Bernstein and De Giorgi type problems: new results via a geometric approach

Alberto Farina, Berardino Sciunzi and Enrico Valdinoci

Abstract

We use a Poincaré type formula and level set analysis to detect onedimensional symmetry of stable solutions of possibly degenerate or singular elliptic equations of the form $$
\operatorname{div}(a(|\nabla u(x)|) \nabla u(x))+f(u(x))=0 .
$$

Our setting is very general and, as particular cases, we obtain new proofs of a conjecture of De Giorgi for phase transitions in \mathbb{R}^{2} and \mathbb{R}^{3} and of the Bernstein problem on the flatness of minimal area graphs in \mathbb{R}^{3}. A one-dimensional symmetry result in the half-space is also obtained as a byproduct of our analysis. Our approach is also flexible to very degenerate operators: as an application, we prove one-dimensional symmetry for 1-Laplacian type operators.

Mathematics Subject Classification (2000): 32H02 (primary); 30C45 (secondary).

