The metric at infinity on Damek-Ricci spaces

Roberto Camporesi

Abstract

Let $S=N A$ be a Damek-Ricci space, identified with the unit ball B in \mathfrak{s} via the Cayley transform. Let $S^{p+q}=\partial B$ be the unit sphere in \mathfrak{s}, $p=\operatorname{dim} \mathfrak{v}, q=\operatorname{dim} \mathfrak{z}$. The metric in the ball model was computed in [1] both in Euclidean (or geodesic) polar coordinates and in Cartesian coordinates on B. The induced metric on the Euclidean sphere $S(R)$ of radius R is the sum of a constant curvature term, plus a correction term proportional to h_{1}, where h_{1} is a suitable differential expression which is smooth on $S(R)$ for $R<1$, but becomes (possibly) singular on the unit sphere at the pole $(0,0,1)$. It has a simple geometric interpretation, namely $h_{1}=|\Theta|^{2}$, where Θ is, up to a conformal factor, the pull-back of the canonical 1-form on the group N (defining the horizontal distribution on N) by the generalized stereographic projection. In the symmetric case h_{1}, as well as the transported distribution on $S^{p+q} \backslash\{(0,0,1)\}$, have a smooth extension to the whole sphere. This can be interpreted by the Hopf fibration of S^{p+q}. In the general case no such structure is allowed on the unit sphere, and the question was left open in [1] whether or not h_{1} extends smoothly at the pole. In this paper we prove that h_{1} does not extend, except in the symmetric case. More precisely, writing h_{1} in the coordinates (V, Z) on S^{p+q} as $h_{1}=\sum h_{i j}^{(\mathfrak{z})} d z_{i} d z_{j}+\sum h_{i j}^{(\mathfrak{v})} d v_{i} d v_{j}+\sum h_{i j}^{(\mathfrak{z} \mathfrak{v})} d z_{i} d v_{j}$, we prove that, in the non-symmetric case, the coefficients $h_{i j}^{(\mathfrak{z})}$ do not have a limit at the pole, but remain bounded there, whereas the coefficients $h_{i j}^{(\mathfrak{v})}$ and $h_{i j}^{(\mathfrak{z v})}$ extend smoothly at the pole. In order to do this, we obtain an explicit formula for the 1-form Θ valid for any Damek-Ricci space. From this formula we deduce that Θ does not extend to the pole, except for $q=1$ (Hermitian symmetric case). The square of Θ and the distribution ker Θ do not extend, unless S is symmetric. Indeed, we prove that the singular part of h_{1} vanishes identically if and only if the J^{2}-condition holds.

Mathematics Subject Classification (2010): 22E25 (primary); 43A85, 53C30 (secondary).

