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Deformation of rational curves along foliations

FRANK LORAY, JORGE VITORIO PEREIRA AND FRÉDÉRIC TOUZET

Abstract. Deformation of morphisms along leaves of foliations define the tan-
gential foliation on the corresponding space of morphisms. We prove that codi-
mension one foliations having a tangential foliation with at least one non-algebraic
leaf are transversely homogeneous with structure group determined by the codi-
mension of the non-algebraic leaf in its Zariski closure. As an application, we
provide a structure theorem for degree three foliations on P3.

Mathematics Subject Classification (2010): 37F75 (primary).

1. Introduction

1.1. Motivation

Singular holomorphic codimension one foliations on projective spaces of dimen-
sion at least three have been widely studied in recent years. Much of the recent
activity on the subject was spurred by the classification of irreducible components
of the space of foliations of degree two by Cerveau and Lins Neto [4]. Despite the
growing literature on the subject, not much of it is devoted to the next simplest case:
irreducible components of the space of foliations of degree three on P3. A notable
exception is [3] where it is proven that they are either transversely affine foliations,
or are rational pull-backs of foliations on surfaces. In this paper we refine [3] by
means of the following result.
Theorem A. If F is a codimension one singular holomorphic foliation on P3 of
degree three then

(1) F is defined by a closed rational 1-form without codimension one zeros; or
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(2) there exists a degree one foliation by algebraic curves tangent to F ; or
(3) F is a linear pull-back of a degree 3 foliation on P2; or
(4) F admits a rational first integral.

The foliations defined by closed rational 1-forms without codimension one zeros lie
in the so-called logarithmic components of the space of foliations, see [9, Section
2.5] or [4, Lemma 8]. It is also known the existence of irreducible components,
for the space of codimension one foliations of every degree on projective spaces
of any dimension n � 3, with general element equal to a linear pull-back of a
foliation on P2. Theorem A reduces the problem of determining/classifying the
irreducible components of the space of degree three foliations on P3 to the problem
of determining/classifying irreducible components with general element fitting into
the descriptions given by items (2) and (4) of Theorem A.

Theorem A is proved through the study of deformations of morphisms from P1
to P3 along the leaves of the codimension one foliation.

1.2. Tangential foliations

As it was observed in [8], foliations on a given uniruled manifold X naturally in-
duce foliations on the space of morphisms Mor(P1, X), the so-called tangential
foliations. A leaf L of a tangential foliation corresponds to a maximal analytic fam-
ily of morphisms which do not move the points in the image of a point of a given
morphism outside the starting leaves. In other words, if L is a leaf of a tangential
foliation and L ⇥ P1 ! X is the restriction of the evaluation morphism then the
pull-back of the foliation on X to L ⇥ P1 is the foliation given by the fibers of
the projection L ⇥ P1 ! P1, or the foliation with just one leaf. A more precise
definition of tangential foliation can be found in Section 4.

In this paper, we refine our previous result on the subject [8, Theorem 6.5].

Theorem B. Let X be a uniruled projective manifold and let F be a codimension
one foliation on X . Fix an irreducible component M of the space of morphisms from
P1 to X containing a free morphism and let Ftang be the tangential foliation of F
defined on this irreducible component M ⇢ Mor(P1, X). Let � be the codimension
of a general leaf L of Ftang inside its Zariski closure L , i.e. � = dim L � dim L .
Then �  3. Furthermore, if L is not algebraic (i.e. � > 0), then the following
assertions hold true:

(1) � = 3 if and only if F is transversely projective but not transversely affine;
and

(2) � = 2 if and only if F is transversely affine but not virtually transversely
Euclidean; and

(3) � = 1 if and only if F is virtually transversely Euclidean.

We refer the reader to Section 2 for the definition of transversely projective, trans-
versely affine, and virtually transversely Euclidean foliations.
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Whereas [8, Theorem 6.5] provides necessary conditions for a foliation to be
transversely projective/transversely affine/virtually transversely Euclidean; Theo-
rem B above establishes an equivalence between the codimension � and the dimen-
sion of the corresponding transverse Lie algebra: sl2 for transversely projective,
aff for transversely affine, and C for virtually transversely Euclidean. More impor-
tantly, Theorem B improves on the previous result by dropping the hypothesis on
the Zariski denseness of the general leaf of the tangential foliation. This is achieved
by means of Theorem 3.1, a result which might have independent interest.

1.3. Bootstrapping

On simply connected uniruled manifolds carrying rational curves in general po-
sition with respect to the foliation in question, one can push further the analysis
carried out to prove Theorem B in order to achieve the more precise result below.
Its proof consists of successive applications of Theorem B, such that in each step
one gains more constraints on the nature of the transverse structure.
Theorem C. Let X be a simply connected uniruled projective manifold and let F
be a codimension one foliation on X . Fix an irreducible component M of the space
of morphismsMor(P1, X) containing a free morphism and let Ftang be the tangen-
tial foliation of F defined on M . If the general leaf of Ftang is not algebraic and the
general morphism f : P1 ! X in M intersects non-trivially and transversely all
the algebraic hypersurfaces invariant by F then F is defined by a closed rational
1-form without divisorial components in its zero set.

1.4. Structure of the paper

In Section 2 we recall the basic definitions concerning transverse structures of codi-
mension one foliations and present the key properties which will be used through-
out. Section 3 is devoted to the proof of extension of transverse structures from
fibers of a fibration to the whole ambient manifold. Section 4 studies the tangen-
tial foliations and contain the proofs of Theorems B and C. Finally, Theorem A is
proved in Section 5.

ACKNOWLEDGEMENTS. We thank the anonymous referee for suggesting improve-
ments on the exposition and for pointing out the implications of our Theorem A to
structure of the space of degree three codimension one foliations on Pn , n � 4, see
Remark 5.1.

2. Transverse structures for codimension one foliations

2.1. Transversely affine and virtually transversely Euclidean foliations

Let F be a codimension one foliation on a projective manifold X . Since any line
bundle on X admits rational sections, we may choose a rational 1-form !0 defining
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F . The foliation F is transversely affine if there exists a rational 1-form !1 such
that

d!0 = !0 ^ !1 and d!1 = 0 .

We say that the pair (!0,!1) defines a transverse affine structure for F . Although
this definition is made in terms of a particular 1-form !0 definingF , if !0

0 = h!0 is
another rational 1-form defining F then !0

1 = !1 � dh
h is a closed rational 1-form

which satisfies d!0
0 = !0

0^!0
1. It is therefore natural to say that two pairs of rational

1-forms (!0,!1) and (!0
0,!

0
1) define the same transverse affine structure for F if

there exists a non-zero rational function h such that (!0
0,!

0
1) = (h!0,!1 � dh

h ).
A transverse affine structure for F determines a local system of first integrals

given by the branches of the multi-valued function

F =
Z ✓

exp
Z

!1

◆
!0 .

Different branches of F at a common domain of definition differ by left composition
with an element of the affine group Aff(C) ' C o C⇤.

If !1 is logarithmic with all its periods integral multiples of 2⇡
p

�1 then
(exp

R
!1)!0 is a closed rational 1-form defining F . In this case we will say that

the transverse affine structure defined by (!0,!1) is transversely Euclidean.
Transverse affine structures for which !1 is logarithmic with all its periods

commensurable to 2⇡
p

�1 are called virtually transversely Euclidean structures.
In this case, the 1-form (exp

R
!1)!0 is not necessarily a rational 1-form, but after

passing to a finite ramified covering of X it becomes one.

2.2. Transversely projective foliations

Similarly, a foliation F on X is called transversely projective if for any rational
1-form !0 defining F there exists rational 1-forms !1 and !2 such that

d!0 = !0 ^ !1

d!1 = !0 ^ !2

d!2 = !1 ^ !2 .

The triple of rational 1-forms (!0,!1,!2) defines a projective structure forF . Two
triples (!0,!1,!2) and (!0

0,!
0
1,!

0
2) define the same projective structure for F if

there exists rational functions f, g 2 C(X) such that

!0
0 = f !0

!0
1 = !1 �

d f
f

+ g!0

!0
2 = f �1!2 + g!1 + g2!0 � dg .
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As in the case of transversely affine foliations, the transversely projective folia-
tions admit a canonical collection of local holomorphic first integrals defined on the
complement of the polar set of !0,!1,!2, see for instance [2].

For a thorough discussion about transversely affine and transversely projec-
tive foliations of codimension one on projective manifolds, including a description
of their global structure, we invite the reader to consult [6] and [10] respectively.
Here we will review two important features of transversely homogeneous folia-
tions/structures of codimension one in a formulation slightly more general than
what is currently available in the literature. These two features play an essential
role in this paper.

2.3. Behaviour under dominant rational maps

Transversely homogenous structures for codimension one foliations behave rather
well with respect to dominant rational maps as the result below shows.

Lemma 2.1. Let G be a codimension one foliation on a projective manifold Y , F
a codimension one foliation on a projective manifold X , and F : Y 99K X a domi-
nant rational map such that G = F⇤F . If G is transversely projective, transversely
affine, virtually transversely Euclidean then F is, respectively, transversely projec-
tive, transversely affine, virtually transversely Euclidean.

Proof. This is essentially the content of [8, Lemma 6.2], a geometric translation
of [2, Lemma 2.1 and Lemma 3.1]. The only part of the statement not explicit
proved there is that when G is virtually transversely Euclidean then the same holds
true for F . For the sake of completeness let us present a proof of this implication.

Notice that we can assume from the beginning that F does not admit a rational
first integral, as otherwise there would be nothing to prove. After cutting Y with
hyperplane sections we can assume that Y and X have the same dimension. We
can further assume that G is transversely Euclidean and that the generically finite
rational map F : Y 99K X is Galois. Let ! be a rational 1-form defining F . Let
⌘ be a closed rational 1-form defining G. If ' is one of the deck transformations
of F then '⇤⌘ = �⌘ for some root of the unity �. Since ⌘ and F⇤! define the
same foliation, there exists a rational function h such that F⇤! = h⌘. Of course
'⇤h = ��1h and consequently '⇤ dh

h = dh
h . The closedness of ⌘ implies

dF⇤! =
dh
h

^ F⇤!.

The invariance of dhh under the deck transformations allows us to find a logaritmic
1-form � on X with rational residues such that dhh = F⇤�. Hence d! = � ^ ! and
F is virtually transversely Euclidean.

The converse statement is trivially true: if F is transversely projective, trans-
versely affine, or virtually transversely Euclidean, then the same holds true for G.
Indeed, it suffices to pull-back the 1-forms !i defining the structure by F .
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2.4. Uniqueness of tranversely homogeneous structures

Transversely homogeneous structures for codimension one foliations are unique,
except in very special cases which are described by the next result.

Lemma 2.2. Let F be a codimension one foliation on a projective manifold. The
following assertions hold true:

(1) If F admits two non-equivalent transversely projective structures then F ad-
mits a virtually transversely Euclidean structure.

(2) IfF admits two non-equivalent transversely affine structures thenF is defined
by a closed rational 1-form, i.e. F admits a transversely Euclidean structure.

(3) If F admits two non-equivalent virtually transversely Euclidean structures
then F admits a rational first integral.

Proof. The first two possibilities are described by [5, Lemma 2.20]. For describing
the last possibility, assume that F is defined a rational 1-form !0 and observe that
the existence of two non-equivalent virtually transversely Euclidean structures is
equivalent to the existence of two linearly independent logarithmic 1-forms !1,!

0
1,

both with periods commensurable to ⇡ i and satisfying

d!0 = !0 ^ !1 = !0 ^ !0
1 .

Their difference !1 � !0
1 is non-zero, proportional to !0, and a suitable complex

multiple of it has all its periods in 2⇡ iZ. In other words, there exists a constant
� 2 C⇤ such that

exp
✓Z

�(!1 � !0
1)

◆

is a rational function constant along the leaves of F .

3. Extension of transverse structures

The purpose of this section is to prove the following result.

Theorem 3.1. Let F be a codimension one foliation on a projective manifold X .
Suppose there exists a projective variety B and a morphism f : X ! B with gen-
eral fiber irreducible such that F is transversely projective/transversely affine/vir-
tually transversely Euclidean when restricted to a very general fiber of f . If the
restriction ofF to the very general fiber does not admit a rational first integral then
F is, respectively, transversely projective/transversely affine/virtually transversely
Euclidean.

In the statement of Theorem 3.1 one can replace the existence of the mor-
phism f by the existence of a covering family Z of subvarieties of X such that F
is transversely projective/transversely affine/virtually transversely Euclidean when
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restricted to a very general element of the family in order to achieve the same con-
clusion. One reduces to the statement above by pulling back the foliation to the
total space of the family of cycles, applying Theorem 3.1 to this pull-back foliation,
and descending the conclusion to X using Lemma 2.1.

Before proceeding to the proof of Theorem 3.1 we point out that the projec-
tiveness of X is essential for its validity.
Example 3.2. Let F = E ⇥ E be the square of an elliptic curve and consider the
automorphism of it defined by '(x, y) = (2x + y, x + y). This is the standard
example of a hyperbolic automorphism. It leaves invariant two linear foliations on
E ⇥ E , say F+,F�, defined by closed holomorphic 1-forms !+,!� respectively.
As can be easily seen '⇤!± = �±!± where �± are the eigenvalues of the matrix

✓
2 1
1 1

◆
.

Clearly, both foliations F+ and F� have Zariski dense leaves. If we now consider
a projective curve B and a suspension of a representation ⇡1(B) ! Aut(F±), con-
taining ' in its image, we get a genuinely transversely affine foliation on compact
complex manifold X fibering over B with fibers F such that the restriction to any
fiber is transversely Euclidean and without rational first integral.

The ambient manifold X is not projective, and not even Kähler. Indeed, aiming
at a contradiction, suppose that X is Kähler. Then ' has to preserve a Kähler class
and [7, Proposition 2.2] implies that some non-trivial power of ' is a translation.
Since ' is not of finite order, this gives the sought contradiction.

3.1. Proof of Theorem 3.1

Theorem 3.1 follows from the next three results combined:

Lemma 3.3. Let F be a codimension one foliation on a projective manifold X .
Assume that X is endowed with a fibration f : X ! B such that the restriction of
F to the very general fiber of f is transversely projective. Then there exists rational
1-forms !0,!1,!2 and !3 with the following properties.

(1) The 1-forms !0, . . . ,!3 satisfy the system of equations
8
<

:

d!0 = !0 ^ !1
d!1 = !0 ^ !2
d!2 = !0 ^ !3 + !1 ^ !2;

(3.1)

(2) The foliation F is defined by !0;
(3) The restriction of 1-form !3 to a general fiber of f is zero;
(4) If we further assume that the restriction of F to a very general fiber of f

is transversely affine then we have that both !2 and !3 restrict to zero at a
general fiber of f .
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Proof. We start by choosing ↵0,↵1,↵2,↵3 rational 1-forms on X such that ↵0 de-
finesF and which satisfy the system equations (3.1). The existence of such 1-forms
is well-known and can be traced back to Godbillon-Vey, see [5, Section 2.1].

Let G be the restriction of F to the (schematic) generic fiber X of f . Hence
X is a projective manifold defined over the function field C(B) of the basis of
the fibration and G is a codimension one foliation on X. The algebraic nature of
transversely projective structures implies that G is transversely projective. If we
denote by �0, . . . ,�3 the restrictions of ↵0, . . . ,↵3 to X then, according to [5,
Section 2.3], we can replace �2 by �2+ f�0 where f is a rational function onX in
such a way that they now satisfy

8
<

:

d�0 = �0 ^ �1
d�1 = �0 ^ �2
d�2 = �1 ^ �2.

Consider a lift of f to a rational function on X (still denoted by f ) and set !0 = ↵0,
!1 = ↵1, !2 = ↵2 + f ↵0. According to [5, Corollary 2.4] there exists a unique !3
such that the system of equations (3.1) is satisfied. Moreover, the uniqueness of !3
implies that its restriction to the generic fiber of f must be zero. This is sufficient
to prove item (3) of the lemma. The proof of item (4) is completely similar.

Proposition 3.4. LetF be a codimension one foliation on a projective manifold X .
Assume that X is endowed with a fibration f : X ! B and that the restriction ofF
to a general fiber of f does not admit a rational first integral. If there exists 1-forms
!0,!1,!2,!3 satisfying item (3) of Lemma 3.3 then F is transversely projective.
Similarly, if there exists 1-forms !0,!1,!2,!3 satisfying item (4) of Lemma 3.3
then F is transversely affine.

Proof. Assume that the dimension of B is q and let f1, . . . , fq be algebraically in-
dependent rational functions in f ⇤C(B) ⇢ C(X). Notice that item (3) of Lemma
3.3 guarantees that !3 ^ d f1 ^ . . . ^ d fq = 0. Assume that the foliation !0 ^ d f1 ^
· · ·^d fq has some transcendental leaf. We want to prove thatF is transversely pro-
jective. The proof is recursive on q: we first prove that, on each fixed codimension
q � 1 subvariety defined by (an irreducible component of ) f2, . . . , fq = constant,
the restriction of F is transversely projective. Note that this later foliation must
have transcendental leaves also so that we can go on with codimension q � 2 sub-
varieties defined by f3, . . . , fq = constant. It is thus enough to consider the case
q = 1.

We start with the easier case where F restricts as a transversely Euclidean
foliation on the level sets. In other words, assume that

!1 ^ d f = 0.

Then we can write !1 = gd f for some rational function g and derivating d!0 =
!0 ^ !1, we get

!0 ^ d f ^ dg = 0.
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If d f ^ dg = 0, then d!1 = 0 so that F is transversely affine. If d f ^ dg 6= 0, then
g is a rational first integral for F | f=constant.

Before proceeding to the next case, note that our assumption in the previous
case is equivalent to d!0 ^ d f = 0. Indeed, this means that !0 ^ !1 ^ d f = 0 and
by division (recall that !0 ^ d f 6= 0) !1 = gd f + h!0 for rational functions g and
h. But (see [5, Section 2.1]) we can then replace !1 by !1 � h!0 without changing
the equality d!0 = !0 ^ !1.

We will treat the affine case, now assuming

!2 ^ d f = 0.

One can write !2 = gd f as before and we get d!1 = g!0 ^ d f . If g = 0 then
d!1 = 0 and F is transversely affine. If g 6= 0, by derivation we get

✓
!1 �

dg
g

◆
^ !0 ^ d f = 0.

Substituting !0 = g · !̃0 and !1 = !̃1 + dg
g , we get (the same conclusion with

g = 1)
!̃1 ^ !̃0 ^ d f = 0

and thus d!̃0 ^ d f = 0 and we are back to the Euclidean case.
We finally end with the general projective case, assuming

!3 ^ d f = 0.

Writing !3 = gd f , we get d!2 = g!0 ^ d f + !1 ^ !2. If g = 0, then F is
transversely projective; if not, after derivation we get

(!1 �
1
2
dg
g

) ^ !0 ^ d f = 0.

After division, we find
!1 =

1
2
dg
g

+ hd f + k!0,

for rational functions h and k. In fact, we can replace !1 by !1�k!0 thus assuming
k = 0 (we now forget !2). If dh ^ d f = 0, then !1 = 1

2
dg
g + hd f is closed and F

is transversely affine. If dh ^ d f 6= 0, then

!0 ^ dh ^ d f = !0 ^ d!1 = 0

and h is a first integral for F | f=constant.

Lemma 3.5. Let F be a transversely affine foliation of codimension one on a pro-
jective manifold X . Assume there exists a projective surface 6 ⇢ X for which the
restriction ofF to6 is virtually transversely Euclidean and admits no rational first
integral then the same holds true for F .
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Proof. This is a consequence of the structure theorem for transversely affine foli-
ations, see [6] and [10, Theorem D], which says that transversely affine foliations
on projective manifolds which are not virtually transversely Euclidean are pull-
backs of Riccati foliations on surfaces. Aiming at a contradiction, assume that F is
transversely affine but not transversely Euclidean. Thus there exists a rational map
' : X 99K S to a ruled surface, and a Riccati foliation on S such that '⇤R = F .
The restriction of ' to 6 must be dominant as otherwise F|6 would admit a ratio-
nal first integral. Thus, if we assume that F|6 is virtually transversely Euclidean
then Lemma 2.1 implies that the same holds true for R. But this would imply that
F = '⇤R is also virtually transversely Euclidean contrary to our assumptions. This
gives the sought contradiction which proves the lemma.

4. Tangential foliation

This section is devoted to the proof of Theorem B. We start by recalling the defini-
tion of the tangential foliation. For a more detailed account, we invite the reader to
consult [8, Section 6].

4.1. Tangential foliation

Let X be a uniruled projective manifold. These are characterized by the existence
of non-constant morphisms f : P1 ! X such that f ⇤TX is generated by global
sections, the so-called free morphisms. At a neighborhood of a free morphism f
the scheme Mor(P1, X) is smooth and the tangent space of Mor(P1, X) at the point
f is naturally isomorphic to H0(P1, f ⇤TX ).

Let us fix a foliation F on X and an irreducible component M ⇢ Mor(P1, X)
of the space of morphism from P1 to X containing a free morphism f . Recall
from [8, Section 6] that F induces a natural foliation on M , called the tangential
foliation of F on M and denoted by Ftang. For a morphism f 2 M ⇢ Mor(P1, X),
the Zariski tangent space of M at f is canonically identified with the vector space
H0(P1, f ⇤TX ). Therefore, the inclusion TF ! TX naturally determines, for any
f 2 M , an inclusion of H0(P1, f ⇤TF ) into the Zariski tangent space of M at f .
The foliation Ftang is the unique foliation on M with tangent space at a general free
morphism f given by H0(P1, f ⇤TF ) ⇢ H0(P1, f ⇤TX ).

The tangential foliation also admits the following alternative description. If
ev : M ⇥ P1 ! X is the evaluation morphism, p : M ⇥ P1 ! M is the natural
projection, and H is the foliation on M ⇥ P1 defined by the projection to P1 then
Ftang coincides with p⇤(H \ ev⇤F). Here we are considering the direct image
of foliations (under proper morphisms with connected fibers) in the sense of [8,
Section 6.3], i.e. p⇤(H \ ev⇤F) is the foliation on M with tangent sheaf equal to
the saturation in TM of the image of the natural morphism

p⇤TH\ev⇤F ! p⇤TM⇥P1 ! TM



DEFORMATION OF RATIONAL CURVES ALONG FOLIATIONS 1325

induced by the composition of the inclusion of TH\ev⇤F into TM⇥P1 with the dif-
ferential of p.

4.2. Foliations on B ⇥ P1

Let L be a leaf of Ftang and L its Zariski closure. We recall below [8, Theorem 6.5]
which describes the foliation G = ev⇤F|L⇥P1 .

Theorem 4.1. Let B be an algebraic manifold, let G be a codimension one foliation
on B ⇥ P1, let ⇡ : B ⇥ P1 ! B be the natural projection and let H be the
codimension one foliation defined by the fibers of the other natural projection ⇢ :
B⇥P1 ! P1. If the general fiber of ⇡ is generically transverse to G and the general
leaf L of the direct image T = ⇡⇤(G \H) is Zariski dense then the codimension of
T is at most three. Moreover,

(1) If codimT = 1 then G is defined by a closed rational 1-form;
(2) If codimT = 2 then G is transversely affine;
(3) If codimT = 3 then G is transversely projective.
Remark 4.2. The proof presented in [8] gives more information as we now proceed
to recall. It starts by showing that the foliation G is defined by a rational 1-form
which can be written as

! = dz + a(z)↵ + b(z)� + c(z)� ,

where ↵,�, � are rational 1-forms on B; a, b, c are rational functions on P1; and z
is a coordinate on P1. To avoid overburdening the notation, we identify 1-forms on
B with their pull-backs through ⇡ to B ⇥ P1, and we also identify 1-forms on P1
with their pull-backs through ⇢ : B ⇥ P1 ! P1 . Furthermore, the codimension of
T coincides with the dimension of the C-vector space generated by ↵,�, � .

When codimT = 1 then the foliation G is induced by the sum of pull-backs
under the natural projections of closed rational 1-forms on B and on P1. To wit, G
is defined by dz

f (z) +⌘, where f is rational function on P1 and ⌘ is closed rational 1-
form on B. Notice that the zero set of this closed rational 1-form ! has no divisorial
components.

If instead codimT � 2 then the proof of [8, Theorem 6.5] establishes the
existence of a rational map ' : P1 ! P1 and a Riccati foliationR on the manifold
B ⇥ P1 such that G = (idB ⇥')⇤R. The case where codimT = 3 is distinguished
from the case where codimT = 2 by the existence of fibers of the projection ⇢ :
B⇥P1 ! P1 invariant by G. When codimT = 3 none of the ⇢-fibers are invariant.
When codimT = 2 the Riccati foliation R has exactly one invariant ⇢-fiber and,
consequently, the foliation G has at least one invariant ⇢-fiber.

We proceed to investigate the converse of Theorem 4.1. We start with a simple
observation.

Lemma 4.3. Notation and assumptions as in Theorem 4.1. If Y is an algebraic leaf
of G generically transverse to the fibers of ⇡ then Y is contained in a fiber of ⇢.
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Proof. By the definition of T the restriction of Y to L⇥P1 is horizontal. Therefore
the restriction to Y \ (L ⇥ P1) of the projection L ⇥ P1 ! P1 is locally constant.
Since L is Zariski dense L = B the same holds true over Y itself. Therefore Y is
horizontal.

Proposition 4.4. Notation and assumptions as in Theorem 4.1. If G is virtually
transversely Euclidean then codimT = 1.

Proof. Aiming at a contradiction, let us assume that G is virtually transversely Eu-
clidean but � = codimT � 2. According to Remark 4.2 we can assume that G is
the pull-back of a Riccati foliationR on B⇥P1 through a rational map of the form
idB ⇥' : B⇥P1 99K B⇥P1. In particular,R is defined by a rational 1-form which
can be written as

! = dz + ↵ + z� + z2� ,

where ↵,�, � are rational 1-forms on B which define the foliation T and z is a
coordinate on P1. The integrability condition ! ^ d! = 0 implies that

d↵ = ↵ ^ �

d� = 2↵ ^ �

d� = � ^ � .

In particular, the assumption codimT � 2 implies d! 6= 0.
Since we are assuming that G is virtually transversely Euclidean, the same

holds true forR according to Lemma 2.1. Therefore there exists a non-zero closed
logarithmic 1-form !1 on B ⇥ P1 with periods commensurable to ⇡ i such that
d! = ! ^ !1. Since any holomorphic function on P1 is constant, the canonical
multi-valued first integral

F =
Z ✓

exp
Z

!1

◆
!0

must have a hypersurface contained in its singular set dominating the basis of the
fibration ⇡ : B ⇥ P1 ! B. As this hypersurface is clearly invariant by R, we can
apply Lemma 4.3 to guarantee that, after a change of coordinates on P1, the section
{z = 1} is invariant by R. In these new coordinates, � = 0, i.e. R is defined by
! = dz + ↵ + z�. This already shows that codimT  2, since T is the foliation
defined by ↵ and �.

The integrability condition implies that (!,�) is a transverse affine structure
for R. Therefore both (!,�) and (!,!1) are transverse structures for R. If they
are the same then !1 = � and exp(n

R
�) is a rational function constant along the

leaves of T for any sufficiently divisible integer n (!1 is logarithmic with periods
commensurable to ⇡ i). As we are assuming that the leaves of T are Zariski dense,
we deduce that � = 0 and, consequently, codimT = 1 contrary to our assumptions.

We can assume that !1 and � are distinct closed rational 1-forms. Their dif-
ference is a non-zero closed rational 1-form defining R. Therefore we can write
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� � !1 = h! for a certain non-constant rational h 2 C(B ⇥ P1). The irreducible
components of the divisor of zeros and poles of h, according to Lemma 4.3, are
either fibers of ⇡ : B ⇥ P1 ! B or fibers of ⇢ : B ⇥ P1 ! P1. Therefore we can
write h as a product of a 2 C(B) with b 2 C(P1).

We claim that the function a 2 C(B) is constant. Indeed, from the equalities
d(h!) = 0 and dz ^ db = 0 we deduce that

dz ^ d(a!) = 0 =) dz ^ da ^ ! + adz ^ d! = 0 .

Using that d� = 0 we can write

dz ^ da ^ (↵ + z�) + adz ^ d↵ = 0 .

Finally, taking the wedge product of this last identity with � we conclude that dz ^
da ^ ↵ ^ � = 0. It follows that a is a first integral for T , and as such must be
constant.

Now from d(b!) = 0 for b 2 C(P1), we deduce the identity db ^ ↵ + bd↵ +
d(zb)^�+zhd� =0. After taking the wedge product with ↵ and using the vanishing
of d� and of ↵ ^ d↵, we conclude that ↵ ^ � = 0. This implies codimT  1. The
proposition follows.

Arguing as at the beginning of the proof above, one also obtains the following
result.

Corollary 4.5. Notation and assumptions as in Theorem 4.1. If G is transversely
affine then codimT  2.

4.3. Synthesis (proof of Theorem B)

Let X be a uniruled projective manifold and F be a codimension one foliation on
X . We fix an irreducible component M of the space of morphisms from P1 to X
containing a free morphism and let Ftang stands for the tangential foliation of F
defined on this irreducible component M . We denote by Ftang the foliation on M
with general leaf given by the Zariski closure of a leaf of Ftang. The existence of a
foliation with these properties follows from [1].

Theorem 4.6 (Theorem B of the introduction). Let � = dimFtang�dimFtang. If
the general leaf of Ftang is not algebraic (i.e. � > 0) then �  3. Furthermore the
following assertions hold true.

(1) � = 3 if and only if F is transversely projective but not transversely affine;
(2) � = 2 if and only if F is transversely affine but not virtually transversely

Euclidean;
(3) � = 1 if and only if F is virtually transversely Euclidean.
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Proof. Let L be a general leaf of Ftang which we will assume not algebraic. If L
is the Zariski closure of L and U is the smooth locus of L then we are in position
to apply Theorem 4.1 to G = (ev⇤F)|U⇥P1 and deduce that G is transversely pro-
jective and dim L � dim L = � 2 {1, 2, 3}. Theorem 3.1 implies that ev⇤F is also
transversely projective.

If the general leaf of Ftang is not algebraic then combining Theorem 4.1 with
Theorem 3.1 one deduces that F is transversely projective.

Let us first prove assertion (3). If � = 1 then G is defined by a closed rational
1-form, see Remark 4.2. Theorem 3.1 implies that ev⇤F is virtually transversely
Euclidean. Lemma 2.1 implies that the same holds true for F . Reciprocally, if
F is virtually transversely Euclidean then the same holds true for G. We apply
Proposition 4.4 to deduce that � = 1. Assertion (3) follows.

The proof of assertion (2) is similar. If � = 2 then G is transversely affine.
Theorem 3.1 implies that ev⇤F is transversely affine and Lemma 2.1 implies that
the same holds true for F . Reciprocally, if F is transversely affine then Corollary
4.5 implies �  2. Assertion (3) implies � � 2 and assertion (2) follows.

As before, Theorem 3.1 combined with Lemma 2.1 imply that F is trans-
versely projective. Reciprocally, as we already know that �  3, assertions (2) and
(3) imply assertion (1).

4.4. Bootstrapping (proof of Theorem C)

We proceed to prove Theorem C. We keep the notations from Section 4.3.

Lemma 4.7. Assume that the general leaf of Ftang is not algebraic. If F has an
algebraic leaf Y ⇢ X which intersects the image of a general morphism f 2 M
then F is transversely affine.

Proof. Let L be a general leaf of Ftang, L be its Zariski closure, and U ⇢ L be the
smooth locus of the Zariski closure. Lemma 4.3 implies that G = ev⇤F|U⇥P1 has a
horizontal leaf. Since G = (idU ⇥')⇤R it follows that the Riccati foliationR also
has a horizontal leaf. Thus, in a suitable coordinate system where the horizontal is
at {z = 1}, the Riccati foliationR is defined by

dz + !0 + z!1 .

Hence the restriction ofFtang to L is defined by !0 and !1 and therefore dimFtang�
dimFtang  2. We apply Theorem 4.6 to conclude thatF is transversely affine.

Lemma 4.8. Assume X is simply connected and that the general leaf ofFtang is not
algebraic. If the image of a general morphism f 2 M intersects non-trivially every
algebraic leaf of F then F is virtually transversely Euclidean.

Proof. We keep the notation from Lemma 4.7. According to Theorem 4.6 it suffices
to show that G = ev⇤F|U⇥P1 is defined by a closed rational 1-form.
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First, notice that F must have some algebraic leaf. Otherwise the existence of
a transverse structure for F given by Theorem 4.6 and the simple connectedness of
X would give rise to the existence of a rational first integral for F . It follows that
the leaves ofFtang are algebraic, contradicting our initial assumption. Therefore we
can apply Lemma 4.7 to deduce thatF is a transversely affine foliation. Fix rational
1-forms !0 and !1 on X such that d!0 = !0 ^ !1, d!1 = 0, and !0 defines F .

Assume from now on that F is not virtually transversely Euclidean. Since
X is simply connected, this implies that !1 is not a logarithmic differential with
rational residues. Notice that !0 and !1 are not uniquely defined, but any different
pair (!0

0,!
0
1) satisfying the conditions above will satisfy !0 = h!0

0 and !1 =
!0
1 + d log h. In particular, the fact that !1 is not a logarithmic 1-form with rational
residues does not depend on the choice of the pair.

Aiming at a contradiction assume that dim L � dim L � 2. According to Re-
mark 4.2, the foliation G is the pull-back of a Riccati foliation on U ⇥ P1 leaving
invariant the section at infinity. A simple computation shows that this implies the
existence of a transverse affine structure for G defined by a pair (↵0,↵1) such that
the restriction of ↵1 at a general fiber P1 is logarithmic with integral residues. But
the pull-back of !1 under the evaluation morphism is not of this form since the im-
age of f intersects all components of the polar divisor of !1. Hence G admits two
non-equivalent transversely affine structures. Lemma 2.2 implies that G is trans-
versely Euclidean. The lemma follows from Theorem 3.1.

Theorem 4.9 (Theorem C of the introduction). If X is simply connected, the
general leaf of Ftang is not algebraic, and the general morphism f 2 M intersects
non-trivially and transversely every algebraic hypersurface invariant by F then F
is defined by a closed rational 1-form without divisorial components in its zero set.

Proof. We start by showing that F is defined by a closed rational 1-form. Lem-
ma 4.8 implies that F is virtually transversely Euclidean. Therefore the transverse
structure forF is defined by a pair (!0,!1)where !1 is a closed logarithmic 1-form
with periods commensurable to ⇡

p
�1. If the periods of !1 are integral multiples

of 2⇡
p

�1 then
exp

✓Z
!1

◆
!0

is the sought closed rational 1-form. Assume from now on that the periods of !1
are not integral multiples of 2⇡ i .

Let L be a general leaf of Ftang and U ⇢ L be the smooth locus of its Zariski
closure. Let G = ev⇤F|U⇥P1 be the pull-back of F to M ⇥ P1 under the evaluation
morphism. On the one hand, according to Remark 4.2, G is defined by a closed
rational 1-form. On the other hand, the transversality of the general f 2 M with the
F -invariant algebraic hypersurfaces implies that the periods of ev⇤ !1 are also not
integral multiples of 2⇡ i . Hence G admits two non-equivalent virtually transversely
Euclidean structures. Lemma 2.2 implies that all the leaves of G are algebraic. It
follows that all leaves of Ftang are algebraic contrary to our assumptions. This
concludes the proof that F is defined by a closed rational 1-form !.
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To verify that ! does not have divisorial components in its zero set, we proceed
similarly. Pull-back ! to U ⇥ P1 using the evaluation morphism. Any irreducible
divisorial component of the zero set of ! is a F -invariant algebraic hypersurface.
Therefore, by assumption, the restriction of the 1-form ev⇤ ! on U ⇥ P1 will have
an irreducible component in its zero set which dominates U . This is only possible
if ev⇤ ! does not depend on the variables of U , i.e. ev⇤ ! = a(z)dz where z is a
coordinate on P1 and a 2 C(P1) is a rational function. It follows that L and L have
the same dimension, contrary to our assumptions. Theorem C follows.

4.5. Tangential foliation with algebraic leaves

When Ftang is a foliation by algebraic leaves, the original foliation F inherits a
subfoliation by algebraic leaves. We keep the notation settled at the beginning of
Section 4.3.

Proposition 4.10. If all the leaves of Ftang are algebraic, then there exists a folia-
tion by algebraic leavesA contained inF such that H0(P1, f ⇤TA)=H0(P1, f ⇤TF )
for any sufficiently general morphism f 2 M . In particular, F is the pull-back un-
der a rational map of a foliation on a lower-dimensional manifold.

Proof. Let A be the maximal foliation by algebraic leaves contained in F . The
existence of such A is assured by [8, Lemma 2.4]. If L is a general leaf of Ftang
then the image of L ⇥ {z} (for any fixed z 2 P1) under the evaluation morphism
ev : M ⇥ P1 ! X is contained in a leaf of F . Moreover, it is also contained in a
leaf of A. This makes clear that Atang contains Ftang. But since A is contained in
F , we must have Atang contained in Ftang. Hence Ftang = Atang and the equality
H0(P1, f ⇤TA) = H0(P1, f ⇤TF ) holds true for any sufficiently general morphism
f 2 M .

5. Foliations of degree three
5.1. Proof of Theorem A

Let F be a codimension one foliation of degree three on P3. The canonical bundle
of F is KF = OP3(1). Therefore, if f : P1 ! P3 is the parametrization of
a general line then h0(P1, f ⇤TF) 6= 0. If M ⇢ Mor(P1, P3) is the irreducible
component containing f , then Ftang is a foliation of positive dimension on M .

If the general leaf of Ftang is not algebraic then Theorem C guarantees that F
is defined by a closed rational 1-form without divisorial components in its zero set.
Thus F is described by item (1).

If the general leaf of Ftang is algebraic then let A ⇢ F be the foliation
by algebraic leaves given by Proposition 4.10. In particular, h0(P1, f ⇤TA) =
h0(P1, f ⇤TF) 6= 0.

If dimA = 2 then all the leaves of F are algebraic and Darboux-Jouanolou
Theorem guarantees that F admits a rational first integral. The foliation F fits into
the description given by item (4).
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If instead dimA = 1 then TA is a line bundle and h0(P1, f ⇤TA) 6= 0 implies
that TA = OP3 or TA = OP3(1). In the first case, A has degree one and F is
described by item (2). In the second case,A has degree zero and its leaves are lines
through a unique point of P3. The foliation F is described by item (3).
Remark 5.1. As pointed out to us by the anonymous referee, Theorem A also pro-
vides information on the space of codimension one foliations of degree three on Pn ,
n � 4. Let F be a foliation on Pn , n � 4. If the restriction of F to a sufficiently
general P3 linearly embedded in Pn is defined by a closed rational 1-form (1), or
is a linear pull-back of a foliation on P2 (3), or admits a rational first integral (4)
then [4, Lemma 2, Lemma 3, and Theorem 4] guarantee that the same holds true
for the original foliation F . It is very likely that foliations on Pn with restriction to
a general P3 tangent to an algebraic action (2) are linear pull-backs of foliations on
P3 tangent to an algebraic action (2).
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