Volume rigidity at ideal points of the character variety of hyperbolic 3-manifolds

STEFANO FRANCAVIGLIA AND ALESSIO SAVINI

Abstract. Given the fundamental group Γ of a finite-volume complete hyperbolic 3-manifold M, it is possible to associate to any representation $\rho : \Gamma \rightarrow \text{Isom}(\mathbb{H}^3)$ a numerical invariant called volume. This invariant is bounded by the hyperbolic volume of M and satisfies a rigidity condition: if the volume of ρ is maximal, then ρ must be conjugated to the holonomy of the hyperbolic structure of M. This paper generalizes this rigidity result by showing that if a sequence of representations of Γ into $\text{Isom}(\mathbb{H}^3)$ satisfies $\lim_{n\to\infty} \text{Vol}(\rho_n) = \text{Vol}(M)$, then there must exist a sequence of elements $g_n \in \text{Isom}(\mathbb{H}^3)$ such that the representations $g_n \circ \rho_n \circ g_n^{-1}$ converge to the holonomy of M. In particular if the sequence of volumes must stay away from the maximum. In this way we give an answer to [16, Conjecture 1]. We conclude by generalizing the result to the case of k-manifolds and representations in $\text{Isom}(\mathbb{H}^m)$, where m > k > 3.

Mathematics Subject Classification (2010): 22E40 (primary); 53C35 (secondary).