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Abstract. We prove a higher order generalization of the Glaeser inequality,
according to which one can estimate the first derivative of a function in terms of
the function itself and the Hölder constant of its k-th derivative.

We apply these inequalities in order to obtain pointwise estimates on the
derivative of the (k + ↵)-th root of a function of class Ck whose derivative of
order k is ↵-Hölder continuous. Thanks to such estimates, we prove that the
root is not just absolutely continuous, but its derivative has a higher summability
exponent.

Some examples show that our results are optimal.
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1. Introduction

Let v 2 C2(R) be a function such that either v(x) � 0 or v(x)  0 for every x 2 R.
Let us assume that v00(x) is bounded. Then one has that

|v0(x)|2  2|v(x)| · sup
x2R

|v00(x)| 8x 2 R. (1.1)

This is known as Glaeser inequality (see [7]). If we set u(x) := |v(x)|1/2, then
estimate (1.1) implies that

|u0(x)| =

|v0(x)|
2|v(x)|1/2



⇢
1
2
sup
x2R

|v00(x)|
�1/2

for every x 2 R such that v(x) 6= 0. In other words, a bound on the second deriva-
tive of some function v(x) with constant sign yields a bound on the first derivative
of the square root of |v(x)|.
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