Ordinary holomorphic webs of codimension one

Vincent Cavalier ${ }^{\dagger}$ and Daniel Lehmann

Abstract

To any d-web of codimension one on a holomorphic n-dimensional manifold $M(d>n)$, we associate an analytic subset S of M. We call ordinary the webs for which S has a dimension at most $n-1$ or is empty. This condition is generically satisfied, at least at the level of germs.

We prove that the rank of an ordinary d-web has an upper-bound $\pi^{\prime}(n, d)$ which, for $n \geq 3$, is strictly smaller than the bound $\pi(n, d)$ proved by Chern, $\pi(n, d)$ denoting the Castelnuovo's number. This bound is optimal. Setting $c(n, h)=\binom{n-1+h}{h}$, let k_{0} be the integer such that $c\left(n, k_{0}\right) \leq d<c\left(n, k_{0}+1\right)$. The number $\pi^{\prime}(n, d)$ is then equal - to 0 for $d<c(n, 2)$, - and to $\sum_{h=1}^{k_{0}}(d-c(n, h))$ for $d \geq c(n, 2)$.

Moreover, if d is precisely equal to $c\left(n, k_{0}\right)$, we define off S a holomorphic connection on a holomorphic bundle \mathcal{E} of $\operatorname{rank} \pi^{\prime}(n, d)$, such that the set of Abelian relations off S is isomorphic to the set of holomorphic sections of \mathcal{E} with vanishing covariant derivative: the curvature of this connection, which generalizes the Blaschke curvature, is then an obstruction for the rank of the web to reach the value $\pi^{\prime}(n, d)$.

When $n=2, S$ is always empty so that any web is ordinary, $\pi^{\prime}(2, d)=\pi(2, d)$, and any d may be written $c\left(2, k_{0}\right)$: we recover the results given in [9].

Mathematics Subject Classification (2010): 53A60 (primary); 14C21, 32S65 (secondary).

