Pointwise estimates of solutions to nonlinear equations for nonlocal operators

ALEXANDER GRIGOR'YAN AND IGOR VERBITSKY

Abstract. We study pointwise behavior of positive solutions to nonlinear integral equations, and related inequalities, of the type

$$u(x) - \int_{\Omega} G(x, y) g(u(y)) d\sigma(y) = h,$$

where (Ω, σ) is a locally compact measure space, $G(x, y): \Omega \times \Omega \to [0, +\infty]$ is a kernel that satisfies a weak form of the maximum principle, $h \ge 0$ is a measurable function, and $g: [0, \infty) \to [0, \infty)$ is a monotone increasing function.

In the special case where G is Green's function of the Laplacian (or fractional Laplacian) that satisfies the maximum principle and h = 1, a typical global pointwise bound for any supersolution u > 0 is given by

$$u(x) > F^{-1}(G\sigma(x)), \quad x \in \Omega,$$

where $F(t) := \int_{1}^{t} \frac{ds}{g(s)}, t \ge 1$, and necessarily

$$G\sigma(x) < F(\infty) = \int_{1}^{+\infty} \frac{ds}{g(s)}$$

for every $x \in \Omega$ such that $u(x) < \infty$.

This problem is motivated by the semilinear fractional Laplace equation

$$(-\Delta)^{\frac{\mu}{2}}u - g(u)\sigma = \mu$$
 in Ω , $u = 0$ in Ω^c ,

with measure coefficients σ , μ , where $g(u) = u^q$, q > 0, and $0 < \alpha < n$, in domains $\Omega \subseteq \mathbb{R}^n$, or Riemannian manifolds, with positive Green's function G.

In a similar way, we treat positive solutions to the equation

$$u(x) + \int_{\Omega} G(x, y) g(u(y)) d\sigma(y) = h,$$

and the corresponding fractional Laplace equation $(-\Delta)^{\frac{\alpha}{2}}u + g(u)\sigma = \mu$, with a monotone decreasing function g, in particular $g(u) = u^q$, q < 0.

Mathematics Subject Classification (2010): 35J61 (primary); 31B10, 42B37 (secondary).