Ann. Sc. Norm. Super. Pisa Cl. Sci. (5) Vol. XII (2013), 587-621

On plane rational curves and the splitting of the tangent bundle

ALESSANDRO GIMIGLIANO, BRIAN HARBOURNE AND MONICA IDÀ

Abstract. Given an immersion $\varphi : \mathbf{P}^1 \to \mathbf{P}^2$, we give new approaches to determining the splitting of the pullback of the cotangent bundle. We also give new bounds on the splitting type for immersions which factor as $\varphi : \mathbf{P}^1 \cong D \subset X \to \mathbf{P}^2$, where $X \to \mathbf{P}^2$ is obtained by blowing up *r* distinct points $p_i \in \mathbf{P}^2$. As applications in the case that the points p_i are generic, we give a complete determination of the splitting types for such immersions when $r \leq 7$. The case that $D^2 = -1$ is of particular interest. For $r \leq 8$ generic points, it is known that there are only finitely many inequivalent φ with $D^2 = -1$, and all of them have balanced splitting. However, for r = 9 generic points we show that there are infinitely many inequivalent φ with $D^2 = -1$ having unbalanced splitting (only two such examples were known previously). We show that these new examples are related to a semi-adjoint formula which we conjecture accounts for all occurrences of unbalanced splitting when $D^2 = -1$ in the case of r = 9 generic points p_i . In the last section we apply such results to the study of the resolution of fat point schemes.

Mathematics Subject Classification (2010): 14C20 (primary); 13P10, 14J26, 14J60 (secondary).