Almost formality of manifolds of low dimension

DOMENICO FIORENZA, KOTARO KAWAI, HÔNG VÂN LÊ AND LORENZ SCHWACHHÖFER

Abstract. In this paper we introduce the notion of Poincaré DGCAs of Hodge type, which is a subclass of Poincaré DGCAs encompassing the de Rham algebras of closed orientable manifolds. Then we introduce the notion of the small algebra and the small quotient algebra of a Poincaré DGCA of Hodge type. Using these concepts, we investigate the equivalence class of (r-1)connected (r > 1) Poincaré DGCAs of Hodge type. In particular, we show that an (r-1)-connected Poincaré DGCA of Hodge type \mathcal{A}^* of dimension n < 15r - 3 is A_{∞} -quasi-isomorphic to an A_3 -algebra and prove that the only obstruction to the formality of \mathcal{A}^* is a distinguished Harrison cohomology class $[\mu_3] \in \text{Harr}^{3,-1}(H^*(\mathcal{A}^*), H^*(\mathcal{A}^*))$. Moreover, the cohomology class $[\mu_3]$ and the DGCA isomorphism class of $H^*(\mathcal{A}^*)$ determine the A_{∞} -quasi-isomorphism class of \mathcal{A}^* . This can be seen as a Harrison cohomology version of the Crowley-Nordström results [9] on rational homotopy type of (r - 1)-connected (r > 1)closed manifolds of dimension up to 5r-3. We also derive the almost formality of closed G_2 -manifolds, which have been discovered recently by Chan-Karigiannis-Tsang in [8], from our results and the Cheeger-Gromoll splitting theorem.

Mathematics Subject Classification (2010): 57R19 (primary); 53C25, 53C29, 58A10 (secondary).