Free boundary minimal surfaces: a nonlocal approach

FRANCESCA DA LIO AND ALESSANDRO PIGATI

Abstract. Given a C^k -smooth closed embedded manifold $\mathcal{N} \subset \mathbb{R}^m$, with $k \ge 2$, and a compact connected C^{∞} -smooth Riemannian surface (S, g) with $\partial S \neq \emptyset$, we consider $\frac{1}{2}$ -harmonic maps $u \in H^{1/2}(\partial S, \mathcal{N})$. These maps are critical points of the nonlocal energy

$$E(f;g) := \int_{S} |\nabla \widetilde{u}|^2 \, d\mathrm{vol}_g,\tag{0.1}$$

where \tilde{u} is the harmonic extension of u in S. We express the energy (0.1) as a sum of the $\frac{1}{2}$ -energies at each boundary component of ∂S (suitably identified with the circle S^1), plus a quadratic term which is continuous in the $H^s(S^1)$ topology, for any $s \in \mathbb{R}$. We show the $C^{k-1,\delta}$ regularity of $\frac{1}{2}$ -harmonic maps. We also establish a connection between free boundary minimal surfaces and critical points of E with respect to variations of the pair (f, g), in terms of the Teichmüller space of S.

Mathematics Subject Classification (2010): 58E20 (primary); 35B65 (secondary).