A structural theorem for codimension-one foliations on $\mathbb{P}^{n}, n \geq 3$, with an application to degree-three foliations

Dominique Cerveau and Alcide Lins Neto

Abstract

Let \mathcal{F} be a codimension-one foliation on \mathbb{P}^{n} : for each point $p \in \mathbb{P}^{n}$ we define $\mathcal{J}(\mathcal{F}, p)$ as the order of the first non-zero jet $j_{p}^{k}(\omega)$ of a holomorphic 1form ω defining \mathcal{F} at p. The singular set of \mathcal{F} is $\operatorname{sing}(\mathcal{F})=\left\{p \in \mathbb{P}^{n} \mid \mathcal{J}(\mathcal{F}, p) \geq\right.$ 1\}. We prove (main Theorem 1.2) that a foliation \mathcal{F} satisfying $\mathcal{J}(\mathcal{F}, p) \leq 1$ for all $p \in \mathbb{P}^{n}$ has a non-constant rational first integral. Using this fact we are able to prove that any foliation of degree-three on \mathbb{P}^{n}, with $n \geq 3$, is either the pull-back of a foliation on \mathbb{P}^{2}, or has a transverse affine structure with poles. This extends previous results for foliations of degree at most two.

Mathematics Subject Classification (2010): 37FF75 (primary); 34M45 (secondary).

