The $B V$-energy of maps into a manifold: relaxation and density results

Mariano Giaquinta and Domenico Mucci

Abstract

Let \mathcal{Y} be a smooth compact oriented Riemannian manifold without boundary, and assume that its 1-homology group has no torsion. Weak limits of graphs of smooth maps $u_{k}: B^{n} \rightarrow \mathcal{Y}$ with equibounded total variation give rise to equivalence classes of Cartesian currents in $\operatorname{cart}^{1,1}\left(B^{n} \times \mathcal{Y}\right)$ for which we introduce a natural $B V$-energy. Assume moreover that the first homotopy group of \mathcal{Y} is commutative. In any dimension n we prove that every element T in $\operatorname{cart}^{1,1}\left(B^{n} \times \mathcal{Y}\right)$ can be approximated weakly in the sense of currents by a sequence of graphs of smooth maps $u_{k}: B^{n} \rightarrow \mathcal{Y}$ with total variation converging to the $B V$-energy of T. As a consequence, we characterize the lower semicontinuous envelope of functions of bounded variations from B^{n} into \mathcal{Y}.

Mathematics Subject Classification (2000): 49Q15 (primary); 49Q20 (secondary).

