Ann. Sc. Norm. Super. Pisa Cl. Sci. (5) Vol. XIV (2015), 1093-1118

Ricci surfaces

ANDREI MOROIANU AND SERGIU MOROIANU

Abstract. A Ricci surface is a Riemannian 2-manifold (M, g) whose Gaussian curvature K satisfies $K \Delta K + g(dK, dK) + 4K^3 = 0$. Every minimal surface isometrically embedded in \mathbb{R}^3 is a Ricci surface of non-positive curvature. At the end of the 19th century Ricci-Curbastro has proved that, conversely, every point x of a Ricci surface has a neighborhood which embeds isometrically in \mathbb{R}^3 as a minimal surface, provided K(x) < 0. We prove this result in full generality by showing that Ricci surfaces can be locally isometrically embedded either minimally in \mathbb{R}^3 or maximally in $\mathbb{R}^{2,1}$, including near points of vanishing curvature. We then develop the theory of closed Ricci surfaces, possibly with conical singularities, and construct classes of examples in all genera $g \ge 2$.

Mathematics Subject Classification (2010): 49Q05 (primary); 53C27, 53C42 (secondary).