Approximation of complex algebraic numbers by algebraic numbers of bounded degree

Yann Bugeaud and Jan-Hendrik Evertse

Abstract

To measure how well a given complex number ξ can be approximated by algebraic numbers of degree at most n one may use the quantities $w_{n}(\xi)$ and $w_{n}^{*}(\xi)$ introduced by Mahler and Koksma, respectively. The values of $w_{n}(\xi)$ and $w_{n}^{*}(\xi)$ have been computed for real algebraic numbers ξ, but up to now not for complex, non-real algebraic numbers ξ. In this paper we compute $w_{n}(\xi), w_{n}^{*}(\xi)$ for all positive integers n and algebraic numbers $\xi \in \mathbf{C} \backslash \mathbf{R}$, except for those pairs (n, ξ) such that n is even, $n \geq 6$ and $n+3 \leq \operatorname{deg} \xi \leq 2 n-2$. It is known that every real algebraic number of degree $>n$ has the same values for w_{n} and w_{n}^{*} as almost every real number. Our results imply that for every positive even integer n there are complex algebraic numbers ξ of degree $>n$ which are unusually well approximable by algebraic numbers of degree at most n, i.e., have larger values for w_{n} and w_{n}^{*} than almost all complex numbers. We consider also the approximation of complex non-real algebraic numbers ξ by algebraic integers, and show that if ξ is unusually well approximable by algebraic numbers of degree at most n then it is unusually badly approximable by algebraic integers of degree at most $n+1$. By means of Schmidt's Subspace Theorem we reduce the approximation problem to compute $w_{n}(\xi), w_{n}^{*}(\xi)$ to an algebraic problem which is trivial if ξ is real but much harder if ξ is not real. We give a partial solution to this problem.

Mathematics Subject Classification (2000): 11J68.

