor of an irreducible homogeneous space $M = G/H$ imposes on the Lie algebra \mathfrak{g} of G and on the Lie algebra $\tilde{\mathfrak{g}}$ of the full isometry group of M . Namely, we prove that there exists a transvection of M in the direction of any element of the nullity, possibly by enlarging the presentation group G . Moreover, we prove that these transvections generate an Abelian ideal of $\tilde{\mathfrak{g}}$. These results constitute a substantial improvement on the structure theory developed in [4]. In addition, we construct examples of homogeneous Riemannian spaces with non-trivial nullity, where G is a non-solvable group, answering a natural open question. Such examples admit (locally homogeneous) compact quotients. In the case of co-nullity 3 we give an explicit description of the isometry group of any homogeneous locally irreducible Riemannian manifold with nullity.

Mathematics Subject Classification (2020): 53C30 (primary); 53C40 (secondary).