Equations in the Hadamard ring of rational functions

Andrea Ferretti and Umberto Zannier

Abstract

Let K be a number field. It is well known that the set of recurrencesequences with entries in K is closed under component-wise operations, and so it can be equipped with a ring structure. We try to understand the structure of this ring, in particular to understand which algebraic equations have a solution in the ring. For the case of cyclic equations a conjecture due to Pisot states the following: assume $\left\{a_{n}\right\}$ is a recurrence sequence and suppose that all the a_{n} have a $d^{\text {th }}$ root in the field K; then (after possibly passing to a finite extension of K) one can choose a sequence of such $d^{\text {th }}$ roots that satisfies a recurrence itself. This was proved true in a preceding paper of the second author. In this article we generalize this result to more general monic equations; the former case can be recovered for $g(X, Y)=X^{d}-Y=0$. Combining this with the Hadamard quotient theorem by Pourchet and Van der Poorten, we are able to get rid of the monic restriction, and have a theorem that generalizes both results.

Mathematics Subject Classification (2000): 11B37 (primary); 12E25, 13F25 (secondary).

