A boxing inequality for the fractional perimeter

AUGUSTO C. PONCE AND DANIEL SPECTOR

Abstract. We prove the Boxing inequality

$$\mathcal{H}_{\infty}^{d-\alpha}(U) \leq C\alpha(1-\alpha) \int_{U} \int_{\mathbb{R}^{d} \setminus U} \frac{\mathrm{d} y \, \mathrm{d} z}{|y-z|^{\alpha+d}}$$

for every $\alpha \in (0, 1)$ and every bounded open subset $U \subset \mathbb{R}^d$, where $\mathcal{H}^{d-\alpha}_{\infty}(U)$ is the Hausdorff content of U of dimension $d - \alpha$ and the constant C > 0 depends only on d. We then show how this estimate implies a trace inequality in the fractional Sobolev space $W^{\alpha,1}(\mathbb{R}^d)$ that includes Sobolev's $L^{\frac{d}{d-\alpha}}$ embedding, its Lorentz-space improvement, and Hardy's inequality. All these estimates are thus obtained with the appropriate asymptotics as α tends to 0 and 1, recovering in particular the classical inequalities of first order. Their counterparts in the full range $\alpha \in (0, d)$ are also investigated.

Mathematics Subject Classification (2010): 46E30 (primary); 46E35, 31B15, 42B35 (secondary).