The binary digits of $n+t$

Lukas Spiegelhofer and Michael Wallner

Abstract

The binary sum-of-digits function s counts the number of ones in the binary expansion of a nonnegative integer. For any nonnegative integer t, T. W. Cusick defined the asymptotic density c_{t} of integers $n \geq 0$ such that $$
s(n+t) \geq s(n) .
$$

In 2011, he conjectured that $c_{t}>1 / 2$ for all t - the binary sum of digits should, more often than not, weakly increase when a constant is added. In this paper, we prove that there exists an explicit constant M_{0} such that indeed $c_{t}>1 / 2$ if the binary expansion of t contains at least M_{0} maximal blocks of contiguous ones, leaving open only the "initial cases" - few maximal blocks of ones - of this conjecture. Moreover, we sharpen a result by Emme and Hubert (2019), proving that the difference $s(n+t)-s(n)$ behaves according to a Gaussian distribution, up to an error tending to 0 as the number of maximal blocks of ones in the binary expansion of t grows.

Mathematics Subject Classification (2020): 11A63 (primary); 05A20, 05A16, 11T71(secondary).

