Comparing \mathbb{A}^1 -*h*-cobordism and \mathbb{A}^1 -weak equivalence

ARAVIND ASOK, STEFAN KEBEKUS AND MATTHIAS WENDT

Abstract. We study the problem of classifying projectivizations of rank-two vector bundles over \mathbb{P}^2 up to two notions of equivalence that arise naturally in \mathbb{A}^1 -homotopy theory, namely \mathbb{A}^1 -weak equivalence and \mathbb{A}^1 -h-cobordism.

First, we classify such varieties up to \mathbb{A}^1 -weak equivalence: over algebraically closed fields having characteristic unequal to two the classification can be given in terms of characteristic classes of the underlying vector bundle. When the base field is \mathbb{C} , this classification result can be compared to a corresponding topological result and we find that the algebraic and topological homotopy classifications agree.

Second, we study the problem of classifying such varieties up to \mathbb{A}^1 -*h*-cobordism using techniques of deformation theory. To this end, we establish a deformation rigidity result for \mathbb{P}^1 -bundles over \mathbb{P}^2 which links \mathbb{A}^1 -*h*-cobordisms to deformations of the underlying vector bundles. Using results from the deformation theory of vector bundles we show that if *X* is a \mathbb{P}^1 -bundle over \mathbb{P}^2 and *Y* is the projectivization of a direct sum of line bundles on \mathbb{P}^2 , then if *X* is \mathbb{A}^1 -weakly equivalent to *Y*, *X* is also \mathbb{A}^1 -*h*-cobordant to *Y*.

Finally, we discuss some subtleties inherent in the definition of \mathbb{A}^{1} -*h*-cobordism. We show, for instance, that direct \mathbb{A}^{1} -*h*-cobordism fails to be an equivalence relation.

Mathematics Subject Classification (2010): 14D20 (primary); 14F42, 57R22 (secondary).