A fresh look at the notion of normality

VITALY BERGELSON, TOMASZ DOWNAROWICZ AND MICHAŁ MISIUREWICZ

Abstract. Let G be a countably infinite cancellative amenable semigroup and let (F_n) be a (left) Følner sequence in G. We introduce the notion of an (F_n) normal set in G and an (F_n) -normal element of $\{0, 1\}^G$. When $G = (\mathbb{N}, +)$ and $F_n = \{1, 2, ..., n\}$, the (F_n) -normality coincides with the classical notion. We prove several results about (F_n) -normality, for example:

- If (F_n) is a Følner sequence in G, such that for every $\alpha \in (0, 1)$ we have $\sum_{n} \alpha^{|F_n|} < \infty$, then almost every (in the sense of the uniform product measure $(\frac{1}{2}, \frac{1}{2})^G$ $x \in \{0, 1\}^G$ is (F_n) -normal. • For any Følner sequence (F_n) in G, there exists an effectively defined
- Champernowne-like (F_n) -normal set.
- There is a rather natural and sufficiently wide class of Følner sequences (F_n) in (\mathbb{N}, \times) , which we call "nice", for which the Champernowne-like construction can be done in an algorithmic way. Moreover, there exists a Champernowne-like set which is (F_n) -normal for every nice Følner sequence (F_n) .

We also investigate and juxtapose combinatorial and Diophantine properties of normal sets in semigroups $(\mathbb{N}, +)$ and (\mathbb{N}, \times) . Below is a sample of results that we obtain:

- Let $A \subset \mathbb{N}$ be a classical normal set. Then, for any Følner sequence (K_n) in (\mathbb{N}, \times) there exists a set E of (K_n) -density 1, such that for any finite subset $\{n_1, n_2, \ldots, n_k\} \subset E$, the intersection $A/n_1 \cap$ $A/n_2 \cap \ldots \cap A/n_k$ has positive upper density in $(\mathbb{N}, +)$. As a consequence, A contains arbitrarily long geometric progressions, and, more generally, arbitrarily long "geo-arithmetic" configurations of the form $\{a(b+ic)^j, 0 \le i, j \le k\}.$
- For any Følner sequence (F_n) in $(\mathbb{N}, +)$ there exist uncountably many (F_n) -normal Liouville numbers.
- For any nice Følner sequence (F_n) in (\mathbb{N}, \times) there exist uncountably many (F_n) -normal Liouville numbers.

Mathematics Subject Classification (2010): 11K16 (primary); 43A07, 37B10 (secondary).