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Partial Gaussian bounds for degenerate differential operators II

A. F. M. TER ELST AND EL MAATI OUHABAZ

Abstract. Let A = �

P
@k ckl @l be a degenerate sectorial differential operator

with complex bounded mesaurable coefficients. Let� ⇢ Rd be open and suppose
that A is strongly elliptic on �. Further, let � 2 C1

b (Rd ) be such that an "-
neighbourhood of supp� is contained in �. Let ⌫ 2 (0, 1] and suppose that
the ckl |� 2 C0,⌫(�). Then we prove (Hölder) Gaussian kernel bounds for the
kernel of the operator u 7! � St (� u), where S is the semigroup generated by
�A. Moreover, if ⌫ = 1 and the coefficients are real, then we prove Gaussian
bounds for the kernel of the operator u 7! � St u and for the derivatives in the first
variable. Finally we show boundedness on L p(Rd ) of restricted Riesz transforms.
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1. Introduction

If A is a strongly elliptic second-order operator onRd in divergence form with com-
plex bounded Hölder continuous coefficients, then it is well known that it generates
a holomorphic semigroup S which satisfies Gaussian kernel bounds and Gaussian
bounds for first order derivatives in each of the variables. If A is merely partially
strongly elliptic on an open set � ⇢ Rd then in general Gaussian bounds on Rd

fail, but in a previous paper [5] we showed Gaussian kernel bounds on good parts
of � if the coefficients of A are real and measurable. Precisely, if � 2 C1

b (�, R)
and if A is strongly elliptic on supp� , then for all t > 0 the operator M� St M� has
a Hölder continuous kernel satisfying (Hölder) Gaussian bounds, where M� is the
multiplication operator with the function � . In this paper we extend this to (Hölder)
derivatives of the kernel if the coefficients of the operator A are complex Hölder
continuous on � and the distance d(supp�,�c) > 0, that is an "-neighbourhood
of supp� is still in �. If in addition the coefficients are in W 1,1(�) and real on
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