A fresh look at the notion of normality

Vitaly Bergelson, Tomasz Downarowicz and Michat Misiurewicz

Abstract. Let G be a countably infinite cancellative amenable semigroup and

 let $\left(F_{n}\right)$ be a (left) Følner sequence in G. We introduce the notion of an $\left(F_{n}\right)$ normal set in G and an $\left(F_{n}\right)$-normal element of $\{0,1\}^{G}$. When $G=(\mathbb{N},+)$ and $F_{n}=\{1,2, \ldots, n\}$, the $\left(F_{n}\right)$-normality coincides with the classical notion. We prove several results about $\left(F_{n}\right)$-normality, for example:- If $\left(F_{n}\right)$ is a Følner sequence in G, such that for every $\alpha \in(0,1)$ we have $\sum_{n} \alpha^{\left|F_{n}\right|}<\infty$, then almost every (in the sense of the uniform product measure $\left.\left(\frac{1}{2}, \frac{1}{2}\right)^{G}\right) x \in\{0,1\}^{G}$ is $\left(F_{n}\right)$-normal.
- For any Følner sequence $\left(F_{n}\right)$ in G, there exists an effectively defined Champernowne-like $\left(F_{n}\right)$-normal set.
- There is a rather natural and sufficiently wide class of Følner sequences $\left(F_{n}\right)$ in (\mathbb{N}, \times), which we call "nice", for which the Champernowne-like construction can be done in an algorithmic way. Moreover, there exists a Champernowne-like set which is $\left(F_{n}\right)$-normal for every nice Følner sequence $\left(F_{n}\right)$.
We also investigate and juxtapose combinatorial and Diophantine properties of normal sets in semigroups $(\mathbb{N},+)$ and (\mathbb{N}, \times). Below is a sample of results that we obtain:
- Let $A \subset \mathbb{N}$ be a classical normal set. Then, for any Følner sequence $\left(K_{n}\right)$ in (\mathbb{N}, \times) there exists a set E of $\left(K_{n}\right)$-density 1 , such that for any finite subset $\left\{n_{1}, n_{2}, \ldots, n_{k}\right\} \subset E$, the intersection $A / n_{1} \cap$ $A / n_{2} \cap \ldots \cap A / n_{k}$ has positive upper density in $(\mathbb{N},+)$. As a consequence, A contains arbitrarily long geometric progressions, and, more generally, arbitrarily long "geo-arithmetic" configurations of the form $\left\{a(b+i c)^{j}, 0 \leq i, j \leq k\right\}$.
- For any Følner sequence $\left(F_{n}\right)$ in $(\mathbb{N},+)$ there exist uncountably many $\left(F_{n}\right)$-normal Liouville numbers.
- For any nice Følner sequence $\left(F_{n}\right)$ in (\mathbb{N}, \times) there exist uncountably many (F_{n})-normal Liouville numbers.

Mathematics Subject Classification (2010): 11K16 (primary); 43A07, 37B10 (secondary).

