Completely Sidon sets in discrete groups

GILLES PISIER

Abstract. A subset of a discrete group *G* is called completely Sidon if its span in $C^*(G)$ is completely isomorphic to the operator space version of the space ℓ_1 (*i.e.*, ℓ_1 equipped with its maximal operator space structure). We recently proved a generalization to this context of Drury's classical union theorem for Sidon sets: completely Sidon sets are stable under finite unions. We give a different presentation of the proof emphasizing the "interpolation property" analogous to the one Drury discovered. In addition we prove the analogue of the Fatou-Zygmund property: any bounded Hermitian function on a symmetric completely Sidon set $\Lambda \subset G \setminus \{1\}$ extends to a positive definite function on *G*. In the final section, we give a completely isomorphic characterization of the closed span C_Λ of a completely Sidon set in $C^*(G)$: the dual (in the operator space sense) of C_Λ is exact if and only if Λ is completely Sidon. In particular, Λ is completely Sidon as soon as C_Λ is completely isomorphic (by an arbitrary isomorphism) to $\ell_1(\Lambda)$ equipped with its maximal operator space structure.

Mathematics Subject Classification (2010): 43A46 (primary); 46L06 (secondary).