Central limit theorem for probability measures defined by sum-of-digits function in base 2

Jordan Emme and Pascal Hubert

Abstract

In this paper we prove a central limit theorem for some probability measures defined as asymptotic densities of integer sets defined via sum-of-digitfunction. To any non-negative integer a we can associate a measure on \mathbb{Z} called μ_{a} such that, for any $d, \mu_{a}(d)$ is the asymptotic density of the set of non-negative integers n such that $s_{2}(n+a)-s_{2}(n)=d$ where $s_{2}(n)$ is the number of digits " 1 " in the binary expansion of n. We express this probability measure as a product of matrices whose coefficients are operators of $l^{1}(\mathbb{Z})$. Then we take a sequence of integers $\left(a_{X}(n)\right)_{n \in \mathbb{N}}$ defined via a balanced Bernoulli sequence X. We prove that, for almost every sequence, and after renormalization by the typical variance, we have a central limit theorem by computing all the moments and proving that they converge towards the moments of the normal law $\mathcal{N}(0,1)$.

Mathematics Subject Classification (2010): 37A45 (primary); 11P99, 60F05 (secondary).

