Ann. Sc. Norm. Super. Pisa Cl. Sci. (5) Vol. XIII (2014), 137-205

A priori estimates and existence for elliptic equations with gradient dependent terms

NATHALIE GRENON, FRANÇOIS MURAT AND ALESSIO PORRETTA

Abstract. We consider, in a bounded domain $\Omega \subset \mathbb{R}^N$, a class of nonlinear elliptic equations in divergence form as

$$\begin{cases} \alpha_0 \, u - \operatorname{div}(a(x, u, Du)) = H(x, u, Du) & \text{in } \Omega, \\ u = 0 & \text{on } \partial \Omega \end{cases}$$

where $\alpha_0 \ge 0$, the second order part is a coercive, pseudomonotone operator of Leray-Lions type in the Sobolev space $W_0^{1,p}(\Omega)$, p > 1, and the function H grows at most like $|Du|^q + f(x)$, with p - 1 < q < p. Assuming f(x) to belong to an (optimal) Lebesgue class L^m , with $m < \frac{N}{p}$, we prove a priori estimates and existence of solutions, discussing several ranges of the exponents m, q and p which include cases of singular data (L^1 data or measures). The obtention of a priori estimates is not straightforward because of the "superlinear" character of the first order terms. To this purpose we use a new approach, generalizing the method introduced in our note [29]. We complete the results known in the previous literature where either $q \le p - 1$ or $m \ge \frac{N}{p}$.

Mathematics Subject Classification (2010): 35J60 (primary); 35J25, 35R05, 35Dxx (secondary).