Unprojection and deformations of tertiary Burniat surfaces

Jorge Neves and Roberto Pignatelli

Abstract

We construct a 4-dimensional family of surfaces of general type with $p_{g}=0$ and $K^{2}=3$ and fundamental group $\mathbb{Z} / 2 \times Q_{8}$, where Q_{8} is the quaternion group. The family constructed contains the Burniat surfaces with $K^{2}=3$. Additionally, we construct the universal coverings of the surfaces in our family as complete intersections on $\left(\mathbb{P}^{1}\right)^{4}$ and we also give an action of $\mathbb{Z} / 2 \times Q_{8}$ on $\left(\mathbb{P}^{1}\right)^{4}$ lifting the natural action on the surfaces.

The strategy is the following. We consider an étale $(\mathbb{Z} / 2)^{3}$-cover T of a surface with $p_{g}=0$ and $K^{2}=3$ and assume that it may be embedded in a Fano 3-fold V. We construct V by using the theory of parallel unprojection. Since V is an Enriques-Fano 3-fold, considering its Fano cover yields the simple description of the above universal covers.

Mathematics Subject Classification (2010): 14J29 (primary).

