Two solutions for a singular elliptic equation by variational methods

Marcelo Montenegro and Elves A. B. Silva

Abstract

We find two nontrivial solutions of the equation $-\Delta u=\left(-\frac{1}{u^{\beta}}+\right.$ $\left.\lambda u^{p}\right) \chi_{\{u>0\}}$ in Ω with Dirichlet boundary condition, where $0<\beta<1$ and $0<p<1$. In the first approach we consider a sequence of ε-problems with $1 / u^{\beta}$ replaced by $u^{q} /(u+\varepsilon)^{q+\beta}$ with $0<q<p<1$. When the parameter $\lambda>0$ is large enough, we find two critical points of the corresponding ε-functional which, at the limit as $\varepsilon \rightarrow 0$, give rise to two distinct nonnegative solutions of the original problem. Another approach is based on perturbations of the domain Ω, we then find a unique positive solution for λ large enough. We derive gradient estimates to guarantee convergence of approximate solutions u_{ε} to a true solution u of the problem.

Mathematics Subject Classification (2010): 34B16 (primary); 35J20, 35B65 (secondary).

