Trudinger-Moser inequalities on a closed Riemannian surface with the action of a finite isometric group

YU FANG AND YUNYAN YANG

Abstract. Let (Σ, g) be a closed Riemannian surface, $W^{1,2}(\Sigma, g)$ be the usual Sobolev space, **G** be a finite isometric group acting on (Σ, g) , and $\mathcal{H}_{\mathbf{G}}$ be the function space including all functions $u \in W^{1,2}(\Sigma, g)$ with $\int_{\Sigma} u dv_g = 0$ and $u(\sigma(x)) = u(x)$ for all $\sigma \in \mathbf{G}$ and all $x \in \Sigma$. Denote the number of distinct points of the set $\{\sigma(x) : \sigma \in \mathbf{G}\}$ by I(x) and $\ell = \min_{x \in \Sigma} I(x)$. Let $\lambda_1^{\mathbf{G}}$ be the first eigenvalue of the Laplace-Beltrami operator on the space $\mathcal{H}_{\mathbf{G}}$. Using blow-up analysis, we prove that if $\alpha < \lambda_1^{\mathbf{G}}$ and $\beta \leq 4\pi\ell$, then there holds

$$\sup_{u\in\mathscr{H}_{\mathbf{G}},\,\int_{\Sigma}|\nabla_{g}u|^{2}dv_{g}-\alpha\int_{\Sigma}u^{2}dv_{g}\leq 1}\int_{\Sigma}e^{\beta u^{2}}dv_{g}<\infty;$$

if $\alpha < \lambda_1^{\mathbf{G}}$ and $\beta > 4\pi\ell$, or $\alpha \ge \lambda_1^{\mathbf{G}}$ and $\beta > 0$, then the above supremum is infinity; if $\alpha < \lambda_1^{\mathbf{G}}$ and $\beta \le 4\pi\ell$, then the above supremum can be attained. Moreover, similar inequalities involving higher order eigenvalues are obtained. Our results partially improve original inequalities of J. Moser [17], L. Fontana [9] and W. Chen [4].

Mathematics Subject Classification (2010): 58J05 (primary).