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Continuity of solutions of linear, degenerate elliptic equations

JANI ONNINEN AND XIAO ZHONG

Abstract. We consider the simplest form of a second order, linear, degenerate,
elliptic equation with divergence structure in the plane. Under an integrability
condition on the degenerate function, we prove that the solutions are continuous.
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1. Introduction

Let � be a domain in R2. We consider the second order, linear, elliptic equation

div(A(x)∇u(x)) = 0, (1.1)

where A(x) = [ai j (x)]i, j=1,2 is a symmetric matrix with measurable coefficients
defined in �. Let α : � → [1, ∞] be an almost everywhere finite measurable
function. We assume that the maximum eigenvalue of the matrix A(x) is bounded
by 1 and the minimum eigenvalue by [α(x)]−1, that is,

|ξ |2
α(x)

� 〈A(x)ξ, ξ〉 � |ξ |2 (1.2)

for all ξ ∈ R2 and for almost every x ∈ �. We say that a function u ∈ W 1,1
loc (�) has

finite energy provided
〈A∇u, ∇u〉 ∈ L1

loc(�). (1.3)

In what follows, we always take A and α as defined above. A function u ∈ W 1,1
loc (�)

is a weak solution of the equation (1.1) provided that it has finite energy and (1.1)
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