A quantitative characterisation of functions with low Aviles Giga energy on convex domains

Andrew Lorent

Abstract

Given a connected Lipschitz domain Ω we let $\Lambda(\Omega)$ be the set of functions in $W^{2,2}(\Omega)$ with $u=0$ on $\partial \Omega$ and whose gradient (in the sense of trace) satisfies $\nabla u(x) \cdot \eta_{x}=1$, where η_{x} is the inward pointing unit normal to $\partial \Omega$ at x. The functional $I_{\epsilon}(u)=\frac{1}{2} \int_{\Omega} \epsilon^{-1}\left|1-|\nabla u|^{2}\right|^{2}+\epsilon\left|\nabla^{2} u\right|^{2} d z$, minimised over $\Lambda(\Omega)$, serves as a model in connection with problems in liquid crystals and thin film blisters. It is also the most natural higher order generalisation of the Modica and Mortola functional. In [16] Jabin, Otto and Perthame characterised a class of functions which includes all limits of sequences $u_{n} \in \Lambda(\Omega)$ with $I_{\epsilon_{n}}\left(u_{n}\right) \rightarrow 0$ as $\epsilon_{n} \rightarrow 0$. A corollary to their work is that if there exists such a sequence (u_{n}) for a bounded domain Ω, then Ω must be a ball and (up to change of sign) $u:=\lim _{n \rightarrow \infty} u_{n}$ is equal $\operatorname{dist}(\cdot, \partial \Omega)$. We prove a quantitative generalisation of this corollary for the class of bounded convex sets. Namely we show that there exists a positive constant γ_{1} such that, if Ω is a convex set of diameter 2 and $u \in \Lambda(\Omega)$ with $I_{\epsilon}(u)=\beta$, then $\left|B_{1}(x) \Delta \Omega\right| \leq c \beta^{\gamma_{1}}$ for some x and

$$
\int_{\Omega}\left|\nabla u(z)+\frac{z-x}{|z-x|}\right|^{2} d z \leq c \beta^{\gamma_{1}} .
$$

A corollary of this result is that there exists a positive constant $\gamma_{2}<\gamma_{1}$ such that if Ω is convex with diameter 2 and C^{2} boundary with curvature bounded by $\epsilon^{-\frac{1}{2}}$, then for any minimiser v of I_{ϵ} over $\Lambda(\Omega)$ we have

$$
\|v-\zeta\|_{W^{1,2}(\Omega)} \leq c\left(\epsilon+\inf _{y}\left|\Omega \triangle B_{1}(y)\right|\right)^{\gamma_{2}}
$$

where $\zeta(z)=\operatorname{dist}(z, \partial \Omega)$. Neither of the constants γ_{1} or γ_{2} are optimal.
Mathematics Subject Classification (2010): 49N99 (primary).

