Homotopy groups of free group character varieties

CARLOS FLORENTINO, SEAN LAWTON AND DANIEL RAMRAS

Abstract. Let G be a connected, complex reductive Lie group with maximal compact subgroup K, and let \mathfrak{X}_r denote the moduli space of G- or K-valued representations of a rank-r free group. In this article we develop methods for studying the low-dimensional homotopy groups of these spaces and of their subspaces $\mathfrak{X}_r^{\text{irr}}$ of irreducible representations.

Our main result is that when G is $GL_n(\mathbb{C})$ or $SL_n(\mathbb{C})$, the second homotopy group of \mathfrak{X}_r is trivial. The proof depends on a new general position-type result in a singular setting. This result is proven in the Appendix and may be of independent interest.

We also obtain new information regarding the homotopy groups of the subspaces $\mathfrak{X}_r^{\text{irr}}$. Recent work of Biswas and Lawton determined $\pi_1(\mathfrak{X}_r)$ for general G, and we describe $\pi_1(\mathfrak{X}_r^{\text{irr}})$. Specializing to the case $G = \operatorname{GL}_n(\mathbb{C})$, we explicitly compute the homotopy groups of the smooth locus $\mathfrak{X}_r^{\text{sm}} = \mathfrak{X}_r^{\text{irr}}$ in a large range of dimensions, finding that they exhibit Bott Periodicity.

As a further application of our methods (and in particular our general position result) we obtain new results regarding centralizers of subgroups of G and K, motivated by a question of Sikora.

Additionally, we use work of Richardson to solve a conjecture of Florentino– Lawton about the singular locus of \mathfrak{X}_r , and we give a topological proof that for $G = \operatorname{GL}_n(\mathbb{C})$ or $G = \operatorname{SL}_n(\mathbb{C})$, the space \mathfrak{X}_r is not a rational Poincaré Duality Space for $r \ge 4$ and n = 2.

Mathematics Subject Classification (2010): 14B05 (primary); 14D20, 14L30, 55U10, 14L24, 55Q05 (secondary).