Ordinary holomorphic webs of codimension one

VINCENT CAVALIER † and Daniel Lehmann

Abstract. To any *d*-web of codimension one on a holomorphic *n*-dimensional manifold M (d > n), we associate an analytic subset S of M. We call **ordinary** the webs for which S has a dimension at most n - 1 or is empty. This condition is generically satisfied, at least at the level of germs.

We prove that the rank of an ordinary *d*-web has an upper-bound $\pi'(n, d)$ which, for $n \ge 3$, is strictly smaller than the bound $\pi(n, d)$ proved by Chern, $\pi(n, d)$ denoting the Castelnuovo's number. This bound is optimal.

Setting $c(n,h) = {\binom{n-1+h}{h}}$, let k_0 be the integer such that $c(n,k_0) \le d < c(n,k_0+1)$. The number $\pi'(n,d)$ is then equal

- to 0 for
$$d < c(n, 2)$$
,
- and to $\sum_{h=1}^{k_0} (d - c(n, h))$ for $d \ge c(n, 2)$.

Moreover, if *d* is precisely equal to $c(n, k_0)$, we define off *S* a holomorphic connection on a holomorphic bundle \mathcal{E} of rank $\pi'(n, d)$, such that the set of Abelian relations off *S* is isomorphic to the set of holomorphic sections of \mathcal{E} with vanishing covariant derivative: the curvature of this connection, which generalizes the Blaschke curvature, is then an obstruction for the rank of the web to reach the value $\pi'(n, d)$.

When n=2, S is always empty so that any web is ordinary, $\pi'(2,d)=\pi(2,d)$, and any d may be written $c(2, k_0)$: we recover the results given in [9].

Mathematics Subject Classification (2010): 53A60 (primary); 14C21, 32S65 (secondary).