Volume and self-intersection of differences of two nef classes

DAN POPOVICI

Abstract. Let $\{\alpha\}$ and $\{\beta\}$ be nef cohomology classes of bidegree (1, 1) on a compact *n*-dimensional Kähler manifold X such that the difference of intersection numbers $\{\alpha\}^n - n \{\alpha\}^{n-1}$. $\{\beta\}$ is positive. We solve in a number of special but rather inclusive cases the quantitative part of Demailly's Transcendental Morse Inequalities Conjecture for this context predicting the lower bound $\{\alpha\}^n - n \{\alpha\}^{n-1}$. $\{\beta\}$ for the volume of the difference class $\{\alpha - \beta\}$. We completely solved the qualitative part in an earlier work. We also give general lower bounds for the volume of $\{\alpha - \beta\}$ and show that the self-intersection number $\{\alpha - \beta\}^n$ is always bounded below by $\{\alpha\}^n - n \{\alpha\}^{n-1}$. $\{\beta\}$. We also describe and estimate the relative psef and nef thresholds of $\{\alpha\}$ with respect to $\{\beta\}$ and relate them to the volume of $\{\alpha - \beta\}$. Finally, broadening the scope beyond the Kähler realm, we propose a conjecture relating the balanced and the Gauduchon cones of $\partial\bar{\partial}$ -manifolds which, if proved to hold, would imply the existence of a balanced metric on any $\partial\bar{\partial}$ -manifold.

Mathematics Subject Classification (2010): 32J27 (primary); 32U40, 32Q25, 32J25, 53C55 (secondary).