Ann. Scuola Norm. Sup. Pisa Cl. Sci. (5) Vol. IV (2005), 511-530

Continuity of solutions to a basic problem in the calculus of variations

FRANCIS CLARKE

A la mémoire de Nicole Desolneux-Moulis

Abstract. We study the problem of minimizing $\int_{\Omega} F(Du(x)) dx$ over the functions $u \in W^{1,1}(\Omega)$ that assume given boundary values ϕ on $\Gamma := \partial \Omega$. The Lagrangian F and the domain Ω are assumed convex. A new type of hypothesis on the boundary function ϕ is introduced: the *lower* (or upper) *bounded slope condition*. This condition, which is less restrictive than the familiar bounded slope condition of Hartman, Nirenberg and Stampacchia, allows us to extend the classical Hilbert-Haar regularity theory to the case of semiconvex (or semiconcave) boundary data (instead of C^2). We prove in particular that the solution is locally Lipschitz in Ω . In certain cases, as when Γ is a polyhedron or else of class $C^{1,1}$, we obtain in addition a global Hölder condition on $\overline{\Omega}$.

Mathematics Subject Classification (2000): 49J10 (primary); 35J20 (secondary).