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Stratification and averaging for exponential sums:
bilinear forms with generalized Kloosterman sums
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Abstract. We introduce a new comparison principle for exponential sums over
finite fields in order to study “sum-product” sheaves that arise in the study of gen-
eral bilinear forms with coefficients given by trace functions modulo a prime g.
When these functions are hyper-Kloosterman sums with characters, we succeed
in establishing cases of this principle that lead to non-trivial bounds below the
Pélya-Vinogradov range. This property is proved by a subtle interplay between
étale cohomology in its algebraic and diophantine incarnations. We give a first
application of our bilinear estimates concerning the first moment of a family of
L-functions of degree 3.
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1. Introduction

1.1. Presentation of the results

Let g > 1 be an integer and let K (-; g) be a complex-valued g-periodic arithmetic
function. A recurrent problem in analytic number theory is to evaluate how such
functions correlate with other natural arithmetic functions f(n), where f could
be the characteristic function of an interval, or that of the primes, or the Fourier
coefficients of some automorphic form. When facing such problems, one is often
led to the problem of bounding non-trivially some bilinear forms

B(K.a,f)= Y Y anpuK(mn;q),

m<M,n<N

where the ranges of the variables M, N > 1 usually depend on ¢, and & =
(@m)m<m, B = (Bn)ngy are complex numbers which, depending on the initial
problem, are quite arbitrary. One of the main objectives is to improve on the trivial
bound

1K oo llel2 | Bll2(MN)'/2

for ranges of M and N that are as small as possible compared to ¢; indeed, this
uniformity is often more important than the strength of the saving compared to the
trivial bound.

A natural benchmark is the Pdlya-Vinogradov method, which often provides
non-trivial bounds as long as M, N > ¢'/?. Indeed, obtaining a result below that
range is usually extremely challenging. When the modulus ¢ is composite, a num-
ber of techniques exploiting the possibility of factoring g (starting with the Chinese
Remainder Theorem) become available, and results exist in fair generality.

In this paper, we will only consider the case where ¢ is a prime, and when K
is a trace function (see [7] for a background survey).

The landmark result in this setting is the work of Burgess [3], which provides
a non-trivial bound for the sum

D xm

n<N

when x is a non-trivial Dirichlet character modulo ¢ and N > ¢3/3*", for any
n > 0. This is therefore well below Po6lya-Vinogradov range. The ideas of Burgess
(especially the “+ab shifting trick”) combine successfully the multiplicativity of x
and the (almost) invariance of intervals by additive translations.

Another twist of Burgess’s method was given by the works of Karatsuba and
Vinogradov, Friedlander-Iwaniec [12] and subsequently Fouvry-Michel [11] to
bound non-trivially the bilinear sums B(K, &, ) for various choices of functions
K and ranges M, N shorter than ¢'/2. In particular, using some version of the
Sato-Tate equidistribution laws due to Katz [17], Fouvry and Michel considered

xk + ax

K(x;q):e( ),keZ—{O,l,Z},aeFX, (x,q) =1,
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and proved that for any § > 0, there exists > 0 such that

YN amBuK (mn; q) < llell2|Blla(MN) /> (1.1)

m<M,n<N

as long as
M,N >q%and MN > g3/, (1.2)

The condition MN > ¢3/**? is believed to be a barrier in this setting analogous to
the condition N > ¢'/4+? in the Burgess bound for short character sums.

In our previous paper [21], motivated by the study of moments of L-functions
(especially in our papers with Blomer, Mili¢evi¢ and Fouvry [1,2]), we obtained
bounds of type (1.1) when K (-; ¢) is a hyper-Kloosterman sum, namely

1 i+t
K 9) = — ) e(f’
47y ek
Y1 yk=X

where k > 2 is some fixed integer. More precisely, we proved that (1.1) holds as
long as
M,N >q®and MN > q"/8+?

for some § > 0. The argument was delicate and quite difficult.

In this second paper, we introduce a new approach that is both more robust
and more powerful. The main complete exponential sum that needs to be bounded
in this general setting is a difference of two exponential sums, which in previous
work was bounded by estimating separately the main terms on both sides. Here, we
show that the two underlying cohomology groups are equal, hence the main terms
cancel, without explicitly calculating them. To establish the desired cohomological
comparison, we define a stratification of the parameter space, and show using van-
ishing cycles that if the result fails at any point of one of the strata, it fails on the
generic point. Using a variant of Katz’s diophantine criterion of irreducibility, this
implies that the original exponential sum estimate fails on average over the stratum.
We check that the strata are defined by equations of a specific type, which makes
the averaged exponential sum estimate amenable to classical analytic techniques,
specifically separation of variables.

Remark 1.1. As the referee pointed out to us, a similar stratification strategy is
present in the paper [26] of J. Xu on multiplicative character sums, where the key
applications are related to multi-variable Burgess estimates. The main differences
are that in Xu’s method the stratification is more abstract, whereas for us it is ex-
plicit, and Xu’s method relies on the higher moments of the exponential sums, while
we use only the first moment.

Our main application in this paper is the proof of the estimate (1.1) in the full
range (1.2) for generalized hyper-Kloosterman sums with character twists, whose
definition we now recall. Let k > 1 be an integer, and let x = (x1,..., xx) be a
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tuple of k Dirichlet characters modulo g, each of which might be trivial. The (k —
1)-dimensional generalized Kloosterman sums associated to x are the exponential
sums defined for x € F by

1 4ot
Kle(x; x,9) = Z X101 -+ - xe (Ve (%) '

k=1
q° RATEEN /29 U
Y1 Yk=X
The hyper-Kloosterman sums (which correspond to the case y; = 1) were intro-

duced by Deligne [25], and these generalisations were introduced and studied by
Katz in [16, Chapter 4]. As an application of the Riemann Hypothesis over finite
fields, Deligne and Katz established the highly non-trivial pointwise bounds

Kl (x5 x, g)| < k.

The finer properties of these sums were studied in great depth by Katz in [16]
and [17]. Among other things, Katz proved equidistribution statements that de-
scribe precisely the distribution of generalized Kloosterman sums inside C, at least
for most possible choices of .

A special case of our main result, Theorem 4.1, is the following:

Theorem 1.2. Assume that x has Property NIO of Definition 2.1, for instance all
Xi are trivial. For any § > O there exists n > 0 such that for any integer k > 2, any
prime number q, and any integers M, N > 1 such that

M, N >q° MN > g¥/*"
we have

DY amBaKli(amn; x, q) < lall2l|Bla(MN) />

m<M,n<N

for any a € ¥} and for arbitrary families of complex numbers o« = (ctp)m<m and
B = (Bu)ngn - The implied constant depends only on § and k.

Property NIO (short for “Not Induced or Orthogonal”) is an elementary combinato-
rial property that we define below in Section 2; it is easy to check, and it is “generi-

cally” satisfied in some sense. For instance, the case x = (1, ..., 1) corresponding
to hyper-Kloosterman sums themselves has NIO, and so does (1,...,1, x) if k is
odd.

The exponent 3/4 = 2 x 3/8 seem to be a recurring barrier: it occurs in clas-
sical subconvexity estimates for L-functions, and more recently (see [6, 8]) when
dealing with sums of the shape

> K(pig),

PN
p prime
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where p ranges over prime numbers, or
> hpmK (n; ),
n<N

where K is a general trace function modulo g and (A r(n)), <y are the Hecke eigen-
values of a fixed Hecke eigenform f (cuspidal or Eisenstein).
For special bilinear forms, where one of the variables is smooth, i.e., for

B(K,a,1y) = YY" anK(mn;q),
m<M,n<N

the barrier occurs at a shorter range, and we again are able to prove an estimate that
reaches this barrier.
A special case of Theorem 4.3 is:

Theorem 1.3. Assume that x has NIO. For any § > 0 there exists n > 0 such that
for k > 2 an integer, q a prime and M, N > 1 some integers satisfying

M,N 2 qé’ MN2 2 ql-‘r(S

we have

" anKle(amn; x, q) < llala(MN?)!/77
m<M,n<N
foranya € F j; and for any tuple of complex numbers o = (o) m<m, where the
implicit constant depends on & and k.

In particular, for M = N, we obtain a non-trivial bound as long as
M=N> q1/3+a

for some § > 0. If we denote by d>(n) the classical divisor function, we deduce the
following result:

Corollary 1.4. Assume that x has NIO. For any § > 0, there exists n > 0 such
that for any integer k > 2, any prime number g, and any N > g*/3%% we have

Y d(WKli(an; X, q) < Ng ™7,
n<N

foranya € F; where the implicit constant depends on & and k.

It is of considerable interest to generalize results like Theorem 1.2 to other trace
functions K modulo g. We believe that the methods in this paper could be ap-
plicable when K satisfies suitable big monodromy assumptions, and has the fol-
lowing property: K belongs to a family K, parameterized by non-trivial additive
characters x +— e(ax/p) of F,, and this family satisfies a relation of the type
Kau(x) = K(a'x) for some fixed non-zero integers u and v. For instance, this
holds for the generalized Kloosterman sums with & = 1, v = k when defining

1
K== 3 m(w)---m(n)%@)-

=
4y eFy
Vi Yk=x
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1.2. Applications to moments of L-functions

As with our previous paper [21], Theorems 1.2 and 1.3 have applications to the
evaluation of moments of L-functions indexed by Dirichlet characters modulo q.
As a simple illustration, we will prove in Section 3 the following result, which
generalizes some recent work of Zacharias [28]:

Theorem 1.5. Let f be a primitive holomorphic cusp form of level 1. For g prime,
let & be a non-trivial Dirichlet character modulo q . There exist an absolute constant
8 > 0 such that

1
T X LUK IALE 12 =140 7)

X (mod q)

Remark 1.6. Zacharias established this asymptotic for £ = 1 using amongst other
ingredients the bounds from [21] for K(x) = Kls(x; (1, 1, 1), g); he evaluated
more generally a mollified version of this average, enabling him to establish that,
for ¢ large, there is a positive proportion of x (mod g) such that L(f ® x, 1/2) and
L(x, 1/2) are both non-vanishing. Most likely a similar result may be established
in our case.

As in [1,2,21], we also expect that our results will prove useful to estimate other
averages of certain L-functions of degree 3 and 4 indexed by Dirichlet characters.
For instance, we may consider:

e The twisted first moment

X .
—— > L(f®x.1/2)LEx. 1/2)H81§fx’

q-1 X (mod q)

where § = (&;); a tuple of characters of modulus ¢ (possibly trivial) and k =
(ki); is a family of integers;
e The shifted second moment

1
—— Y LS ®x. /DL ®EX. 1/2).

q—1 x (mod q)

1.3. Principle of the stratification and averaging method

We denote K (x) = Klg(ax; x, q) for a fixed k-tuple x with Property NIO and a
fixeda € F.

As in our previous work (and [11,12]), the proof starts with an application of
the +ab-shifting trick of Karatsuba and Vinogradov. Let us recall that the shifting
trick builds on the almost invariance of an interval under sufficiently small trans-
lations. The interval to be shifted here is that of the n variable (either directly for
Theorem 1.3 or after an application of Cauchy’s inequality for Theorem 1.2) and the
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shift is by product +ab with (a, b) € [A,2A[X[B, 2B][ for A, B suitable parame-
ters (such that AB = N). As K(mn; q) depends only on the congruence class of
mn (mod g) the replacement of n <> n 4 ab leads to the following transformations

mn (mod g) <> m(n + ab) = am(an 4+ b) = s(r + b) (mod g),
(min, mon) (modq) <> (ami(an + b), amy(an + b))
= (s1(r +b), s2(r + b)) (mod g),

with (, 5), (r, 51, 52) taking values in Fy x FX or Fy x (F* — A(F;%)). Under
suitable assumptions on A, M, N one can then show that the above maps are es-
sentially injective (i.e., have fibers bounded in size by ¢°(")). However, these maps
are far from being surjective, so performing such a change of variable will result
in a loss. This can be tamed by an application of the Holder inequality with a suf-
ficiently large exponent, which we denote by 2/ in the sequel. This process leads
then to the problem of bounding sums of the shape

YIBik. b Y |Ti(K. b

’

beB beB
where B denotes the set of 2/-uples of integers b = (by, - -+ , by) € [B, 2B[% and
Zi(K.b) =) D Kirsb),
reky seFy

K, b) =Y Y "> Ksir, s1b)K(sar, $2b),
reFy Sl,SzeF;

S17£82
where

l
K(r,b) = [ [K( +b)K(r + bit1). (1.3)

i=1

The goal is to give individual bounds for sums X; (K, b) and X;; (K ,b) with square-
root cancellation, namely we wish to prove that

(K, b) < q, (K, b) < g2

A key fact is that these bounds do not always hold, but it will be enough to prove
them outside a sufficiently small subset 34122 of “diagonal” tuples b. This subset
will be the set of F,-points of a proper algebraic subvariety Y diag - A%lq . In fact,

it is crucial (to avoid the loss involved in Holder’s inequality) to prove the required
estimates outside of a variety V9128 with large codimension, and we will do this
with I

codim (V) 448) > % (14)
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The outcome is that by taking / very large, we obtain non-trivial estimates of
B(K,a, B) and B(K, a, 1) in the ranges defined by

MN > ¢¥* and MN? > ¢%/3+

for any § > 0.
We now sketch the proof in the case of general bilinear forms (the special
bilinear forms are easier). Setting

R(r.b) = Y K(sr, sb),

X
seFy

we observe that

(K. by =) RE B =Y > K, sh).

reF, seF; rekF,

This is the difference of two sums of positive terms, which therefore individually
will have main terms, and we need these main terms to compensate exactly for
b ¢ V%22 Our argument for this in [21] relies on separate evaluations of both sums
to witness the coincidence of the main terms. But one can check that this evaluation
only holds outside of a codimension 1 subvariety, which is far from (1.4) except in
the case [ = 2.

In this paper, we compare directly the two terms in the difference. This com-
parison is not a combinatorial or analytic rearrangement of terms, but is a cohomo-
logical comparison using the ideas of £-adic cohomology to interpret exponential
sums. Using this formalism, we interpret the functions

(r, b) > K(r, b), R(r, b)

as trace functions of £-adic sheaves /C and R on A x A%, which are pointwise pure
of weight 0 and mixed of weight < 1 respectively. The functions

(r, b) — [K(r, b)|*, [R(r, b)|?

are the trace functions of the endomorphisms sheaves End(K) and End(R). By
means of the Grothendieck-Lefschetz trace formula and of Deligne’s most general
form of the Riemann Hypothesis over finite fields [4], the desired bound

STREDPF - DY Kesrsh)? < g7

reky seFy reFy

for a given b can be interpreted as stating that the specialized sheaves /Cp and R
have decompositions into geometrically irreducible components whose multiplici-
ties precisely match.
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This interpretation relies on the relationship between Kp and Rp. As Ry is
obtained from applying a cohomology functor to Xp, each irreducible component
o of Kp defines a summand g of Rjp. We check explicitly that these summands
© are nontrivial, which implies that the exponential sums match if and only if all
the summands g are themselves irreducible, and are pairwise non-isomorphic as
varies.

The sheaf R is a sheaf on the affine line, lisse away from a finite set of singu-
lar points that vary depending on b. Using Deligne’s semicontinuity theorem, and
assuming that the local monodromy of R is tame, we can show that the decom-
position into irreducible components of R is constant on any set of parameters b
over which this varying finite set Sp of singular points does not itself develop singu-
larities (i.e., over which the size of Sp is constant). The tameness condition can be
verified for large primes (which is sufficient for us) by expressing R p as the char-
acteristic p fiber of a sheaf defined in characteristic zero. This reduces the problem
to the generic points of the strata of the stratification of the parameter space by the
number of singular points in Sp.

To get a handle on this stratification, we first calculate the set of singular points.
By an explicit inductive argument, we show how the strata can be expressed by
equations in the coefficients b; and auxiliary variables; these equations split into
sums of different terms involving different subsets of the b;’s. We can then estimate
the average of the complete sums X;;(K, b) over a single stratum using only es-
timates for one-variable exponential sums, as long as the number of equations and
auxiliary variables is not too large (which means that we must keep control of these
numbers in the inductive argument). From this average estimate and the geometric
interpretation, we deduce that the sheaves KCp and R have the same decomposition
into irreducibles when b belongs to a stratum of sufficiently large dimension. This
proves the desired result for all b except those in low-dimensional strata, which
we simply consider as part of “diagonal” subset. It is therefore crucial that our
induction is efficient enough to get a good bound on the codimension of this subset.

Stratifications where the validity of a desired estimate on a stratum only de-
pends on its validity at the generic point exist for arbitrary families of complete
exponential sums, arising from the stratification of a constructible £-adic sheaf into
lisse sheaves. They can often be computed by vanishing cycles methods, such
as Deligne’s semicontinuity theorem. We expect that proving estimates for indi-
vidual strata by passing to the average and applying elementary analytic methods
(which are known to perform very well when the number of variables to average
over is large enough) will be a useful strategy for many families of exponential
sums.

Remark 1.7. (1) It would be reasonable to expect that the correct codimension is
codim (V€) > 1 + o(1)

as | — oo, which would indeed be best possible (it is easy to see that the codi-
mension is < /). A lower bound of this quality was established in [11] in the case
K (x) = e((x* + a)/q) already mentioned. Although the bound (1.4) only goes
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half of the way to this expectation, it is nevertheless sufficient for our purpose, and
it seems that even the full lower bound would not help in improving the exponents
3/4 and 2/3 in Theorems 1.2 and 1.3.

(2) Readers who have some familiarity with either [11] or [21] will have no-
ticed that we will make a compromise in our argument: the new variables s and
(s1, 52) belong to the subsets [A, 2AM] and [A,2AM]> — A([A, 2AM1?) of the
larger sets F ' or F 2 AFy 2), so that we lose something by “forgetting” this fact
by positivity. It is certainly possible to compensate for this loss using the comple-
tion method, introducing additional twists by additive characters in the s-variable,
and handling them by arguments similar to those of [21, Section 4.5]. However,
when [ is very large, the improvement in the final bounds is very small (because
of (1.4)), and more importantly the final limiting exponents 3/4 and 2/3 are not
improved. So we have chosen to avoid the completion step, in order to simplify
an already complex argument. It should be noted however that, for small values of
[, the completion step is worth pursuing, and that is was crucial in [21] to obtain
non-trivial bounds for [ = 2 (which was the only case that could be handled in [21],
because, as noted earlier, the diagonal variety in that paper was of codimension 1).

Notation

For any prime number £, we fix an isomorphism ¢ : Q, — C. Let ¢ be a prime
number. Given an algebraic variety Xr,, a prime £ # g and a constructible Q,-sheaf
JF on X, we denote by tr : X (F;) — Cits trace function, defined by

tr(x) = L(Tr(Frx,Fq | ]—"x)>,

where F, denotes the stalk of F at x. More generally, for any finite extension
qu /Fq, we denote by t7(-; F qd) the trace function of F over F g namely

t;—(x; qu) = L(Tr(Frx,qu | .7-})).

An (-adic sheaf will aways means a Q,-sheaf. For standard facts in £-adic coho-
mology (such as proper base change, cohomological dimension, etc), we refer to
the books of Fu [13] and Milne [23], and to the notes of Deligne [25].

We will usually omit writing down ¢. In any expression where some element z
of Q, has to be interpreted as a complex number, we mean to consider ¢(z).

We denote by FV the dual of a constructible sheaf F; if F is a middle-
extension sheaf, we will use the same notation for the middle-extension dual.

Let v (respectively x) be a non-trivial additive (respectively multiplicative)
character of F,. We denote by Ly (respectively L) the associated Artin-Schreier
(respectively Kummer) sheaf on A{Tq (respectively on (Gm)Fq), as well (by abuse

of notation) as their middle extension to P%q. The trace functions of the latter are



STRATIFICATION AND AVERAGING 1463

given by

ty (x5 Fye) = v (Tre o v, () if x € Fya 1y (001 Fya) =0,

b (v Fga ) = 2 (Nt o, () ¥ € B2, 1,0 Fya) = 1 (005 Fya) = 0.

For the trivial additive or multiplicative character, the trace function of the middle-
extension is the constant function 1.

Given 1 € F a, we denote by Ly, the Artin-Schreier sheaf of the character of
qu defined by x +— w(Trqu/Fq (Ax)).

If XF, is an algebraic variety, { (respectively x) is an £-adic additive character

of F, (respectively £-adic multiplicative character) and f : X — Al (respectively
g : X — Gy,) is a morphism, we denote by either Ly (r) or Ly (f) (respectively
by L) or Ly (g)) the pullback f*Ly of the Artin-Schreier sheaf associated to
¥ (respectively the pullback g*L, of the Kummer sheaf). These are lisse sheaves
on X with trace functions x — ¥ (f(x)) and x — x(g(x)), respectively. The
meaning of the notation Ly (f), which we use when putting f as a subscript would
be typographically unwieldy, will always be unambiguous, and no confusion with
Tate twists will arise.

Given a variety X/F,, an integer k > 1 and a function ¢ on X, we denote
by Ly (cs'/%) the sheaf on X x A! (with coordinates (x, s)) given by ot Loy (o)) »
where « is the covering map (x, s, 7) — (x, s) on the k-fold cover

{(x,s,t)eXxAle1 | tkzs}.

Given a field extension L/F,, and elements « € L* and 8 € L, we denote by [ x o]
the scaling map x +— ax on Al and by [+£] the additive translation x — x + f.
For a sheaf F, we denote by [xa]*F (respectively [+a]*F) the respective pull-
back operation.

We will usually not indicate base points in étale fundamental groups; whenever
this occurs, it will be clear that the properties under consideration are independent
of the choice of a base point.

ACKNOWLEDGEMENTS. Ph. M. and W. S. thank the students of the Arizona Winter
School 2016 who studied the paper [21] and worked on generalizing some of its
steps. They also thank MSRI where parts of this work were completed during the
“Analytic Number Theory” programme during the first semester 2017.

We thank E. Fouvry and I. Shparlinski for comments, and the referee for useful
remarks, especially for the reference to the paper [26] of J. Xu.
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2. Preliminaries

We begin by defining Property NIO, and a useful variant called CGM (for “Con-
nected Geometric Monodromy™). These are motivated by results of Katz (see [17,
Corollary 8.9.2, Theorem 8.8.1-8.8.2]).

Definition 2.1. Let A be a finite cyclic group and x = (x1, ..., xx) a tuple of
characters of A. Let A = x1--- k.

(1) The tuple x is Kummer-induced if there exists a divisor d of k,d # 1, and a
tuple (&1, ..., & q) of characters of A such that the x’s are all the characters
with x4 = & j for some j, with multiplicity;

(2) The tuple x is self-dual if there is a character & such that the set of characters
X € x,with multiplicity, is stable under x +— & x ~'. The character £ is called
a “dualizing character”;

(3) A self-dual tuple y is alternating if k is even and A = £/, and otherwise, it
is symmetric;

(4) A tuple x has Property NIO if it is not Kummer-induced and, if k is even, if it
is not self-dual symmetric;

(5) A tuple x has Property CGM if it is not Kummer-induced, and ;- -- xx = 1,
and one of the following conditions holds:

e kis odd;

e x is not self-dual;

e k is even, yx is self-dual and alternating, and the dualizing character £ is
trivial.

Example 2.2. We consider Dirichlet characters modulo ¢ in these examples.
(1) Consider the case k = 2 and g odd, x = (x1, x2). Denote by x(2) the
non-trivial real character of F ; . Then x is:

o Kummer-induced if and only if x2 = x1x(2);
o If not Kummer-induced, always self-dual alternating, taking & = y; x2 as dual-
izing character.

In particular, for x = (1, x2), the alternating case is x2 = 1, corresponding to the
“classical” Kloosterman sum, and the non self-dual case is X22 # 1. The Kummer-
induced tuple x = (1, x(2)) corresponds to Salié sums.

(2) If k is odd, then x has NIO if and only if it is not Kummer-induced. In
particular, thisis the case if xy; = ... = -1 = 1.

(3)If xy =--- = xx = 1, then x has NIO.

In the next section, we will need the following useful lemma which bounds the
number of integral points in a box that satisfy a system of polynomial equations
modulo g. We thank the referee for giving us a convenient reference.



STRATIFICATION AND AVERAGING 1465

Lemma 2.3. Letk > 1 be an integer and let A > 0. Let X7, C A’% be an algebraic
variety of dimension d > 0 given by the vanishing of < A polynomials of degree
< A. Let p be a prime number and 0 < B < p/2 an integer. Then

Hx:(xl,...,xk)EFI‘f, IXGX(Fp)andB < x; <2Bf0r1<i<k}‘<<3d

where the implied constant depends only on k and A, and the notation B < x; < 2B
means that the unique integer between 1 and p—1 congruent to x; modulo p belongs
to the interval [ B, 2B].

See [26, Lemma 1.7] for a proof.

3. An application to moments of L-functions

In this section, we will prove Theorem 1.5, which we recall is a variation of a recent
result of Zacharias [28].

Let f be a primitive cusp form of level 1, trivial nebentypus and weight k7,
with Hecke eigenvalues A ¢(n). For Dirichlet characters x and & modulo g, we
consider the L-function

LI(f®8®x.s)=L(f®x,s)L(x&.s)

of degree 3. Note that for Re(s) > 1, we have the Dirichlet series expansion

LAf®E @ x.8) =Y x(m(hs*&)mn".

n>1
We wish to evaluate the average

1
M= Y. LfeH®x 1/2),

x (mod g)

proving that M = 1 4+ O(¢™*) for some & > O.

The proof is very similar to [28, Section 6.2], which corresponds to the case
& = 1, so we will only sketch certain steps.

We assume for simplicity that £ is even (i.e., £(—1) = 1), and we will only
evaluate the even moment

2
M= ST L(feH®x 1/2),

X (modq)

+ . C . .
where ) restricts the sum to even primitive characters modulo g. We will prove

that M™ = % + O(g™%) for some o > 0. The sum over odd characters satisfies

the same asymptotics, hence this implies Theorem 1.5.
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Define I'r(s) =7 —/?T'(s/2) and let Loo(s) = Loo(f, §) Loo (&, 5), where

—1
Loo(f.5) = Tk <s+kT) (w%), Loo(x&. s) = TR(s).

are the archimedean L-factors of L(f, s) and L(x§&, s) respectively. Further, let

e((f ®E) @ x) =e(fegeye.

where ¢, denotes the normalized Gauss sum of a Dirichlet character. Define then
the completed L-function

A(fOE®X,8) =q P Loo(S)L((f ®E) ® X, 9).

For & and x even, we then have the functional equation

A(f®HA)=e((fOHR VA ®X DB xS 1—9).

Let 0 < o < 1/4 be a parameter to be fixed later. For x even, non-trivial and
not equal to £, we apply the approximate functional equation to the L-function
L((f®E&) ® x,s),in an unbalanced form ([15, Theorem 5.3] with ¢ replaced by
the conductor ¢> and X = ¢!/?>72%). After adding the contribution of the character
£~! which is « ¢~!/3*¢ for any & > 0, this gives MT = M/ 4+ M, where

2 + X))y xE)(n) n
Ml:ﬁ Z Z nl/2 V<q2—2a)’

x (modg) n>1

+ X0 *EM,, ( n
M2=ﬁz (OO ) 15 v(qm“),

~ X (modgq) nzl

where the function V is defined by

d
V() = —— / G(s)y‘s 2 G =exp(sY),
(€8]

for y > 0. Shifting the s-contour to the rightif y > 1 ortoRe(s) = —1/2ify < 1
we deduce that

YV () <aip A+y)7A
forany A > Oandi > 0, and
V() =1+ 0u"Y?*) fory < 1.

It follows from the first of these bounds that, for any « > 0, the contribution to both
sums of the integers n > ¢3/>+* is <La.fx q A forany A >0,
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We first bound M. We add to M | the contribution of the trivial character, up
to an error term bounded by O(g~!/°), and perform the summation over the even
characters y. We obtain

M, Z ()‘f*g)(”)v< n )—i—O(q_l/S)

12 72
n=+1(modg) " 9

1

for any & > 0, where the first term V(g ~272%) is the contribution of the trivial
solution n = 1 of the congruence n = £1 (mod gq).
Now we consider M»,. We add to M the contribution of the trivial character,

. 1yg_
up to an error of size < ¢*t2T¢~ ! « ¢#+t*=1/2 for any ¢ > 0. We then perform
the summation over y even. We have

1
Y arenerm=""T0 S 2w
x (mod q) 9= x (mod q)

= 8(1f2) (Kl3(n; &, q) + Klz(—n; &, q)),
ql/

where we abbreviate
Kl3(£n; §, q) = Klz(£n; (1, 1, §), q).
Hence we have

() Gy x8))

M2=q1/2 YR (Kl3(n; &, ) +Kl3(—n; &, q))V( 1+2a)+0(‘1_1/5)-

We open the Dirichlet convolution

G *xE)) = Y 2y (@ED).

ab=n

By standard techniques (dyadic subdivisions, inverse Mellin transform to separate
the variables), we establish that M is, up to a factor <« ¢ for any ¢ > 0, bounded
by the sum of < (log ¢)? bilinear sums of the type

Mo(M.N) = o MNWZ Zkf(m)é(n)Kl3(amn £, q)V( )W(%)

where
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a =1or —1,and V and W are smooth functions, compactly supported in [1, 2],
such that o o '
V), X W) Lfe g

forany ¢ > Oandi > 0.
We set M = g* and N = ¢". The trivial bound is

N\ 12
MM, N) « qs <7> =q(”“+”)/2_]/2+€

for any ¢ > 0, which is < ¢~**¢ if © + v < 1 — 2. Now assume that
-2 < n+v< 1420

Estimating the sum over n by the Pdlya-Vinogradov technique (completion), sum-
ming trivially over the m variable, we obtain

M\ 12
Ma(M, N) < ¢° <N> & gl/Pviate

for any &€ > 0. This bound is < ¢~ **¢ if v > % + 2a. We then assume that
v < % + 2.

If v is small, so that u is large, we apply [8, Theorem 1.2] to the sum over m,
summing trivially over n. We get

MZ(M N) << Nq—1/8+ot+8 — q—1/8+11+01+8
for any & > 0. Again, this is < ¢ =% provided v < % — 2a. Now assume that

—2a<v<%+2a.

oo —

Then % —da < u < % + 4a. The general bilinear form estimate in [6, Theorem
1.17] gives

MM, N) < g min (N~ + M7'¢!2 m=1 + N71g12)1 2,
which is <« ¢ "¢ provided @ < 1/32 and
max(u, v) = % + 2.

We finally consider the case when o < 1/32 and

—4da < u, v<%+2a.

=
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In this situation, we can then apply Theorem 1.2 for the triple x = (1, 1, §), which
has Property NIO for any £ by Example 2.2 (2). We obtain the bound

12
My(M, N) < ¢° (7) (MN)™" « q2a+s(MN)—n <« q2a—3n/4+e

for any ¢ > 0, where n > 0 is the saving exponent in Theorem 1.2 when the
parameter § there is § = 3—1 — 8. Hence, for o > 0 fixed and small enough, we
obtain )

Mo(M,N) < g7t

for some fixed n” > 0 and any & > 0, where the implied constant depends on &
and f.

4. Reduction to complete exponential sums

In this section, we will state the general forms of Theorems 1.2 and 1.3, and reduce
their proofs to certain bounds for families of exponential sums over finite fields. In
fact, we begin with slightly more general bilinear sums.

Let g be a prime number, and let K : F;, — C be any function. Let M, N be
integers such that 1 < M, N < ¢ — 1. Let M be a subset of the positive integers
m < q — 1 of cardinality M. We set M = max,,c( m. Let finally

N={n]|1<n<N)}
Given tuples of complex numbers & = (¢ )mem and B = (By)nen, We set
B(K.o,B)= Y Y awpuK(mn).
meM, neN
We will prove the following:

Theorem 4.1. Fix an integer k > 2. Let q be a prime and let a € F*. Let x be
a k-tuple of Dirichlet characters modulo q. Suppose that x has Property NIO, and
define K (x) = Klg(ax; x, q). With notations as above, for any integer | > 2 and
any € > 0, we have

1/2

BK, @, B) < q* a2l Bla MM [ = + A
1“5 o —— )
7 1oli21P02 M MN

where the implied constant depends only on (k, 1, ), provided one of the following
two conditions holds:

3 1 1.3
q2 <N<Eq2 T,
3 13
g7 <N, NMT < AR
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Remark 4.2. This bound is non-trivial only for / large enough, precisely for [ >
9. As we will explain, this limitation results from our simplifying choice of not
applying the completion method to detect that an auxiliary variable belongs to some
interval in F.

In the special case of “type I’ sums, we obtain:
Theorem 4.3. With the same notation and assumption as in Theorem 4.1, espe-

cially assuming that x has N1O, and with the additional condition that 8, = 1 for
n € N, for any integer | > 1 and any € > 0, we have

1N\ 1721
el et i (4
B(K, o, 1) < g-lleelly “lleell MPIN | s .

where the implied constant depends on (k, L, €), provided one of the following two
conditions holds:

~—

1

< qu/Hlm’
1

q% <N, NM* < §q1+l/2l'

Remark 4.4. As |/ gets large, this bound is non-trivial if

q

MTN <q, MN* > q'"
for some 8 > 0. In particular for M = M™ = N, this is non trivial if

N > g3+,

4.1. The type II bilinear sum

We now start the proof of the reduction step for Theorem 4.1.
Applying Cauchy’s inequality, we obtain

12
1/2
BK, e, )| < 1BIl2 (Z | Zammmnnz) < 1Bl (llBN +57) ",

where 3
ST =" am@m, Y Kmin)K (man).
myF#Emy n
We now use the +ab-shift trick of Karatsuba-Vinogradov as in [11,21]. For this we
introduce two integer parameters A, B > 1 such that AB < N. Using the notation
a~ Afor A <a < 2A, we then have

S#:ﬁ Z ZZO‘WI% Z K (my(n + ab))K (my(n + ab)).

a~A,b~B m|#m>, n+abeN
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Using the fact that AV is an interval, we deduce as in [11, page 126, (7.2)] (see
also [21, (2.11)] that

| -
§* « qu SN (g oy ZK(ml(n+ab))K(m2(n+ab))€(bl)

a,mi,my,n
a~A,m|#my

for some ¢ € R and n varying over an interval of length << N+ AB. For (7, 51, 53) €

(F))? set
U(r, S1,52) = ZZ |05m1
a,my#Emy,n
a~A,an=r,am;=s;
so that

1 -
§* < ==L 3N wlsios) | Y2 K51+ b)K Galr £ B)eb)

r,81,82 b~B

(by the change of variabler =a -n, s; =a-m;, i =1,2). We have

DY st =YD ldmemy| < ANll] < AMN|lal;

7,851,852 a,n,mi#my
and
2
YN vss)’ = YD o llem,| > |t 116ty |
r,81,82 a,n,mi#Emy a/,n/’m/ﬁ’ém/2

a'n'=an, a'm;=am; (mod q)

Now assume that
2AN <gq. 4.1)

Then the equation @’n’ = an (mod q) is equivalent to an’ = a’n (mod ¢), which
is equivalent to an’ = a’n. Therefore if we fix a and n’, the integers ¢’ and n are
determined up to ¢°") values.

Suppose that a, a’, n, n" are so chosen. For i = 1,2, we then have

DY amllawl< Y e P+ YD e P < el

am;=a'm} (mod q) am;=a'm} (mod q) am;=a'm} (mod q)

Indeed, since M is a subset of [1, g — 1], once m; (respectively m;) is given, the
congruence am; = a’ m: (mod ¢g) uniquely determines m; (respectively m;). There-
fore

DD vrsi.s2)? < ¢“VAN|ell3. (42)

7,851,852
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Alternatively, if we assume instead of (4.1) that
2AM™T < g, 4.3)

then the same reasoning with the equation am; = a’ m’1 (mod g) also leads to (4.2).
Fix an integer / > 2. We apply Holder’s inequality in the following form:

I3 b Z‘

r,81,82 b~B
1 1/1
1-1 n Y
U2 v
r,81,82 r,81,82 b~B

o 172

b~B

(zx) (zz9) (zx

r,81,82 r,81,82 r,81,82

1/21
1 1
<g“llall3(AN) T M <Z|211<K,b>|) :

beB
where B = [B, 2B[*, and

(K, b) =Y Y > Ksir, sib)K(sar, 52b)
reFy Sl,SzeF;
S1782
is the exponential sum defined in (1.3), where

l
K(r.b) = [[ K@+ b)) K+ biy).

i=1

We observe at this point that the sum X;;(K, b) is independent of the parameter a
such that K (x) = Kl (ax; x, g), by changing the variables s and s, to as; and as;
respectively.

We will estimate these sums in different ways depending on the position of b.
Precisely:

Theorem 4.5. There exist affine varieties
VA CWcCAY
defined over Z such that

-1
codim (V2) =1, codim(W) > ZT
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which have the following property: for any prime q large enough, depending only
on k, for any tuple x of characters of ¥; with Property NIO, for any a € ¥z, and

for all b € FZ, with
K (x) = Kl (ax; x, q),

we have
2i(K,b) < g’ ifbe VA(F,), (4.4)
Ti1(K, b) < g% ifbe W —V?)(F,), 4.5)
(K, b) < ¢*%if b ¢ W(F,). (4.6)

In all cases, the implied constant depends only on k.

We emphasize that the varieties V* and }V are independent of the tuple of charac-
ters. After a number of preliminaries, the final proof of this theorem will be found
in Section 14 (see page 1527).

We will apply these estimates for the parameters b belonging to the box
[B, 2B)2l, and for this we use Lemma 2.3.

Let BY (respectively B"Y) be the set of b € B such that b € V2 (Fy) (respec-
tively b € WW(F,)). Since the subvarieties VA and W are defined over Z, it follows
from Lemma 2.3 that

N ISk, b < ¢ |BY| + ¢2|BY| + ¢ B
’ 4.7)
< q3 BZl—codim(VA) + q232l—codim(W) + C]3/2BZI.

We have codim(V2) = [ and codim(WV) > (I — 1)/2 by Theorem 4.5. We choose
B so that the first and third terms in (4.7) are equal, namely

B =q%?,

We also choose A sothat AB = N, i.e.
A=N/B=Nq 7.

Writing codim(W) = y[, we deduce that

1/2
IB(K. o, )] < [Bl2(ll3N + 57)'/2,

where

£ 45 0 =Ll 2 no-pn 32 p2\
§7 <« ~llal3(AN) "1 M z(qB +q B) .
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Hence

172

2l

3
1 g*B! q2
B(K,«a, € MN)V? | —
| B( P I<g’ llell2ll Bll2(MN) M+ AM2N+AM2N

1 (4.8)

3,43 3. 30\”
1 q2 3V +ta q2+2l
e MN)'2 | —
<L llalallBl2(MN) 2| =+ MNZ TNy

This holds under the condition that
A=Ng 7 >1

and that either of (4.1) or (4.3) hold.

In particular, since y > 1/3, the second term on the right-hand side of (4.8) is
smaller than the third. This implies Theorem 4.1. Theorem 1.2 follows by choosing
[ large enough depending on §.

4.2. Bounding type I sums

We turn now to Theorem 4.3, and consider the special bilinear form

B(K,a, 1) = Z Z o K (mn).
meM, neN

Given ! > 2, a trivial bound is
1-1 Lo
B(K,o, 1) < llelly llelly M2N.
Proceeding as before, we get

B(K,oc,lN)zﬁ Y3 Y am Y. K(mn+ab))

a~A, B~B meM n+abeN

<e g YD v

X
rqu,squ

vy = DY > ol

a~A, meM, neN
am=s, an=r (mod q)

> K (s(r + b))

b~B

9

with

and |np| < 1. We have

D v s) K AN D ol

r,s meM
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We also have

dove = D > lmllaw].

r,.s mon.a m'
am=a'm’,a'n=an’ (mod q)

Assuming that
2AN < q or 2AM™ < ¢ 4.9)

we show by the same reasoning as above that

v <Y laml* Y Y 1<K gFAN Y ol
a,m

r,s , n,a' ,m'.n’ m

am=a'm’
a’'n=an’ (mod q)

We next apply Holder’s inequality in the form

ZZ v(r, s)

Y mK(s(r+b)

reFg,seFy B<b<2B
1-1 zil 21 3
<D oven s (Zv(r,s>2) YLD mKs@r+b)
r,s r,s r.s |B<b<2B
1
. ] 201\ 2
_1 1—+ 7
L qF AN "l Teelly | D0 D mK (st +b)
r.s |B<b<2B
Expanding the 2/-th power, we have
21
Y301 D0 mKGe+b)| <D |TiK, b,
reF,,seFy |B<b<2B beB
with
/(K. b) =Y Y K(r.sb)= > R(.b). (4.10)
reFy seFy rekF,

Note that X;(K, b) is independent of the choice of a € qu such that K(x) =
Klk(ax; x, g). We have reached the bound

1

o (MN)T! g
B(K,a, 1y) < ¢°llell, ’||a||5M21N(WZ|Ez<K, bl) . @11
beB

As before, we can prove different bounds on X; (K, b) depending on the position
of b.
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Theorem 4.6. Let V2 and W be the affine varieties on Theorem 4.5. For any prime
q large enough, depending only on k, for any tuple x with Property NIO, for any
ae Ff; and for all b € F2  with

K (x) = Klg(ax; x, q),

we have
1K, b) < g ifbe VA(F,), (4.12)
I(K,b) < g*?ifbe (W -V (F,), (4.13)
(K, b) < qifb¢ W(F,). 4.14)

In all cases, the implied constant depends only on k.

This is also proved ultimately in Section 14 (page 1528).
Taking this for granted, and using the same notation codim(}V) = y! as before,
we have therefore

Y =1k b)| < |BY|g* +|B"|¢** + |Blg
beBB

< qu2 + B(Z*”)lcf/2 + Byq,

by Lemma 2.3. Choosing
B =g

to equate the first and third terms above and
A=N/B=Nqg V!,

we obtain from (4.11) the estimate

L

11 MN)~! i
B(K,oc, 1N) KoK qSH‘x”l 1 ”‘XHZZM%N (( ) (qBZZ +q1/28(3—y)1))
s AB2
R O T LAt A N
Lk,e q ||O(||1 ||O£||2M2/N MN2 + MN?2 ’

assuming that (4.9) holds and that A > 1. Since y > 1/2 (by Theorem 4.5), the
second term on the right-hand side of the last inequality is smaller than the first.
Together with (4.9), this leads to Theorem 4.3, and Theorem 1.3 follows by letting
[ get large.
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5. Algebraic preliminaries

We collect in this section some definitions and statements of algebraic geometry that
we will use later. Most are standard, but we include some proofs for completeness
and by lack of a convenient reference.

Let C, be a smooth and geometrically connected curve with smooth projective
model S. The conductor of a constructible ¢-adic sheaf F on C is defined by

(F)=g(8) + rank(F) + | Sing(F)| + Y Swan,(F)+dim HY(Cy,, F),
xeSing(F)

where g(S) is the genus of S, Sing(F') is the set of points of S where the middle-
extension of JF is not lisse and Swan, (F ) is the Swan conductor at x.

Let CF, be a curve (not necessarily smooth or irreducible). Let (C;);ec; be
the geometrically irreducible components of qu and 7r; : C; — C; their canonical

desingularization. We define the conductor of a constructible £-adic sheaf F on
Cr, by

¢(F) =) e(xr(FICH) + Y  m(C),

iel x€Csing

where Cj;yg is the singular set of C and m (C) the multiplicity of x as a singularity
of C.
If Cy . is a curve, f is a function on C and F an ¢-adic sheaf on C, then

c(F®Liy) <e (Ef(x))zc(f)Z, (5.1

where the implied constant is absolute.
We will use the following version of Deligne’s Riemann Hypothesis over finite
fields [4].

Proposition 5.1. Let ¥, be a finite field with q elements and let C be a curve over
F,. Let F and G be constructible £-adic sheaves on C which are mixed of weights
< 0 and pointwise pure of weight 0 on a dense open subset. Suppose that the
restriction of F ® G to any geometrically irreducible component of C has no
trivial summand. We then have

D tr Fig(xi Fy) < /4,

xeC(Fy)
where the implied constant depend only on the conductors of F and of G.

Proof. 1If C is smooth and geometrically connected, and F and G are geometrically
irreducible middle-extensions, this is deduced from Deligne’s results in [5, Lemma
3.5]; the extension to general F and G satisfying our assumptions is immediate.
For a general smooth curve, one need only apply the bound to each component
separately.
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For a general curve, observe that the difference between the sum over C and
the sum over a desingularization of C is the sum over the singular points of 77 (x;
F,)tg(x; F,) minus the sum over points of the desingularization lying over singular
points of z7(x; Fy)tg(x; F,). Since the size of both those sets of points may be
bounded in terms of the sum of the multiplicities of singular points, and the value
of tx(x; Fy)tg(x; Fy) at those points may be bounded in terms of the conductors,
this contribution is also bounded in terms of the conductors. O

We will also use a criterion for a sheaf to be lisse that might be well-known but
for which we do not know of a suitable reference.

Lemma 5.2. Let Spec(Q) be an open dense subset of the spectrum of the ring of
integers in a number field and U — Spec(O) a reduced scheme of finite type. Let
£ be a prime number invertible in O. Let r > 1 be an integer and let F be a
constructible £-adic sheaf on U .

Assume that:

(1) For any finite-field valued point Spec(k) — Spec(QO), the sheaf Fi on Uy, is
lisse of rank r;

(2) For any finite-field valued point Spec(k) — Spec(O), any generic point n of
Uk, and any s € F(Spec(OZ’), F), if s is non-zero at the special point of the
étale local ring O;t , then it is non-zero at the generic point.

Then F is lisse on U .

Proof. Let x € Uy C U and let s be a non-zero section of JF over the étale local
ring O¢ at x. Since (the pullback of) F is lisse on (’)ff by Assumption (1), the
generic point of (’)fct « belongs to the support of s. Hence (the pullback of) s is non-
zero at the special point of (’);’ , which maps to the generic point (’)ff ; (for some
generic point 1 of Uy). By Assumption (2), we deduce that the generic point of O;’
belongs to the support of (the pullback of) s. Since this generic point maps to the
generic point of Q¢ this means that the support of s contains the generic point of
O¢ , hence because the support of s is closed, it is the whole Spec(O%).

Now let (s, ..., s,) be a basis of the stalk F, = I'(O¢, F). These sections
define a morphism

62 - F o¢

whose induced map on stalks is, by the above, injective. By Assumption (1) and
the fact that the rank of the stalk of a constructible £-adic sheaf is a constructible
function, the rank of the stalk of F at every point is . Hence both stalks have the
same dimension, thus the induced map on stalks is an isomorphism. This means
that F is locally constant at x, and we conclude that F is lisse. O
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6. Generalized Kloosterman sheaves

In this section, we summarize the basic properties of the generalized Kloosterman
sheaves whose trace functions are the sums Kl (x; x, g). These were defined by
Katz in [16, Theorem 4.1.1], building on Deligne’s work [25, Sommes trig., The-
orem 7.8]. They are special cases of the hypergeometric sheaves defined by Katz
in[17,8.2.1].

Throughout this section, we fix a prime number p, a prime number £ # p, and
we consider a finite field F,; of characteristic p with g elements and a non-trivial
¢-adic additive character ¥ of F;. We fix an integer k > 2 coprime to ¢, and a
tuple x = (x1, ..., xx) of £-adic characters of Fj;. We denote by A(y) (or A if x
is understood) the product x; - - - xx.

Proposition 6.1 (Generalized Kloosterman sheaves). There exists a constructible
Qq-sheaf K& = Kty (x) on Pl X called a generalized Kloosterman sheaf, with the

following properties:

(1) Foranyd > 1 and any x € Gy (F ja), we have

t]C((x; qu) = Klk(x; X, Fq(/)
(_ 1)k_1
:W X1 (Nqu/qul)' : 'Xk(Nqu/Fqu)lﬂ(Trqu/Fq (x1+--- +xk));
X Xg=X
(2) The sheaf Kty y (x) is lisse of rank k on G, ;
(3) On Gy, the sheaf Kl y (X) is geometrically irreducible and pure of weight 0;
(4) The sheaf Kty y (x) is tamely ramified at 0, and its I (0)-decomposition is

@ Ly ®J(ny),
XE€X
where J (n) is a unipotent Jordan block of size n, and n is the multiplicity of
X inx;
(5) The sheaf Kty y (x) is wildly ramified at oo, with a single break equal to 1/k,
and with Swan conductor equal to 1;
(6) The stalks of KAy y (x) at 0 and oo both vanish;

(7 If y € PGL, (Fq) is non-trivial, there does not exist a rank 1 sheaf L such that
we have a geometric isomorphism

Y Iy (X) = Kl y (X)) ® L

over a dense open set;
(8) The conductor of Kli y (x) is k + 3.

Proof. Let j: G,, — P! be the open inclusion. We define

—1
Ky (x) = jKIW: x: 1,.... 1) (”2 )
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where the sheaf on the right-hand side is the lisse sheaf on G,, defined by Katz
in [16,4.1.1]. We also have a formula in terms of hypergeometric sheaves, namely

Ktiy (X) = iH1 (. ¥ X. ) (”2—1>
(see [17, 8.4.3]). Assertions (1) and (2) are, respectively, assertions (2) and (1)
of [16, 4.1.1]. Assertion (3) results from the identification with hypergeometric
sheaves and [17, Theorem 8.4.2 (1), (4)].
Assertions (4) and (5)) are given in [17, Theorem 8.4.2 (6)]. Assertion (6) is
clear from the definition as an extension by zero of a sheaf on G,.
Finally, (7) is a special case of [10, Proposition 3.6 (2)], and (8) follows from
the definition of the conductor and the previous statements. O

All parts of Definition 2.1, including the definition of Property CGM and Prop-
erty NIO, make sense for tuples of £-adic characters of F*. When we wish to em-
phasize the base finite field, we will speak of Property CGM or NIO over F,. The
names CGM and NIO are justified by the following theorem of Katz.

Theorem 6.2 (Katz). Assume that k > 2, that p > 2k + 1 and that x is not
Kummer induced. Let G be the geometric monodromy group of KAy y (x). We then
have G = G4’ | the derived group. Moreover

(1) Ifk is odd, then G° = GO4¢r = SL;;
(2) Ifk is even, then GO = GY%4er g either

o SOy if x is self-dual and symmetric;
e Spy if x is self-dual and alternating;
o SLy if x is not self-dual.

Finally, if x has CGM, then G = G is either SL; or Spy.

Proof. The claims about G° are proved by Katz in [17, Theorem 8.11.3 and Corol-
lary 8.11.2.1].

To evaluate G, note that when G° = SL;, G is contained in GL;. To show
G = G, it suffices to show the determinant is trivial. But the determinant character
is L by [17, Lemma 8.11.6], and we have assumed A trivial.

If GO # SLy then k is even and x is self-dual. Let & be the dualizing char-
acter (Definition 2.1). Under the assumptions A = 1 and £ = 1, we always have
A = £%2, 50 the self-duality is alternating. Thus G° = Sp,, hence G is con-
tained in GSpy, and it suffices to show that the similitude character is trivial, i.e.,
that KCl y (x) is actually self-dual and not just self-dual up to a twist. This fol-
lows from [17, Theorem 8.8.1]. Reviewing Definition 2.1, we obtain the desired
statements. O

The need to sometimes increase the base field is justified by the following
lemma that will allow us to work with tuples satisfying the weaker CGM Property.
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Lemma 6.3. Assume that x has N1O. Then there exists an {-adic character X,
possibly over a finite extension Fyv of ¥y, such that the tuple yox has CGM over
Fyv.

Proof. If k is even and y is self-dual alternating, take xo to be the inverse of a
square root of the duality character. Otherwise, take o to be the inverse of a k-th
root of A. 0

For convenience, we will most often simply denote €, = K€  (x) since we
assume that ¥ and x are fixed.
The next lemma computes precisely the local monodromy of €y y (x) at co.

Lemma 6.4. Assume p > k > 2. Denote by J the additive character x +— Vr(kx)
of ¥,. Then, as representations of the inertia group I(00) at 00, there exists an
isomorphism

Kby (0 =[x = 51 (L0 ® L2 ® L)

where x(2) is the unique non-trivial character of order 2 of F; .

Proof. This follows from a more precise result of L. Fu [13, Proposition 0.8] (who
describes the local representations of the decomposition group). O

7. Sheaves and statement of the target theorem

As in the previous section, we fix a prime number p, a prime number ¢ # p, and
we consider a finite field F,; of characteristic p with g elements and a non-trivial
¢-adic additive character v of F,. We assume that p > 2k + 1.

Let x be a k-tuple of £-adic characters of F:; . We define

F = Kliy(x),

a constructible £-adic sheaf on A{?q . In this section we impose no further conditions
onx.

Fix I > 2. For1 < i < 2l,1et f; = s(r + b;) on A%t with coordinates
(r,s, b).

We now define the “sum-product” sheaf

K= Q) ffFe fiyF

1<l

2421
on AFq .
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Let V/Z be the open subset of A%Hl where s(r +b;) # 0 forall i, so that K(x)
is lisse on Vf, forall g. Let 7 : A2+2 5 A1+2 pe the projection (r, s, b) — (r, b)
(defined over Z). We define

R(x) = R'mK(x),

a constructible £-adic sheaf on AEZI.

We will most often drop the dependency on x in these notation and write }C =
K(x)and R = R(x).
We define the diagonal variety V2 by the condition

VA = {b e A% | for all i, there exists j # i such that b; = bj} .

Note that V2 does not depend on the tuple of characters considered.
Lemma 7.1. Outside V2, we have ROmK = R*mK = 0.

Proof. This is very similar to [21, Lemma 4.1 (2)]. By the proper base change
theorem, the stalk of Rim/C at x = (r, b) € A1 T2 is

l
H! (A%q, Qxr + )" F @ [x(r + bi+2)]*~7:v) :
i=1

where s is the coordinate on A'. This cohomology group vanishes for i = 0 and
any x, and it vanishes fori = 2 and x ¢ V" by [10, Theorem 1.5]. O

We now compute the local monodromy at infinity of the sheaf K. For any
additive character 1, we denote by i the character x +— ¥ (kx).

Lemma 7.2.

(1) Letr € Fyand b € Fél be such thatr + b; # 0 for alli. Let (r + b;)'/* be a
fixed k-th root of r + b; in Fq. Define signse; = 1 for 1 <i <lande = —1
forl+1<i <2l
The local monodromy at s = 0o of K, p is isomorphic to the local monodromy
at s = oo of the sheaf

21
D 5 (((r +o0)VE Y et +b,-)1/k) s”") :

(2veb2)ERT i=2

where . is the group of k-th roots of unity in Fq.
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(2) Let K be a field of characteristic p 1 k, and letr € K and b € K 2 be such
that r + b; # 0 for all i. Assume that K contains all k-th roots (1 + b,-/r)l/k
of 1 +b;/r foralli. Let v be a non-trivial £-adic additive character and let
X be a k-tuple of multiplicative characters of a finite subfield of K. The local
monodromy at t = 0o of the lisse sheaf

K=& Kty +bi/r) ® Keey X)L+ bigy/r)

1<i<l

on Gy, g is isomorphic to the local monodromy at t = 0o of the sheaf

21
b £ <(<r(1 /e i + bl-/r))”")) :
1

(4“2,---74“21)*5#;%]_ i=2

Proof. Since Lemma 6.4 has the same form as [21, Lemma 4.9], up to the additional
factor L, the first assertion may be proved exactly like [21, Lemma 4.16 (1)] (with
A = 0 there), replacing throughout the tensor product

2
QX + bty ® [x (r + bip2) I KEY

i=1

l
QX + b Kby g (X) ® [X (r + bi2) Kby y ()"
i=1

(note that the factors involving A cancel-out at the end). The second statement is
proved in the same manner. U

Let Z C A1Z+21 be the image of

1 21
Z=<(r, b.x) A" | xf=r+4bfor 1I<i<2%, Y xi=» x CAF (7.0)
i=1 i=l+1

under the projection onto (r, b). Let

z=7u (] r=-h}

1<i<2l

Let U be the complement of Z. We emphasize that 4 , Z and U are defined over Z,
and independent of .

Lemma 7.3. The subscheme Z of A2+ is closed and irreducible, and R is lisse
on UFq.
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Proof. This is analogue to [21, Lemma 4.26, (1) and (2)], so we will be brief.! The
projection (r, b, x) — (r, b) from the subscheme

Z/={(r,b,x)eA1+4l |x§‘=r+b,~for1<i<2k}

to A'*2! is finite, since the domain is defined by adjoining the coordinates (x, .. .,
x71) to AH'Z’ and each satisfies a monic polynomial equation. Thus the closed
subscheme Z defined by (7.1) is also finite over A!*% | and its image Z is closed.
Moreover, the subscheme (7.1) is the divisor in Z’ given by the equation

) 21
Yu=d
i=1

i=l+1

In particular, this subscheme, and consequently its projection Z,is irreducible.

To prove that R is lisse on Up > weuse Deligne’s semicontinuity theorem [22].
The sheaf KC is lisse on the complement of the divisors given by the equations r =
—b; and s = 0 in A2*2, We compactify the s-coordinate by P! and work on

X=(A'xP' x A¥)n {5, b) | (nb) €U).

By extending by 0, we view KC as a sheaf on X which is lisse on the complement in
X of the divisors s = 0 and s = oo (because U is contained in the complement of
the divisors r = —b; and thus X is as well). Let

7@ X —U

denote the projection (r, s, b) > (r, b). Then =@ is proper and smooth of relative
dimension 1 and R|U = Rlyr,,gz)lC.

Since the restrictions of /C to the divisors s = oo and s = 0 are zero, this sheaf
is the extension by zero from the complement of those divisors to the whole space
of a lisse sheaf. Deligne’s semicontinuity theorem [22, Corollary 2.1.2] implies that
the sheaf R is lisse on U if the Swan conductor is constant on each of these two
divisors. By Proposition 6.1, the generalized Kloosterman sheaf has tame ramifica-
tion on s = 0, hence any tensor product of generalized Kloosterman sheaves (such
as k) has tame ramification, hence Swan conductor 0, on s = 0. On the other hand,
Lemma 7.2 gives a formula for the local monodromy representation of /C at s = oo
as a sum of pushforward of representations from the tame covering x — x¥. Since
the Swan conductor is additive and since the Swan conductor is invariant under
pushforward by a tame covering (see, e.g., [16, 1.13.2]), it follows that

Swanoo(lcr,b)
21
= > Swang (Lw (((r +bo) 4 winir + bi)‘/") s‘/k)) = k*-!
$2,. E1 €My i=2

by definition of U, since the Swan conductor of Ly () is 1 for a # 0. O

1 To avoid confusion, note that what is called Z in [21] is not the analogue of what is called Z
here.
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Lemma 7.4. The subscheme Z is a hypersurface in A1Z+21. It is defined by the
vanishing of a polynomial P in Z[r, by, ..., by] such that, for any fixed b & V>,
the polynomial P, = P (-, b) of the variable r is not zero.

Proof. First we check that Zisa hypersurface in A?zl. It is the projection of the
closed subscheme

i 21
Z=10.b.x) e A" | xf=r+4bfor1<i<2l Y xi= Y x,~}cA‘+41.
i=1 i=l+1

This closed subscheme is pure of dimension 2/, since the first 2/ equations let us
eliminate the variables b; and the last equation is nontrivial. The projection Z — Z
is finite (as already observed in the proof of the previous lemma) and hence Z is a
closed subscheme of A%+ that is pure of dimension 21, i.e., a hypersurface. Since
Z is the union of Z and the hyperplanes with equation r 4+ b; = 0, it is also a
hypersurface. _

Let P € Z[r, b] be a polynomial whose vanishing set is Z. Suppose b is
such that Pp is the zero polynomial in the variable r, i.e., such that the projection
Zp — Al given by (r, x) — r is surjective.

The scheme C € A'*? given by the equations

xf‘:r—i—bi 1 <i <2k

is a curve and the projection C — A! given by (r, x) ~> r is finite. The fiber va is
the intersection of C and the hyperplane

vanishes on an irreducible component of C.

If we assume that b ¢ V2 then by definition there exists some i such that
bi # bj forall j # i. Locally on A! with coordinate r near the point » = —b;, the
covering maps x,{ =r +bj for j # i are étale, so the functions x; (on the curve C)
“belong” to the étale local ring R of Al at —b; . The function x; , however, does not
belong to R, hence the function F is non-zero in an algebraic closure of the fraction

field of R, which is also an algebraic closure of the function field of any irreducible
component of C. This concludes the proof. O
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Definition 7.5. The sheaf R* on Uy, is the maximal quotient of the sheaf R|UFq
that is pure of weight 1 (see [4]).

Define f: U — A% over Z by (r, b) — b.
Below, by Endy, (G), where G is a lisse sheaf on V¥, b, We mean the m; (V,.px

F,)-homomorphisms, etc.
Let b € A%lq and let « (b) be the residue field of b. Since Rp = R'mKp by

the proper base change theorem, there exists a natural Gal(x (b)/x (b))-equivariant
morphism
Endy, (K3) — Endy, (Rp).

Since every Vp-endomorphism of p preserves the weight filtration, the image of
this morphism is contained in the subring of endomorphisms of Rp that preserve
the weight filtration, and hence we have an induced morphism

0p: Endy, (Kp) —> Endy,(R}),

which by construction is still Frobenius-equivariant.

In the next definition, we already describe the subvariety WV of Theorem 4.5;
in particular, we see that it is independent of the tuple of characters y, since this is
the case for X, and Z. The difficulty will be to prove that it satisfies the required
properties.

Definition 7.6. We denote X, = A% — V2, and for any integer j > 0, we let
Xj=1{be X | |Zp|l < J}.

We define W to be the union of V2 and of all irreducible components of all X ; of
dimension strictly less than (3/ + 1) /2.

By definition, we therefore have the codimension bound

codim(W) > % (7.2)

Our main geometric goal will be to prove the following result:

Theorem 7.7. Assume that x has NIO. If p is large enough, depending only on k
and 1, then the natural morphism 0y is an isomorphism for all b € AY F)-W(EF,).
Furthermore, each geometrically irreducible component of Ry has rank greater
than one.

The basic strategy to be used is as follows:

(1) We show that for ¢ large enough and for b € A% (Fy4) outside an explicit
subscheme W, of codimension / — 1, the natural morphism 6} is injective.
This reduces the target statement to a proof that the dimensions Endy, (KCp)
and Endy, (R}) are equal;
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(2) We show that, when these dimensions agree for the generic point of an irre-
ducible component of a stratum, this implies the corresponding statement on
the whole irreducible component;

(3) Finally, we prove the target theorem at the generic point of an irreducible com-
ponent of a stratum with dimension > (3/ 4 1)/2.

The most difficult part is the last one. This we prove by showing the strata can be
covered by the vanishing sets of equations of a certain type in products of curves.
Using this description, and a variant of Katz’s Diophantine criterion for irreducibil-
ity, we show that the dimension of the space of endomorphisms of K is equal to that
of the space of endomorphisms of R that are invariant under the Galois group of
the function field of this cover. Finally, by a vanishing cycles argument, we show
that the Galois group in fact acts trivially.

Remark 7.8. We have defined U, the stratification X ;, and )V as objects over the
integers rather than over a finite field F,. This is used in a few different places:
first, when comparing the generic point and the special point of a stratum, we use
a tameness property of the sheaf R, which we verify by showing that the sheaf is
defined over the integers. Second, when describing the defining equations of the
strata, at one point we make a large characteristic assumption. Third, we need the
set W to be uniform in ¢ to allow us to apply Lemma 2.3.

8. Integrality

We fix an integer n > 1 and an integer £ > 2. Let £ be a prime number. We denote
in this section S = Spec(Z[u,,, 1/n]). For any £-adic character X of u, , we have
an associated lisse £-adic sheaf L5 over S defined by Kummer theory. If Fy is a
residue field of S of characteristic p 1 nf, so that ¢ = 1 mod n, then there is a
natural isomorphism between the group of ¢-adic characters ¥ of u,, and the group
of ¢-adic characters x of order dividing n of F*, such that y (x) = X (&), where £ is

the n-th root of unity in Z[,,, 1/n£] mapping to x~D/" We then have a natural
isomorphism Lz r, = L of £-adic sheaves.

Proposition 8.1. Let X be a k-tuple of characters of w,. There exists an {-adic
sheaf R"™ () on A;ﬂl, lisse on Ug, with the following property: for any prime
p 1 €n, for any finite field ¥, of characteristic p which is a residue field of a prime
ideal in Z[p,,, 1/nt], for any non-trivial additive character ¥ of ¥y, we have

R (QIAg =R,
where X is the k-tuple of £-adic characters of F; corresponding to X .
Proof. We will first construct a sheaf R (¥) over S with the desired specializa-

tion property, and we will then check that the sheaf thus defined is lisse on Ug.
The existence statement is a fairly straightforward generalization of [21, Lemma
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4.27], but we give full details since the precise construction is needed to check the
lisseness assertion.
Let X1 C GKH! be the subscheme over S with equation

xl...xk:t

and let
f1: X1 — Al

be the projection (xy, ..., xg, t) — t. Let X» be the subscheme of G,%fk x A2+2
over S defined by the equations

k
l_lxi,j =5 +bi), 1<i<2l,
j=1

and let f» : X» —> A'*2 be the projection

i, .. x0k, 1,8, b) = (1, b).

Let further X C X» be the closed subscheme over S defined by the equation x1 1 =
1. The morphism
G, xX—> X,

defined by
(t, X1 1yens X2 k> Ty S, b) = (txl,l, e BX2L kS T tks, b)

is an isomorphism, with inverse given by
X1,2 X21,k s
(xl,li"'9le,k7r9svb)'_)<x1,1’19 LRI ) ’r’_k’b)'
X1,1 X1,1 t

Let now p { n{ be a prime and F, a finite field of characteristic p that is a residue
field of a prime ideal in S. Let v be a non-trivial additive character of F,. We have
an isomorphism

1—k X
Kery (X) (T) (1 —k]l = Rfi Lyx1+ - +x) @ ®£m (x;)
i=1
of sheaves on A{?q . By definition and Lemma 7.1, it follows that

k

I I
R(x) = R¥*&=DH g, | (Ew (Z (in,j — Z)Cl-i-i,j))
i=1 i=1

Jj=1

S @@L i) )

j=1i=1
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We now translate this by “transport of structure” to G,, x X =~ X». First, we have
f>» = f o p» where p, is the projection G,, x X — X. Next, let f : X — A%
be the projection onto (r, b), and let g : X — A! be defined by

k(1 !
gOXL 1, -y Kotk T8, B) = D (in,j - le—i-i.j) :
i=1 i=1

j=1

Let g’ be the function

= (ixw' - imw‘)

Jj=1

on X;. Then g’ corresponds to 7g under the isomorphism X, >~ G,, x X. Moreover,
thg shanes Ly ; (xi, j /X1, j)' are transported to £, ; (xi, j/x1+i,j) under this isomor-
phism (since both variables involved are multiplied by 7). We conclude that

k l
ROOI=21(k — 1) — 1]~ R(f o pa), (ﬁwg) ® Q) Ly, (xi.j/x14. j))

j=1i=1
1+21
on AFq .

We can now apply the strategy of [21, Lemma 4.23]. By the projection formula,
we have

kool
Rp>! (ﬁxp(fg) ®®®£x, Xi,j [ X1+, J))

j=1i=1
ko1
= <®®£x, Xi,j/Xi+i, j)) ® RpanLy(tg)
=1 =1

and Rpy Ly (tg) is the pullback along g of the Fourier transform of the extension

by zero of the constant sheaf on Gm,Fq , which is (RM*GZ[—I])F({ foru: G, — Al
the inclusion.
We then define the sheaf

koo
R™(X) = R¥*V fy ( (Ru.Qe) ® Q) &) L7 (i 41+ J))
j=1i=1

over S. The preceeding computation gives an isomorphism R““iV(Z)Fq ~ R(x)
over F,.
Furthermore, since the complex

k l
Rfi ( Ru*Qg ® ®®£}(, Xi, J/xl+t j))

j=1i=l1
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is supported in degree 2I(k — 1) over Uf, for all F4, the corresponding complex

k1
Rf <g*(Ru*@) ® Q) Ly, (xi.j/x14. ]))

j=1i=1

is supported in a single degree on §.

We will now check that R"™ (¥) is lisse on Us. By the specialization property
and Lemma 7.3, we know that R¥™V (%) is lisse on Uy, for any residue field F,
of characteristic p { £n, and that it has constant rank. Because it is a constructible
sheaf, its rank is a constructible function, and hence it has the same rank everywhere
on Us. _ _ .

Write R'™ = RV (%) for simplicity. We show that R"™" is lisse on Ug
by contradiction. By the criterion in Lemma 5.2, if R is not lisse on Uy, then
there exists a finite-field-valued point (say over F,) and a section of RV gyer
the étale local ring (9” for some generic point  of Uy, which is non-zero at the
special point, but zero at the generic point. If we denote by i the inclusion of 5 in
Spec(Oy), then such a section corresponds to a morphism i+Q, — R"™ over this
local ring that is non-trivial at the generic point. Because

k l
RUNIV _ RZI(k—l)ﬁ ( RM*QE ® ®®‘CX/ Xi j /X4, ]))

j=1i=1

and the complex

koo
Rf( (Ru+Qy) ®®®£x/ xlj/x1+,]))

j=1i=1

is supported in a single degree, we obtain a nontrivial map.

k l
Ri Q[—2l(k — 1)] — Rfi <g*(Ru*@) ® QX Ly, (xij/x14i, ,)) . 8.0

j=1i=1

We then apply the Verdier duality functor, taking our base scheme S = Spec(@ff ).

In this case our dualizing complex is Q, and we set D(F ) = Hom(F, Q,). Later,
we will apply also apply Verdier duality on schemes of finite type over S (see,
e.g., [13, Chapter 8, Chapter 10.1] for the ¢-adic formalism of Verdier duality in
this setting). As usual, for a scheme of finite type over S with structural morphism
w, we set D(F) = Hom(F, w!ﬁg). Dualizing the morphism (8.1), we obtain a
morphism

k l
D Rf, (g*(Ru*@) ® QX Ly, (xi.j/x14i, J)> — DRI, Qu20(k — )], (82

j=1i=1

that is also nontrivial, since by double-duality its dual is (8.1).
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‘We have
D Ri.Q; = RiyDQ, = Ri1i'Q, = RilQ,[—2] = Ri.Q,[-2],

where the last two equalities follow respectively from the fact that i is the inclusion
of a smooth divisor of codimension one and the fact that i is proper. The left-hand
side of (8.2) is

®»

Rf.D <g*(Ru*Q€ ®

1
®£X/ Xi ]/xl-‘rl ]))

i=1
1

=Rf.D (g* (Ru*6@)> ® [,71 (xi,j /%140, )s

X
j=1i=1

J

»l

since duality is local, and therefore commutes with twisting with a locally con-
stant sheaf. Hence the existence of a non-trivial morphism (8.2) would lead to a
morphism

k 1
i*Rf D g*(Ru.Qy) ®®®£Y;I(xi,j/xz+i,j)%64[2l(k—1)+2]

j=1i=1

that is nontrivial at n. Finally, this would force the stalk of the sheaf

k
i*Rf*Dg R“*QZ ®®®£7f sz/XlJer)

j=1i=1

in degree —2I(k — 1) — 2 to be nontrivial at the generic point of A%*+!. We will now
prove that this last property fails. .

Away from the vanishing set of g, the sheaf ¢g*(Ru.Q,) is the constant sheaf
613, so its dual is 64 [2Q2I(k — 1))], where 2[(k — 1) is the relative dimension of X .

On the other hand, we claim that the morphism g is smooth in a Zariski-open
neighborhood of the vanishing set of g. To check this, because g’ = gt, it suffices
to check that g" is smooth in a neighborhood of its vanishing set. Examining just the
contribution Zl;-zl x;,j to g’, observe that the only equation defining X» involving
(xi.15 .-, Xi ) is of the form ]_[l;=1 Xi,j = «a,so the derivative of this contribution in

a transverse direction is nonzero, and g’ is smooth, unless x; | = x;2 = -+ = X; k.
In this case, all the x; are equal to some k-th root of s(r + b;), and thus

l 21
g =) s+ = > (str+bink,
i=1

i=l+1

which is non-zero when (r, b) € U.
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Since g is smooth in a neighborhood of the vanishing locus of g, the sheaf
Dg*(Ru*GZ) =g D(RM*GZ) is there a shift (and Tate twist) of g* D(Ru*ﬁg),
which is a shift (and Tate twist) of g*RM!Gg, and thus vanishes on the zero-set of
g. We conclude that D g*(Ru,Qy) is everywhere supported in degree

—4l(k —1).

Finally, we observe that f is an affine morphism from a scheme of dimension 2/ (k—
1). By results of Gabber (see [14, XV, Theorem 1.1.2]), the support of the sheaf

Rf.D (g*(Ru*@) ® XX L (Xi,j/xl+i,j)>
j=1i=1

has dimension 2/(k — 1) —d — 4l(k — 1) relative to S. Hence, its stalk in degree
2 — 2I(k — 1) has support of dimension

2k = 1)+20k—=1) =2 —-4l(k—1) = =2

and therefore vanishes at the generic point of the special fiber, which has dimension
—1 (relative to Spec(Og’ )). This is the desired contradiction. O

9. Injectivity
Let
Wi =V2U{be A% | at most two coordinates of b have multiplicity 1}.

This is a closed subvariety of codimension / — 1 of A%l. The goal of this section is
to prove the following injectivity statement for 6p:

Theorem 9.1. Let p > 2k+1 be a prime and let ¥ be a finite field of characteristic
p with q elements. Let x be a k-tuple of C-adic characters of F ;( with Property
CGM.

For p large enough, depending only on (k1) and for b € A*(F q) outside
Wi (Fy), the natural morphism

6p: Endy,(Kp) — Endy, (R})
is injective.
We begin with a lemma. First, we observe that for any b, and any geometrically

irreducible component H of Kp, we can meaningfully speak of the weight one part
of R'm/’H, since H is defined over a finite field extension of F,.
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Lemma 9.2. For any b € A*(F q)» the morphism 0y is injective if, and only if, for
any geometrically irreducible component H of Ky, the weight one part of R'mH
is non-zero.

Proof. Since K is pointwise pure, hence geometrically semisimple, it is geometri-
cally isomorphic to a direct sum
B

iel
for some geometrically irreducible sheaves F; and some integers n; = 1. Then

R'mICy ~ @ (le}-i)@n,-’

iel

and the maximal weight one quotient of R'm Ky is also the corresponding direct
sum of the maximal weight one quotients (R U Fiyw=1 of R'mF;, with multiplic-
ity n;. If one of these quotients vanishes, then any u € Endy, (Kp) that is non-zero
only on the corresponding summand F; satisfies 65 (u) = 0.

Conversely, suppose that all the quotients (R'mF;)¥=! are non-zero. By
Schur’s Lemma, the endomorphism algebra Endy, (RZ) is isomorphic to a prod-
uct of matrix algebras M, (65). For each i, 6 maps an endomorphism u to the
endomorphism of (R'm F;)*=1-®" represented by a block matrix with diagonal
scalar matrices in each block, whose entries are the coefficients of the matrix in
M, (Qy) corresponding to u. Since the blocks have non-zero size, such a matrix is
zero if and only if u is zero. O

Let G be the geometric monodromy group of €y y (x). Let b € A% (Fy). We
denote by B C A the set of values {b;}. For any family 0 = (oyx)xep of irreducible
representations of G, we denote by H, the sheaf

Ho = X) 0 (Kliy ()5 +x)),

xeB

on A? with coordinates (r, s).

Lemma 9.3. Assume that x has CGM. Any geometrically irreducible component
H of Ky is isomorphic to H, for some family @ = (0x)xep such that, for all x € B,
the representation oy is an irreducible summand of the representation Std®"! ®
(StdV)®"2 where
ny = Z 1, ny = Z 1. 9.1)
1<l 1+1<i <2l

bi=x bi=x

Proof. Write

K = R Ktey (st + )" & (Kb GO (s + ))&

xXeB
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By the Goursat-Kolchin-Ribet criterion (see [17] or [10]), which may be applied
since the sheaf €y y (x) has geometric monodromy group SLi or Sp; by Theo-
rem 6.2, the sheaf

D Kty O +x)

xX€eB

has geometric monodromy group G!B!, so that its irreducible components corre-
spond exactly to the tuples . U

Lemma 94. Let b be a point in A2 — V2| Let Hg be an irreducible component of

K. Then the rank of le'Hg on the dense open set where Py(r) # 0 is equal to
the rank of Hy divided by k.

Proof. Note that the set where Pp does not vanish is indeed a dense open subset by
Lemma 7.4.

Let r be such that Pp(r) # 0. Then by proper base change, the stalk of leHg
at r is equal to HC1 (Gm,E,’ Ho.r).

Because Py(r) # 0, Lemma 7.2 shows that the local monodromy representa-
tion at oo of KCp, is isomorphic to a sum of sheaves of the form Ly (« - s1/ky for
nonzero «. Each sheaf Ly (« - 5175 has all breaks 1/k at 0o, so the same is true for
Kp.r.

The sheaf H,, , is a summand of Kp ,, hence it also lisse on G, , tamely rami-
fied at 0, and has all breaks 1/k at co. Moreover, it also satisfies

H° (ijq, Hg) = H> (ijq, Hg) -0,

and therefore the Euler-Poincaré characteristic formula for a lisse sheaf on G, im-
plies that

dim HC1 (Gm,Fq’ Hg,r> =—x (Gm,EI’ Hg,r> = Swang <Hg,r> + Swang, (Hg,r)

1
=k (Ho)- O

In the next lemmas, we fix a point b in A2 — VA and an index i such that
bi #bjforj #i.

Wedenotee = —1if1 <i </,ande = 1if/+1 < i < 2!. For any character
X, we denote n,, the multiplicity of x in x,whichis Oif x & x.

For an irreducible component

Ho = (X) 0x (Klry ) (s(r + x))

xeB

of KCp (all are of this type by Lemma 9.3), we denote
Mg = Q) 0x (Ktry X)) (s( + x)). 92)

xeB
X#b;
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Since M, is tamely ramified at 0, its local monodromy representation at s = 0 can
be expressed as a sum of Jordan blocks, which we write

DL, & Jmy.
n

where 7 runs over a finite set of characters.

Lemma 9.5. With notation as above, the rank of the weight one part of R' mHg on
the nonempty open set where Pyp(r) # 0 is equal to

X:malx(m,7 — nye, 0).
n

Proof. Because b; occurs with multiplicity one in B, the representation gp, is nec-
essarily the standard representation if i < [ or its dual if i > [ (see (9.1)), and in
any case has rank k. This implies that

rk (Hq) = ktk (M,)

and hence by Lemma 9.4, we have
rk (leHQ> =rk (./\/lg) = Zmn,
n

so that it suffices to show that the weight < 1 part of leHg has the rank
Z min (my, nye).
n

To prove this, observe that the weight < 1 part is the sum over the singularities
of the sheaf of the local monodromy invariants (see, e.g., [21, Lemma 4.22(2)]).
Because H, - is a summand of Kp , which by Lemma 7.2 has no nontrivial local
monodromy invariants at 0o, H, , has no nontrivial local monodromy invariants
at oo.

If i </, then the local monodromy representation at O is given by

Hor=Mg @ Kl y(X)(s(r +bi)= (@ L, ® J(m,,))@ (@ Ly ® J(nx))
"

XEX
=P P Ly ®Tmy) @ J(ny).

n XE€X

The dimension of the invariant subspace of £,, ® J(m,) ® J(n,) is zero unless
nx = 1, in which case it is min(m,, n,), hence the result follows in that case. If
[+ 1 <i < 2I, the same calculation applies, except that L’Xq appears instead of
L. O

The next lemma continues with the same notation.
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Lemma 9.6. Assume that x has CGM. Then the rank of the weight one part of
le'HQ is at least two.

Proof. By the previous lemma, it is enough to prove that

Zmax(mn —nge,0) > 2. 9.3)
n

Since b ¢ W), there are at least three elements of B that occur with multiplicity
one, say b;,bj and b
Letd =1if j <land§ = —1if j > [, so that g, is the standard representa-

tion if § = 1 and the dual representation if § = —1.
Let
Mo= Q) 0x(Kliy (X))t +x))
xXeB
x#bibj
so that
Mg =My ® Kk y ) (s(r +b;))

if § = 1and v

Mg = Mg ® Kty O(s(r +b;))
if§ =—1.

Let L9 ®J (r) be a Jordan block in the local monodromy representation of M,
at s = 0. We estimate the contribution from this factor in the local monodromy
representation (9.2) of M,.

This contribution contains a direct sum

B Lo ®I(ny+r—1). (9.4)
X€X

If the character 6 is nontrivial, then the tuple of characters 6€ x€® cannot be equal to
X > up to permutation because this would contradict the CGM assumption. Hence,
there exists a character x such thatn, > n 5€e s and therefore the Jordan blocks

(9.4) include a character n = x°@ with my > npe. Hence these blocks have a
contribution
> min(nx +r—1 —nxb‘e@e,o) >r

to the sum on the left-hand side of (9.3).
On the other hand, if 6 is trivial, then the character x with n, maximal con-
tributes
>min (ny +r—1—ny,0)=r—1.

In particular, we obtain (9.3) except if the local monodromy of M’ at zero consists
of at most one unipotent Jordan block of rank two, or of at most one nontrivial
character of rank one, plus a sum of any number of trivial representations. This
conditions means that local monodromy representation of M’, at zero is either
trivial or is a pseudoreflection (unipotent or not).
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In the first case, we have a sheaf with trivial local monodromy at O that is
expressed as a tensor product. Then all the tensor factors must have scalar lo-
cal monodromy at 0. This is impossible here, since one of the tensor factors is
Ky () (s + b ;7)) or its dual, and the local monodromy of this sheaf is not
scalar (because k > 2).

If the local monodromy representation is a pseudoreflection, then when it
is expressed as a tensor product, all but one of the tensor factors must be one-
dimensional, and the remaining factor must have local monodromy that is given
by a pseudoreflection times a scalar. Again, because one of the tensor factors
is ICl,y (X)(s(r + bj)) or its dual, this must be the special factor, and this can
only happen when k = 2 by Proposition 6.1. All the remaining tensor factors are
one-dimensional. But since the geometric monodromy group is SL; in that case
(because x has CGM), and the only one-dimensional representation of SL; is the
trivial representation, and this only appears in even tensor powers of the standard
representation, we conclude that all remaining factors must have even multiplicity.
This is a contradiction, since we have three factors with multiplicity one, and the
sum of the multiplicities is 2/, which is even. U

Now Theorem 9.1 follows immediately from Lemma 9.2 and Lemma 9.6.

10. Specialization statement

We continue with the previous notation. Recall that Xo, = A% — V2 and that X j
is defined in Definition 7.6. We recall that we have the projection f: U — A%,

Lemma 10.1. For each j, the subvariety X ; is closed in X .
For each irreducible component X of X ; that intersects the characteristic zero
part, the morphism

frZnf'X—XNXjm) > X-XNXj_
is finite étale.

Proof. These claims follow from Lemma 7.4. Indeed, Z is the solution set of a
family of nonzero polynomials in one variable indexed by points of Xoo = A% —
VA, The set X j 1is constructible, so to show it is closed it suffices to show that
it is closed under specialization. The polynomial factorizes completely over any
geometric generic point into one distinct factor for each root, raised to some power,
and each factor has at most one root over the special point, so the number of roots
over the special point is at most the number of roots over the generic point, as
desired.

To check that Z N f_l(X — X N X;_1)is finite étale over X — X N X;_1, we
consider the polynomial P (r) over the étale local ring of a pointof X — X N X;_,
which is an integral strict Henselian local ring, and use the fact that the polynomial
has the same number of roots over the special point and over the generic point.
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By the previous discussion each linear factor over the geometric generic point must
admit a root over the residue field, which means the polynomial is monic. Because it
is monic, and the ring is strict henselian, we can factor it into a product of irreducible
factors, each with exactly one root in the residue field. Over the generic point each
such factor will have only one root in the residue field, hence have only one root
in the fraction field. Therefore, because the generic point has characteristic zero,
so all polynomials are separable, each such factor is a power of (x — o) where o
is its unique root, so the polynomial is a product of linear factors, with at most one
distinct linear factor with each possible root in the residue field, hence its vanishing
set is the disjoint union of the vanishing sets of these linear factors and thus is finite
étale. O

Fix j 2 0. Let X C X; C A? be an irreducible component of X j over
Z which intersects the characteristic zero part. We consider a finite field F, of
characteristic p > 2k + 1 such that qu is irreducible and nonempty.

Lemma 10.2. Let x be a k-tuple of characters of ¥ .The sheaf R*| wunyf-! (qu—
XE, N X ;1)) is tamely ramified around the divisor Z U {o0}.

Proof. Let n be the lcm of the orders of the characters y;. By the remarks before
Proposition 8.1, there exists a tuple X of characters of u,, such that x is associated to
this tuple. Let R"™ ()X) be the sheaf over Z[p,,, 1/(n¢)] given by Proposition 8.1.
This sheaf R"™V()) is lisse on the open set U N f‘l(Xj — XN X;_1), whose
complement is the étale divisor Z U {oo}. Hence, by Abyankhar’s Lemma [24,
Exposé XIII, Section 5], the sheaf RV (¥) is tamely ramified, and hence so is

R (IAR = R0,
and also R*(x). O

Proposition 10.3. Ler n be the generic point of Xiq’ and let 1 be a geometric
generic point over 1. Let x be a k-tuple of characters of F; with Property CGM.
Suppose that

dim Endy; (R}) = dim Endy; ().
Let b € X(F,) suchthatb ¢ X ;_1 and b ¢ V. Then we have

dim Endy, (R}) = dimEndy, (Kj).
Proof. Consider the sheaf

E = RZﬁ(R* ® R*,\/)

on A%’q . We claim that:

(a) The restriction of £ to X; — X j_1 is lisse;
(b) We have an isomorphism

8,‘] ~ EndU;} (R;)(—]),
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(c) We have an isomorphism
Ep =~ Endy, (Ry)(—1).
Moreover, let g: V — A% be the map (r, s, b) — b over Z and
£ = R4g!(/C ® KY)
on A%fq . We claim that:

(a’) The restriction of € to Xj— Xj_qis lisse;
(b’) We have an isomorphism

~

& ~ Endy, (Kj)(—=D);
(c’) We have an isomorphism
Ep ~ Endy, (Kp)(~1).
Assuming these facts, we have
dim Endy, (RZ) = dim & = dim &; = dimEndy, (R;)
= dim Endy, (ICﬁ) = dim &; = dim &, = dim Endy, (Kp),

with the identities following from respectively (c), (a), (b), the assumption, (b’),
(a’), and (¢’). (In particular, when we apply assumption (a) and (a’), we use the
fact that b is a specialization of 7, hence they lie on the same connected component
of X; — X;_1, and so any lisse sheaf on X; — X ;_; has equal ranks at these two
points.)

We now prove the claims. The assertions (b)/(b’) and (c)/(c’) follow from the
proper base change theorem, Poincaré duality, and semisimplicity.

Assertion (a) is a consequence of Deligne’s semicontinuity theorem and the
tameness of R*. Specifically, by Lemma 10.1, we know that U, over Xg, — (XF, N
Xj_1), is the complement of a finite étale divisor inside a morphism smooth and
proper of relative dimension one, and R* ® R*" is a lisse sheaf on it. By Lemma
10.2, the Swan conductor of R* @ R*V at this divisor vanishes, and so by Deligne’s
semicontinuity theorem [22, Corollary 2.1.2] the cohomology sheaf is lisse.

Assertion (2°): Let Y = Xy, —(Xg,NXj—1). Then LK islisseon V x yu Y.

Let (K@ K£Y)™ V>a21Y) e its (geometric) monodromy invariants. Then there is a
natural map

(IC(X)K:V)NI(VXAZIY) — IC ® ICV

over V Xz Y, where we interpret (IC ® /Cv)m (V>x2") a5 a constant sheaf. This
induces by functoriality a map

R4gg (’C®KV)7T1(V><A21Y) N R4gy/C®/CV
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over Y. Because V is an open subset of A%*+2 whose fibers under g are all nonempty,
the top cohomology of a constant sheaf along g is a constant sheaf, so this gives a
map

(/C ® ]C\/)ﬂl(VXAzly) N R4g!/C®/CV.

We claim that this last map is an isomorphism. It is sufficient to check this on the
stalk at each point b. To do this, first check that the monodromy group of X ® KV
over V x 2 Y is equal to the monodromy of the same sheaf on Vj. This can be
done using Goursat-Kolchin-Ribet, since x has CGM and p > 2k + 1. We also use
the fact that, because Z is finite etale over Y, and Z includes {—b1, ..., —by}, no
b;, b; that are distinct generically on the Y stratum can become equal at any point
of Y.

Next observe that this map is simply the natural map from the monodromy
invariants of X ® KV to the monodromy coinvariants of X ® V. Because the
monodromy is semisimple, it is an isomorphism. U

11. Diophantine preliminaries for the proof of the generic statement

This section uses independent notation from the rest of the paper. In particular, we
will use the letter & to denote finite fields.

We will use the following variant of the Diophantine Criterion for irreducibility
of Katz (compare [20, page 25] and [21, Lemma 4.14]).

Lemma 11.1. Let w be an integer. Let X be a geometrically irreducible separated
scheme of finite type over a finite field k, and let U be a normal open dense subset
of X. Let £ be a prime different from the characteristic of k. Let F be an £-adic
sheaf on X, mixed of weights < w on X, and lisse and pure of weight w on U . We
have then

1
dim End 7, (FIU) =limsup ————— tr(x; ky)
71 (UxFy) V> 00 |k|v(d1m(XFq)+w) xeXZ(kv) | v

2 (111

where k, is the extension of k of degree v in a fixed algebraic closure.

In particular, if the right-hand side of the formula above is equal to 1, then
F|U is geometrically irreducible.

Proof. Letn = dim(XFq). Up to performing a Tate twist on J, we may assume
that w = 0. For any x € X (k,) we have then

|17 (x; k)| < k(F)?,
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hence by trivial counting we get

1 1 1
k| Z |t]:(x;kV)}2:W Z ’t]‘—(X;kv)‘z‘f"klnv Z ’t]:(x;kv)‘z
x€X (kv) xeU (ky) xe(X=U)(ky)
1
= |k|"” Z |t]:(X;kV)|2+0]:(|k|7v)-
xeU(ky)

This shows that we may restrict the sum on the right-hand side of (11.1) to U (k).

Since F and its dual F" are lisse and pointwise pure of weight O on U, the
sheaf End(F) = F ® F" is also lisse and pointwise pure of weight 0 on U.
Moreover, for all x € U (k,), we have

tEnd(F) (X5 k) = |17 (x; k|2

By the Grothendieck-Lefschetz trace formula, we have

1 2 1 _
k[ % : |tr (s k)| = |k|nUTr(Frkv|ch”(U x Fy, End(F)))
xeU(ky
2n—1 . . _
+ ;(_1)1Tr(Frkv|HC’(U x F,, End(F))).

By Deligne’s Riemann Hypothesis [4], all eigenvalues of the Frobenius of k, act-
ing on the cohomology group H!(U x F,, End(F%)) have modulus < |k|i/2, and
therefore

| Tr(Fre»

H!(U x Fg, End(F)))| < dim (H. (U x Fy, End(F)))[k|""/2,

so that we derive
1
| k |l’lV

1 _
Z |tf(x; kv)|2 = |k|anr(Frkv|Hc2n(U % Fq,End(}'))) n 0(|k|—v/2)‘
xeU (ky)

On the other hand, we have a Frobenius-equivariant isomorphism
HZ"(U x Fg, End(F)) = End(F),,, () (—1)-

The eigenvalues of Frobenius on End(F ), (Uqu)(—n) have modulus g”. There-
fore .
k|~ Tr(Frov |HZ (U x Fy, End(F)))

is the sum of the v-th power of dim HCZ" (U x Fq, End(F)) complex numbers, each
of of modulus 1, and by a standard lemma, we have therefore

lim sup ——Tr(Frpo | H2" (U x Fg, End(F))) = dim H>" (U x Fy, End(F))

V— 400 k|nv

= dimEnd,, ;5\ (F),

by the geometric semi-simplicity of F|U . O
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This result, combined with the injectivity statement, reduces the desired iso-
morphism to a bound on exponential sums, where b are summed over a stratum of
the stratification. The technique we will use to obtain cancellation is a form of sep-
aration of variables, where we essentially obtain cancellation in the sum over each
individual coordinate b; .

We now describe a general geometric form of the type of separation of vari-
ables that we will use.

e Letm and N be natural numbers. Let S be a finite set;

e Let Ok be the ring of integers of a number field, and B a separated scheme of
finite type over Og[1/NT1;

e Let C; fori € S be curves over B. Let A be a smooth geometrically irreducible
curve over Z[1/N]. We will use s as a variable for points of A and x; for points
of C is

e We denote C = C; xp --- xg C,,. We view functions on C; as functions on C
by composing with the i-th projection;

e Forl < j<m,let f; =(fij)i<i<n €I be atuple of functions on the curves
C;,and let g; be a function on B;

e Let Y C C be the common zero locus of the m functions

Tj=gi+ > fij€TC.00), j=1,.m
ieS

e Letm: Y x A — Y be the obvious projection, and g;: ¥ x A — C; x A the
obvious morphisms;

e Let ¢ be a prime number dividing N. For i € S, and g some prime ideal of Ok
coprime to N, we assume given a lisse £-adic sheaf F;, pointwise pure of weight
0,0n C; x Af,. We denote by (o, xi, s) > (0, Xi, s; k) the trace function of
JFi over some finite extension k /F;

e Fors € A(k) and o € B(k) we set

E,Q,S = Fi|Ci xp {0} x {s}

the sheaf on C; x k obtained by restricting to the fiber of o and “freezing” the
s-variable. We assume that for any ¢, any k/F, and any point s € A(k) the
conductor of F; , s is bounded by some constant C > 1;

e For g some prime of Ok coprime with n, we are given a lisse £-adic sheaf G,
pointwise pure of weight 0, on B x Ag,. We denote by (o, s) > #:(0, s; k) its
trace function.

We make the following “twist-independence” assumption:

(TD). For all i, for all o € B and for all s; # s7 in A, the lisse sheaf F; ,, ®
.7-7@’ 5, ON each geometrically irreducible component of C; , has no geometrically
irreducible component that is of rank 1.

The implicit constants associated with the symbols O(---) or < are assumed to
depend on C, A, the maps (f ) j=1,...,m, and the conductors of the sheaves involved.

The main estimate on exponential sums we will need is the following
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Proposition 11.2. Assume that Assumption (T1) holds. We have

2

YooY nsik ] x5 k)

(0,x)eY (k) [s€A(k) i=1

= 3 Z|r*<g,s,k>|2ﬁ|r,~(g,x,-,s;k)|2+0(|k|‘“m3+'s'/2+2).

(0,x)eY (k) seA(k) i=1

(11.2)

Remark 11.3. One can often show (by fibering by curves) that as |k| — oo the
first term on the righthand side of (11.2) satisfies

d _
Z Z [« (0, S, k)'zl_[ It (0, bi, s k)|2 > [k| 1m(Y><A)Fq’

(0,x)€Y (k) seA(k)
while the error term is
dim(Y x A)g, ~1/2

& |k|(n—m+1)—1/2 & |k|

as soon as

<|S|—3'
2

Example 11.4. Take B a point, C; = A = G, F; = [(b;, s) > b;s]*K{s on an,
and G = Q,. Define f; j(bi) = bij and Y be the subvariety of G/, defined by the

equations
D bi==) b =0

One has dim VE, = n—m for g large enough. Then (TI) is satisfied and Proposition
11.2 states that

2
Z 01D [[KL@is: @)

..... ba€Fy  |seFy i=1

Z Z Z l_[|K12(bs q)|2+0( (n—m+1)— 1/2)

..... by, eF; seFy i=

provided m < (n — 3)/2.
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Proof. We will omit the indication of the finite field, which is always k, in the
notation for trace functions. Opening the square, we have

2

YooY weo] ]t xi 9

(0,x)€Y (k) |seA(k) i=1

= > 3 ol xi 9P (11.3)
i=1

(0,x)eY (k) seA(k)

+ Y > Yt sone ) [ Jule xi, s0tle, xi, 52).

s1,52€A(k) (0,x)eY (k) i=1
51782

We detect the condition (g, x) € Y (k) through additive characters. Thus, let ¥ a
non-trivial character of k. For x = (x;);ecs € C(k), we have

Siomer )= H Zw (2jZj0 )= W > w(gj(m{jzx f,]<x,)

A ek Aek™ j=1ieS

> ng(@))]'[w(f, (X)),

m
Ikl o

where A = (4;) jgm, and

@@ =) 2gj,  firla) =D rjfijx).
=1

j=1

Thus the second sum on the right-hand side of (11.3) is equal to

ZZ S Y vt ke )

s1,52€A (k) Lek™ (o,x)eC (k)
S1782

x [Tt xi, sn)te, xi, s)¥ (fia(x)

ieS

Y(gr(0)te(o, s1t(0, 52)
Tk Im

s1,52€Ak) Aek™ oeB(k)
S1782

<1l Dt xisule, xi, s)¥ (fia(x)

ieS x,-eC,’,Q(k)

For 51 # s7, it follows from the twist-independence assumption and the Riemann
Hypothesis (Proposition 5.1 and (5.1)) that for each i € S, we have

Z t:(0, xi, s (0, Xi, )V (fia (xi)) < [k|'/?

x;€Cj o (k)
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and 1,.(0,51)t:(0,52) <1 for all o € B(k). Hence the sum above is< |k|dim B+ISI/2+2
which concludes the proof. O

12. Parameterization of strata

The goal of this section is to give a convenient parameterization of the irreducible
components of the strata of the stratification (X ;) (Definition 7.6).

Let j be an integer with X ; non-empty. Let X C X; C A? be an irreducible
component of X ; over Z which intersects the characteristic zero part. Let 77 be a
geometric generic point of X.

We will show that X is the projection of a space defined by equations of a
certain explicit type; more precisely, these will be exactly of the type that can be
handled using Lemma 11.2, allowing us to evaluate the sums that appear in Lemma
11.1. To describe these equations and to perform an inductive process, where we
express better and better approximations of X as the image of such space, we need
to package certain data, which we do using the following definitions.

Definition 12.1. A perspective datum I1 on X is a tuple

1= (m, S, B, (CD), (b0, (fi.)): ()

where

e m > 0is an integer;

e SC{1,...2l}; B

e B is a separated scheme of finite type over Q;

e (Cj)ies is a family of relative curves over B;

o (bi)ies is a family of functions b;: B — Al ifi ¢ Sand b;: C; — Al ifi € §,

such that if i € §, the function b; is not constant on any irreducible component
of any geometric fiber of C; — B;

(fi.j) ies isafamily of functions f; ;: C; — Al;
1<j<m

o (gj)1<j<m is a family of functions g;: B — Al

To simplify the notation, we will sometimes write IT - m, ..., IT - (g;) for the cor-
responding data.

Let IT be a perspective datum over X. We denote Cry the fiber product over B
of the curves C; fori € S, and Y the subvariety of Cry defined as the zero locus of

the functions
g+ fij
ieS

for 1 < j < m,where we extend the functions f; ; and the functions g; by pullback
to Cpy.
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A perspective over X is a triple (I1, Y, y) where

e [ is a perspective datum on X;
e Y is an irreducible component of Vry;
e Y is a geometric point of V;

such that the morphism g: Vg — A2 defined by (b1, ..., by) induces a quasi-
finite morphism

Y —g (VA > AT —pA

which maps y to 7.

The goal of this section will be to construct a perspective on X where Y is
irreducible and the image of the map ¥ — A% is X. More precisely, the main
result is the following:

Theorem 12.2. There exists a perspective (I1,Y,y) on X such that Y is irre-
ducible, y is a geometric generic point of Y, and

20 — |IT- S| + 21 - m < 42l — dim(X)).

The reader is encouraged to first finish reading the proof of the main theorems of
this paper, assuming that this statement holds, since this will illustrate how the
perspective data is exploited in the final steps.

The basic strategy is the following:

(1) We start with a perspective with S as large as possible, m as small as possible,
but y potentially a quite special point of ¥ (Lemma 12.3). We plan to reduce
dim Y while keeping the growth of m and the loss of |S| controlled by a step-
by-step induction;

(2) Ateach step, we find some equations that are satisfied at y but not at the generic
point of Y (Lemmas 12.4 and 12.5);

(3) We construct a new perspective by adding these new equations (which may
require also adjoining some new variables to B and C;), lowering dim ¥ (Lem-
ma 12.6). However, the solution set in Y of these new equations might not
contain any irreducible components of the solution set in )rj of the new equa-
tions, since they may instead be absorbed into other irreducible components of
Y. To deal with this, we must assume Vg = Y

(4) We can ensure that this condition holds by a Diophantine argument, which
requires increasing | S| (Lemma 12.9). This requires certain irreducibility as-
sumptions on B and on the curves C;, which we ensure in Lemma 12.10 by a
direct construction;

(5) Finally, we prove Theorem 12.2 by showing that an induction involving all
these steps terminates in a suitable perspective.

We begin by the exhibiting trivial examples of perspectives that will be used to start
the induction process (or to terminate it in a trivial case).
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Lemma 12.3.

(1) The tuple

Mo = (0, (1,200, Spec(@), (A1) L (dyicican 9, @)

1<i<2l

is a perspective datum, and (I1g, X, 1) is a perspective;
(2) The tuple
I, =(0,9, X,9, (bi|X), 9, 9)

is a perspective datum and (I1y, X, 1) is a perspective.

Proof. This is an elementary check. In (1), we have YV, = A% and the morphism
X — A% is quasi-finite, while in (2) we have Cri, = X, with the same conclu-
sion. ]

In the next three lemmas, we begin the proof of the second step by studying
how the roots of the polynomial Pp, which are the r-coordinates of the points in the
fiber Zp, can change under specialization.

Let F be an algebraically closed field. Let rg, by, ..., by be elements of F.
Formally, the polynomial P, € F[r] is the product

2

[ 2]
Pp=[Je+b0 [] (Z Gi(r —l—bi)l/k) :
i=l1 @engt \i=1
This expansion makes sense unambiguously in an algebraic closure K of the com-
plete local field F'((r — rp)), provided we fix a choice of k-th roots of r + b; in K.
In particular, the order of vanishing of Py at rq is the sum of the valuation of the
factors, where the valuation on F ((r — rg)) is extended uniquely to K.

For 1 < i < 21, fix k-th roots (rg + b;)'/* of ro + b; in F consistent with the
choice of (r + b;)!/¥ in K. Then the multiplicity of the factor

2
Y ot +b)'t
i=1

atrg is

2
0 if Y Go+b)'*#£0,
i=1

21
1/k if Gro+b)F=0but > 5 #£0,
i=1 1<i<2
ro+bi=0



1508 EMMANUEL KOWALSKI, PHILIPPE MICHEL AND WILL SAWIN

and otherwise it is equal to the multiplicity of the formal power series

Y aer+b)teFlrck
1<i<2l
ro+b; #0

1/k

at rg, when one choses the branch of (r + b;)'/* with constant coefficient (rg +

bk,

Lemma 12.4. Let R be a local integral domain with algebraically closed residue
field F', and let K be an algebraic closure of the fraction field of R. Let by, .. ., by
be elements of R, and b € F 2L their reductions modulo the maximal ideal. Let ro
be some root of Py, € F[r]. Assume that there exist at least two roots of Pp in K
that reduce to ry. For 1 <i < 2k, fix a k—throot of ro + b; in F.

Consider an algebraic closure K of K ((u)). For ¢ € [L]%l, let n(¢) = 0 be the
multiplicity of

21
D G+
i=1
at ro, as defined above.
There is no solution (ug, vy, . .., vy) € R of the system of equations
vk =uo +b; (12.1)
uo + b; =0, foralli such thatrg+ b; =0 (12.2)
21 21

> Givi =0, forall ¢ suchthat Y Gi(ro+b)'/* =0e F  (123)
i=1 i=l1
> v/ ™M =0, ifn@) >2and0 <t <n(@) - 1. (12.4)

1<i<2!
ro+b; #0

Proof. Suppose that there exists a solution ug € R. We estimate from below the
multiplicity of ug as a root of Pp. For each factor of Py, the valuation at ug is at
least the valuation of the corresponding factor of Pj at ro, hence by summing, the
order of vanishing of Pp at u is at least the order of vanishing of Py at ro. But this
contradicts the assumption that there exist two roots of Pp reducing to rg. O

Lemma 12.5. Let R be a local integral domain with algebraically closed residue
field F containing a primitive k-th root of unity. Let by, ..., by be elements of
R and b the reduction of b modulo the maximal ideal. Assume that deg(Pj) <
deg(Pp).

(1) Ifb ¢ V2, then forany ¢ = (&) € u%l there exists an integer ng > 0 such that

21

> 6bf #£0 € F;

i=1



STRATIFICATION AND AVERAGING 1509

(2) There exist some { = (¢;) € [L]%l and some integer v with 0 < v < ng — 1 such
that

21
> ab} #0eR.

i=1

Proof. Writing

! 1k _ . 1/k 2 1k _ 1/k (T 1k -
Y Gtr+b) E=rE N " G(14bi ) Z(]‘[ T )(Za 1)—

i=l1 i=1 =0 i=l1

for (¢;) € [L%l , we first see that if (1) fails, then the left-hand side is identically O,
which implies that b € V2. Then we obtain

deg(Pp) =20+ k""" — " my,
(ceny

where m; > 0 is the largest integer such that

21
Y b =0
i=l1

for 0 < t < m¢. If condition (2) does not hold, we therefore deduce that deg(Pp) <
deg(Py), which contradicts the assumption. O

The next lemma is one of the key ingredients of the proof of Theorem 12.2.

Lemma 12.6. Let I1 be a perspective datum on X and (I1, Y, y) a perspective. If
Y is irreducible, so that Y = Y1, and y is not a geometric generic point of YV,
then there exists a perspective (IT', Y', ') with

n.-s=Mm-S, dim(T-B)<dim(I1-B)+1 dim(Y’) <dim(Y).

Proof. Let & be a geometric generic point of Y, and f its image in A% . By definition
of a perspective, the fiber of ¥ — A? over 7 is finite, and since it contains 7,
it cannot contain the point & that specializes to 7. Hence 8 # 7, and since &
specializes to y, it follows that B specializes to 7. In particular, we deduce that
B¢V

By definition, y is a geometric generic point of X C X ;. If B was a point
of X, it would follow that B = n, which is not the case. Hence the fiber of
f:Z — A% — V2 over p has > j + 1 points, whereas the fiber over 7 has j
points.
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Consider now the local ring R of the closure of $ at the point 7. It has alge-
braically closed residue field. The polynomial Pg € RIr] has > j + 1 roots, and
the specialization Pj has j roots. So either there exist two roots of Pj that have the
same image in the residue field, or deg(PE) > deg(Pyp).

Case 1 (two roots coincide).

Let ro be the common reduction of at least two roots of Pz. We will apply Lem-
ma 12.4 to R and to this ro. We define the multiplicity n(¢) for ¢ € 7 as in that
lemma.

We consider the covering B — B x Al , with coordinate u on A!, obtained by
adjoining k-th roots v; of u + b; for all i ¢ S. We then define B” as the complement
in B of the zero locus of u 4 b; for all i ¢ § such thatro + b, # 0. Fori ¢
S, the functions b; define functions B’ — A! by composing with the projection
B’ — B.

Fori € S, we consider the curve C P — B obtained from the base change of
Ci; xA' — B x A! to B’ by adjoining a k-th root v; of u +b; , so we have a diagram

C; BE(—G,‘

w0

<«
<~

W X

If ro + b; # 0, we define C l/ as the complement in C; of the zero locus of u + b;,
and otherwise we define le = a. In all cases, the morphism le — C; allows us to
define a function b; : C; — A!. The fibers of this function over a geometric point
of B’ project to geometric fibers of C; — B, hence irreducible components project
to irreducible components, and so b; is not constant on any irreducible component
of any geometric fiber, since IT is a perspective datum.

We next define the scheme C' — B’ as the fiber product for i € S of the curves
C/ over B'.

There exists a lift " of  in C’ such that u(y’) = ro (indeed, we can lift y to the
fiber product of the C; over B, and the resulting point lies in C’ since rg + b; = 0
if u + b; = 0). We fix such a lift. This choice defines canonical k-th roots of
u(7") + bi(y") = ro + b;, and we will use these later.

The functions g;, 1 < j < m and f; ; of the perspective datum IT extend to
B’ and C}, respectively, by composing with the projections B* — B and C; — C;.
We will now add additional functions (corresponding to a change of the value of the
parameter m).

Precisely, let m' = m 4+ m| + my + m3, where m (respectively my, m3) is the
number of equations (12.2) in Lemma 12.4 (respectively number of equations (12.3)
or (12.4)). We define the additional functions g; and f; ; form + 1 < j < m/,
making a one-to-one correspondance between the values of j and the equations of
those three types.
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If j corresponds to an equation (12.2), i.e., to an integer i with 1 < i < 2/
such that rg + b; = 0, then we define

frj=u+b; fori' e Sifi'=i
fir,j=0 fori’ € Sifi’ #1i
gj =0,

if i € §, and otherwise we define

firj=0 fori’ € S
gj =u-+b;.

If j corresponds to an equation (12.3),i.e., to some ¢ € /L,%l such that

21
Zé“i(ro +b)'* =0,

i=1

we define
f,'J = {iv; fori € S
gj =2 Givi.
i¢S

Finally, if j corresponds to an equation (12.4), i.e., to & € u,%l and ¢ such that
n(¢) =2 2and 0 < t < n(¢) — 1, then we define

fi.j= ;,-vil—kt ifi € Sandrg 4+ b; #0
i¢S
ro+b; #0

(note that by the definition of le , the function v; is non-vanishing). We now have
defined the perspective datum

"= @', S, B, (C)ies. (bi), (fi,j) ies P (gigi<m)-

I<j<m

The associated variety, i.e., the vanishing locus )’ of

8j+ Zfi,j

ieS

for 1 < j < m’, contains 7’ by construction (see Lemma 12.4 again). Let Y’ be
an irreducible component of )’ containing 7’. We claim that (IT’, Y’, y') is the
required perspective.

First, for y € ), the points of the fiber of )’ — ) over y are determined by the
value of the function u on ), whose values lie in the set of roots of the polynomial
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Pp(y). In particular, the fiber is finite, and hence V' is quasi-finite over ). It follows
on the one hand that Y’ has dimension < dim(Y), and on the other hand that Y’ is
quasi-finite over A2 — V2. So (IT', Y/, ') is a perspective.

We have dim(B’) < dim(B) + 1. It remains therefore to check that dim(Y”’) <
dim(Y). We have already observed that dim(Y’") < dim(Y). Suppose the dimen-
sions were equal. Then, since Y’ — Y is quasi-finite, the geometric generic point
7’ would map to @ in Y, and therefore to 8 in A . By applying finally Lemma 12.4,
we obtain a contradiction: since two roots of P reduce to the same root of Py, there
cannot be solutions in R of the system of equations (12.2), (12.3), (12.4), whereas
this is exactly what we obtain from the fact that 8 is the image of 7.

Case 2 (the degree drops).
We now consider instead Lemma 12.5, and define integers n¢ for ¢ € [.l,]%l as
the least integer > O such that

21 _
> &b #0
i=1

at 7] (this exists by statement (1) in the lemma). We define m’ = m + m 1, where m;
is the number of pairs (¢, v) with § € [l,]%l and0 < v <ng. Form+1<j< m’,
corresponding in one-to-one fashion to (¢, v), we define

fi.j = &b} fori € S

gj = 2. &bj.
i€S

Then IT" = (m’, S, B, (Ci), (bi), (fi,}) <’€§ , (gj)1<j<m) s a perspective datum
1<j<m’

(since the b; have not changed, the non—]constancy condition is also unchanged).

The point y belongs to the associated variety )’ C Vi C Cry (by definition of

ng), so (I, Y’, 7) is a perspective, where Y’ is the irreducible component of )’

containing 7. By Lemma 12.5, on the other hand, & does not lie in ), so all its

irreducible components, including Y’, have dimension < dim(Yy) = dim(Y). O

In the next lemma, we produce from a perspective another one with a specific
value of the parameter m.

Lemma 12.7. Let (I1, Y, y) be a perspective on X. There exists a perspective
(IT', Y, y) such that
n.-s=mn-s, N'-B=0-B, I'-(C;)=0-(C;)) II'-(b;)=T11-(b;)
' -m =dim(I1- B) + |IT- S| — dim(Y)
Y’ is isomorphic to Y, Yn C Vg as B-schemes.
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Proof. Letm’ = dim(I1 - B) + |I1 - §| — dim(Y). It is the codimension of Y in Cry.
Let X be the subspace of I'(Cry, O) generated by the functions

hj=gi+ Y. fij

I<jsm

for 1 < j < m. We claim that for any integer v with 0 < v < m’, there
exist (¢1,...,9y) in X such that all irreducible components of the zero locus
V (@1, ..., @y) in Cp that contain Y have codimension v in Cpy.

We prove this by induction on v. The statement is true for v = 0. Assume that
v < m’ and that the property holds for v — 1 and the functions (¢1, ..., ¢,—1). Let
W be an irreducible component of the zero locus V (¢y, ..., ¢,_1). It has codimen-
sionv—1 < m’ = codim(Y) in Cry so Y is a proper closed irreducible subset of W.
Hence there exists j such that 4 ; does not vanish identically on W, and in particu-
lar the set of ¢ € X such that ¢ does not vanish on W is a non-empty Zariski-open
subset of X. Taking intersection of these open sets, there exists ¢, € X such that
¢, is non-vanishing on all irreducible components W containing Y. It follows that

(o1, - - ., @) satisfy the induction assumption.

For v = m/, this means that all irreducible components of V (g1, ..., @u)
containing Y have codimension m’ = codim(Y) in Cr;. Hence Y is one of the
irreducible components of V(¢1, ..., @u).

For 1 < v < m/, write

oy = Z oy, jhj.

1<j<m

We define

g= Y. ajg,  flu= ) iy fij

1<j<m 1<j<m ies
fori € Sand 1 < v < m’ so that
ieS
Then
"= (m', S, B, (Ciies. bi), (f{ ) ies - (&Digj<m)
j’ ieS &)
1<j<m

is a perspective datum on X; by construction Y is an irreducible component of
Y and Y C Vp; as B-schemes, so (IT', Y, y) is a perspective with the desired
properties. O

In the next lemma, we have a single perspective, so we do not use the selector
notation.
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Lemma 12.8. Let (I1, Y, y) be a perspective on X. Forany T C Sandb € B , we
put

Trp= l_[ T (Cip, Oc,y)s L'rp= l_[ (T(Cip, Oc; ) kb)),

ieT ieT

where the kp, is the residue field at b. The spaces FTJ,N and 't are kp-vector
spaces. For 1 < j < m,wedenote fr jp=(fij)ier € T1p.

Assume that S is not empty, that B is irreducible, and that the generic fiber of
C; — B is geometrically irreducible for alli € S.

One of the following properties holds:

(a) The scheme Y1 has a unique geometrically irreducible component whose pro-
Jjection to B is dominant;

(b) There exists a proper subset T C S such that the images of (fr,1,p, - fT,m.n)
span a subspace of I'r , of dimension < m — (|S| — |T1)/2, for n the generic
point of B.

Proof. There exists a number field and an open dense subset O of its ring of integers
in a number field such that the persective datum is defined over . We fix one model
of ITover O, and we will use the same notation for its components as for the original
objects over Q. We assume that property (b) does not hold and we will show that
(a) holds. We will do this by studying fibers of V7 — B over finite-valued field
points of a suitable dense open subset of B, using the point-counting criterion for
irreducibility over finite fields.

For b € B, the condition that the all curves C; j; are geometrically irreducible
is a constructible condition. So is the condition (f7,15,..., fr.mb) generate a
subspace of I'r , of dimension > m — (|S| — |T'|)/2 for all proper subsets T of S.

By assumption, including the negation of (b), these properties both hold at the
generic point, hence we can find a dense open subset B°® where both properties hold.

Let Spec(x) — Spec(QO) be a finite-field valued point of Spec(O). Fix b €
B° (k). Let ¢ be a fixed non-trivial additive character of x. We denote V.= YV p .
We compute |V (x)| using additive characters (as in the proof of Proposition 11.2).
For A € ™ and x € Crj(k), we denote

IGEDIIDPNAIC

j=1 ieS

and

EQ) =y (ijgjaa)).
j=1
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We have
|V(K>|——m > HZw( (g,-(x)+Zﬁ,j<x>>>
| | x€Crpk) j=1 Aek ieS
=i > HZw 28, (b)) ¥ (xZﬁ,jm)
| xeCrpk) j=1 Aek ieS
=P |m Y EME®D: ),
Aek™
where

Eb: M= Y  ¥(Hh&x).

xeCry p(K)

By definition of Cry as a fiber product, we have the separation of variable formula

Eb:n=]] > w(ZAjﬁ,,-(x)>.
j=1

ieS xeC; (k)
Let

m
Si=1i¢eS | Z)“jfi’j is constant on C,’,b} cSs.
=1

Applying the Weil bound for the exponential sums over C; ,(«) (assuming the char-
acteristic is larger than the degree of the functions f; ;), it follows that

E(b: 1) < |ic|IS$HOSI=ISD/2 e ASIHSID/2,

We now split the expression for |V (k)| above according to the value of Sj, and
isolate the term corresponding to S, = § from the others. This gives |V (k)| =
Nj + N;, where

— Y EMEB;N), Na=—— Y EMEb; ).
R | & Jre™ | &
Sp=S Sy #S

Taking T = S — {i} for a fixed i € § in the defining property of B°, we observe
that the tuple (f7.1.5, ..., f1.mb) generates a subspace of I'r ; of dimension >
m—(|S| —1|T1)/2 > m — 1/2, hence are linearly independent in I'7 ;,, and thus are
linearly independent in I's . The condition Sp = S arises then only when A = 0.

Hence
= i |m]‘[| Ci(K).

ieS
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Since C;, is a geometrically irreducible curve (by the choice of B°), we have
|Ci.p(k)| = |k| + O(|k|'/?) for all i. Hence

IS]
Nl — |K||S|_m (1 4 0<|K|—1/2>) + 19) <|K|—m+|S|—l/2>

_ |K||S|—m L0 (|K||S\—m—l/2)‘

On the other hand, we have

1
Ny & —— Z |K|n(T)|K|(|S|+\T|)/2,

m
k| TCS
T#S

where n(T') is the dimension of the x-vector subspace of ¥ whose elements are all
A such that Sy, C T. We have n(T) = ker(pr), where o7 : k™ — D't p /K is the
linear map

m
A Y Ajfr.j(modi).
j=1

Since T is a proper subset of S, by the definition of B°, we must have dim Im(¢7) >
m—2T 5o that n(T) < (IS|—IT[)/2, which implies n(T) < (IS|—|T[)/2—1/2,
so we derive

Ny < [ic| 7 HUSIITD2HASIHITD/21/2 | 1SI-m=172,
We conclude that
V@l = el 4 0 (] SIm=172).

Applying this to finite extensions of « and applying the Lang-Weil estimates, we
conclude that V is geometrically irreducible.

Recalling that V was the fiber of Y1 over an arbitrary point b € B°(x), we
see that all the fibers of Yy over finite-field valued points of B° with sufficiently
large characteristic are geometrically irreducible, so all the fibers of )1 over points
of B° are geometrically irreducible. Therefore YV has a unique geometrically irre-
ducible component that is dominant over B, concluding the proof that condition (a)
holds. O

Lemma 12.9. Let (I1, Y, y) be a perspective on X defined over an open subscheme
Spec(O) of the ring of integers in a number field. Assume that S is not empty, that
B is geometrically irreducible, that each C; is irreducible and that the generic fiber
of C; — B is geometrically irreducible for all i € S.

If Y1 is reducible and all irreducible components of Y11 are dominant over B,
then there exists a perspective (I1', Y’', ) on X such that dimY’' = dim Y and

1< S| — I8 <2(T-m — 1 - m).
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Proof. We apply Lemma 12.8 to (I1, Y, ), and use the same notation. Since Y
is reducible and all its irreducible components are dominant over B, there are at
least two irreducible components that are dominant over B. By Lemma 12.8,
we conclude that there exists a proper subset 7 C II - S such that the span of
(fr.1.n, - fT.my) in I'r has dimension < m — (|S| — |T|)/2.

ForA € ker(pr)andi € T, Z’J": 1 Aj fi,j is equal to an element of «;, and hence
arational function on B. Let B* be an open subset of B on which all these functions
are defined. Because C; is irreducible, Z’;’:l Aj fi,j is equal to this function on B*
not just at the generic point, but everywhere.

Let m’ be the dimension of the span X of (fr.1,..., fr.m) in ['7. We have
then

1< IT-S|—|T| <2(TT-m —m').
Let C be the fibre product of C; fori € S—T with B* over B. We have an evaluation
map
or: A" — T'p

sending (A;)jer to
m
Y ST
j=1

We define B’ C C to be the common zero locus of the functions

Do <gj +> fi,j)
j=1

ieS

for all A in ker(¢7). These expressions are indeed well-defined functions on C
because, as we saw earlier
m
D hifi
j=1

is equal to a function on B* fori € T if A € ker(¢7).
Furthermore, we choose f/ ;in X fori € T and 1 < j < m' so that f/ =

Y w1 Bjv fivfor (Bj,)1<j<m asetof elements of A™ that span its image X under

¢t . Define
m
gi=)Y Bu (gv+ > fi,v)-
v=1

ieS-T
Then the tuple

= (m/, T, B (Ci XB B/)ieT’ (b;)ieT’ (fl/J) (g;))

is a perspective datum on X, where b; is the extension of b; to C; = C; xp B’ by

pullback for i € T, the composition B — C — C; = A'ifi € § — T, and the
projection B* — B — A! otherwise.
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By construction, the fiber product Cry is a locally closed subset of contained in
Cri. The subscheme Y is an open subset of )y, because it has the same set
of defining equations after restricting to an open subset B* of B. Because the
irreducible component ¥ was dominant over B, its restriction to this open subset
has the same dimension, and because y was dominant over B, it remains in this
open subset as well. Hence (I, Y, ) is the desired perspective on X . O

The last preparatory lemma constructs a perspective where the base B satisfies
the assumptions of the last lemma.

Lemma 12.10. Let (I1, Y, y) be a perspective on X . Then there exists a perspective
(I, Y’, ') such that

n'-m=1I-m, n-s=11I-8,
and dim(Y") < dim(Y), and moreover

(a) I1' - B is irreducible;

(b) Foralli € S, the curve 1" - C; are irreducible and the fiber of T1' - C; over the
geometric generic point of I1' - B is irreducible;

(¢) Allirreducible components of YV are dominant over B, as is y .

The strategy of the proof is to make several modifications to the given perspective
datum to ensure that these three conditions hold. We will first replace B by an
irreducible scheme, ensuring condition (a). We then pass to a finite cover of B over
which generic geometrically irreducible components of C; are defined and choose
one for each i, ensuring condition (b). Finally we remove a closed subset from B,
containing all the irreducible components that are not dominant over B, ensuring
condition (c).

Proof. Let A C Cpy be an irreducible component containing Y. Let By be the
schematic closure of the image of y under the projection ¥ — B. It is closed
and irreducible. Let 8 be its generic point. Let 8/ — B be a finite extension such
that all irreducible components of the generic fibers of the curves C; fori € S are
defined over B’. Let then B’ — By be a finite flat morphism whose generic fiber
is B/ — B (we can construct such a morphism by taking a generator of the field
extension B’/B, and multiplying it by a regular function on By so that its minimal
polynomial P becomes monic; then the cover B’ of B obtained by adjoining a root
of P has the required property).

Fix alift ' of y to Y xp B’. Let Y’ be an irreducible component of Y x g B’
containing ', and let 4’ be an irreducible componet of Cry x g B’ containing Y’.
Because y maps to the generic point 8 of By, 7’ must map to the generic point 8’
of B’ (the only point lying in the fiber), and so Y’ — B’ and A" — B’ are dominant
maps. Because A’ is an irreducible component of Cr; x g B’, and maps dominantly
to B’, it follows that .A;,}/ is an irreducible component of the pullback Cg' of the

product of the curves C; to p’. Hence there are irreducible components C; g of
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C;p fori € S, such that A:s, is contained in the product of the c i,p- Let C] be the

closure of 5,-, g - This is an irreducible curve over B’. We can pullback the functions
bi, gj and f; j to B" and C, respectively. We have then constructed a perspective

datum , I / / !
' = (m.5. 8. (). (). (). (&))) -

The irreducible component Y’ is contained in Cpy/, hence in V. Since the mor-
phism YV — Yp is finite, it is an irreducible component of Vpy. It contains y’
and so maps dominantly onto B’.

Let B” be the complement in B’ of the closure of the images of all irre-
ducible components of Yy that are not dominant over B’. We can pullback the
data C/, b}, g;., fi.j» Y" further to B”. This defines a perspective datum

"= (m. s, B".(C}). (). (£)- (2)))

and a perspective (IT", Y”, /).

By construction, B’ and B” are geometrically irreducible. Since the curves C;’
are generically irreducible, and their geometric generic fibers are defined over g’,
they are generically geometrically irreducible. Because y maps dominantly to B,
7' maps dominantly to B’ and B”. Finally, all irreducible components of Y~ map
dominantly to B” by construction. O

‘We can now conclude this section.

Proof of Theorem 12.2. Consider the set P of perspectives (I1, Y, y) on X such
that
2dim(I1- B) + 2dim(Y) + |IT- S| < 6l. (12.5)

This set is nonempty by Lemma 12.3 (1), hence it contains some element where
dim(Y) + [IT - §]

is minimal.

Using Lemma 12.10, we obtain a perspective (I1, Y, ) € P such that IT- B is
geometrically irreducible, the curves IT - C; are irreducible, the geometric generic
fibers of IT - C; are irreducible, and all irreducible components of Yy as well as y
are dominant over B. By Lemma 12.7, we may assume that

M-m=dim(I-B) + |IT- S| — dim(Y)

(note that the last condition in Lemma 12.7 implies that all irreducible components
of Y as well as 7’ are dominant over B for the new perspective given by that
lemma with input (IT, Y, y).)

We will then see that, except in a trivial case, a perspective with these proper-
ties satisfies the desired conclusion that IT - Y is irreducible, y is the generic point
of Y, and

20 — |IT- S|+ 21 - m < 42l — dim(X)).
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First, if Y is irreducible and y is the generic point of Y, then because Y is quasi-
finite over A%, we have dim(Y) = dim(X), hence
20—|IT- S|+2I - m=2dim(I1 - B) + 2] + |IT- S| — 2dim(Y) <8/ — 4dim(Y)
=42l — dim(X)).

Next assume that Y is irreducible and y is not the generic point of Y. Then Lemma
12.6 provides a perspective (IT', Y’, ') with

-S| =|1-S], |I-BI<|O-Bl+1, dim®Y) <dim(Y),
SO
2dim(IT’ - B) + dim(Y") + |TT' - S| < 61

but satisfying
dim(Y') + [T1" - S| < dim(Y) + |1 - S|,

which contradicts the minimality of IT.
Suppose now that Y is reducible and IT - S is nonempty. Then Lemma 12.9
provides a perspective (IT', Y’, ') which satisfies |[IT" - §| < |IT - S|, and moreover
dim(Y) = dim (Y’) > dim (11" - B) + |11 - S| = 11" - m
>dim (11" B) — I -m + (/11" - S| + |11 - S)) (12.6)
= dim (11" B) — dim(IT- B) + 3 (/[T - S| — [T - S]) + dim(Y)

hence

’

2dim (1" - B) — 2dim(IT- B) < [IT- §| — |[[T'- S

which because of (12.5) implies
2dim (T1" - B) + 2dim(Y) + |IT" - S| < 6l.
On the other hand, we have
dim (Y) + |I1' - S| < dim(Y) + [T - S|,
again contradicting the assumption of minimality.
Finally, the remaining case when IT - § is empty is trivial: in that case, Y is a
closed subscheme of IT - B so that

4dim(X) < 4dim(Y) < 2dim(I1 - B) + 2dim(Y) < 6/

and we may simply take the trivial perspective (I, X, 7) of Lemma 12.3 (2), for
which
20 — Iy - S| 4211y - m =21 < 42 — dim(X)). ]
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13. The generic statement

We continue with the previous notation. Fix j > 0. Let X C X; C A% — VA be
an irreducible component of X ; over Z which intersects the characteristic zero part.
Let X be the closure of X in A%,

Fix a perspective (I1, Y, ) on X such that Yy is irreducible, ' is a geometric
generic point of ¥, and 2/ — |S| + 2m < 4codimp (X), which exists by Theo-
rem 12.2. By definition, all of the perspective data is defined over Q. However, by
standard finiteness arguments, everything is necessarily defined over a finitely gen-
erated subring of Q, i.e., over aring Ok [1/N], where Ok is the ring of integers of a
number field K and N > 1 is some integer. We will use the same notation Y, C;, b;,
etc. to refer to the objects over this ring. Since, by assumption, yn’ Q is irreducible,
and equal to Yg, we deduce that Y is geometrically irreducible and equal to Y.

Because the geometric generic point of Y is a lift of the geometric generic point
of X, the image of ¥ in A% is a dense subset of X. For all but finitely many prime
ideals  of Ok[1/N], with residue field denoted F,, the variety YEI 1s irreducible

and nonempty, X F, is irreducible and nonempty, and the map YFq — Yiq is dom-
inant. In the remainder of this section, we only consider finite fields F, arising in
this manner, and we also always assume that the characteristic of Fy is > 2k + 1.
Lemma 13.1. Assume that x has CGM. If p is large enough with respect to
(k, 1, X) and dim(Xq) = (3] + 1)/2, then we have

2

l
> 22 TTRRC 4000 x K (5 +bi (0D x-0)

yeY(Fg)reF, |seFy i=1

=2 2>

yeY(¥y)reF; seFy

2 (13.1)

[
[ [Kle(r (s + i) X, @Kl (s + bia (3)); X @)

i=l1

+ 0 (gimXe)+3/2
where the implied constant depends only on (I1, k, ).
Proof. We first fix r € F;. We apply Proposition 11.2 with data (m, B, S, (C;),

f i)s (7)) coming from the perspective datum I1, A = G, where the sheaf F; is
[(bi,s) = s(r + bi) "KL,y (x) and with the sheaf
G = Q. 5) > s+ bi () UCliy (X)-
i¢s
Assumption (TI) holds by a Goursat-Kolchin-Ribet argument (see [17] and [10]).
Indeed, each irreducible component of C; , is a geometrically irreducible curve on

which b; is a nonconstant function. The sheaf F; , 5, ® .7-"1.’VQ’ 5, is the pullback along
b; of the sheaf

H = [bi > (s1(r + b)) Kliy (x) Q [bi = (s1(r + i) Kl 4 (x)".
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The monodromy group after pulling back along the map b; is a finite index
subgroup, so it suffices to show that no finite-index subgroup of the geometric
monodromy group of H admits a one-dimensional irreducible component. How-
ever, by Goursat’s lemma, the geometric monodromy group of H is a product of
two copies of the monodromy group of K€y v (x), acting by the tensor product of
the standard representation with its dual. This group is connected, so has no proper
finite-index subgroups, and does not admit a one-dimensional representation, which
proves the claim.

The conductor of all the sheaves F; , s, which are pullbacks of (shifted and
translated) generalized Kloosterman sheaves are bounded by constants depending
only on IT.

Applying Proposition 11.2 we obtain

i
YD TTXRK GG +bi(3n)); %, K@ (s + bii (0)); X5 9)

yeY(Fy) |seFy i=1

=2 2

YEY(Fy) sk

L0 <qdim BQ+|S|/2+2) ’

l
[ TR (s + b: ()5 X, K (s + bt (3D X, @)

i=1

where the implied constant depends only on (IT, &, [).

Summing over r, we get the formula (13.1), except that the error term is
O (q%im Bo+IS1/2+3) - However, since X is the vanishing set of m equations in a
fiber product of | S| curves over B, we have

S
dim X¢ > dim Bg + |S| — m—dlmBQ—l—%—f—l—(l—i- |2|)

dlmBQ+|—|+l—2(21 dim X) > dlmBQ+|—|+1/2

where the last two inequalities holds by the assumption on the perspective and the
assumption on dim X, respectively. O

Let n be the generic point of XFq and let 1 be a geometric generic point over
n. Let " be the the generic point of Y, . We fix a k-tuple x of characters of FJ.

Lemma 13.2. Assume that x has CGM. We have

dimEndy, (/Cn,qu) = dimEndy, (R;XE). (132)
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Proof. Let Y° be the smooth locus of Y. The endomorphisms Endv, <, (IC]7 '<F, )
are the same as the endomorphisms of the pullback of X to Y" X A2 V because the

monodromy representations of both sheaves are the same (as they are normal, with
the same generic point). We calculate the endomorphisms by applying Lemma 11.1
obtaining the lim-sup of

2
!
g~ mX2 NN T [KIG (s+6i (3): X KTk (s + biri(3)): X q)
yeY¥g)reF; |seFy i=1
We do the same for Endy , - (R*, - ), obtaining the lim-sup of
7' xFq n ><Fq
2

)
g X2 N IS [ Kk (s+5:(30)): X2 KLl (s+bi1(3): X+ 9)

yeY(¥y)reF; seF; li=1

By Lemma 13.1, these two quantities are equal up to O (¢ ~'/?), and therefore their
limsups are equal. U

In the remainder of this section, we will prove an analogous statement with 7
instead of n". The method is to prove that

dim Endy; (K;) = dimEndy,, . (K., ) (13.3)

and
dimEndy,, . (R, 5 ) = dimEndy, (R;). (13.4)

We will prove (13.3) immediately. The formula (13.4) is more difficult, and its
proof will use vanishing cycles.

Proposition 13.3. Assume that x has CGM. For any extension ' of n we have
dim Endy; (K3) = dimEndy,, (K5, ):

Proof. Let G be the geometric monodromy group of &, and let B be the set of dis-
tinct values of by, ..., by at n. Then certainly the arithmetic monodromy group of
ICr;xFq is contained in G'B!. By Goursat-Kolchin-Ribet, the geometric monodromy

group of ]Cr;xFq is G!B!, 5o the arithmetic and geometric monodromy groups are

equal. Therefore Gal(n/n x Fq) acts trivially on Endvn - (lCn/ XE;) as this ac-
*¥q

tion factors through the quotient of the arithmetic monodromy group by the ge-

ometric monodromy group. It follows that Gal(77/n" x F;) acts trivially and so

Endvn, F (lCn/XFq), which is the space of invariants of that action, is equal to the
*Xq

whole space. O
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In order to prove (13.4), we first introduce some notation. We write 77 = 1 x Fq .
We consider the projective line P% with coordinate . We denote by O¢ the étale

local ring of P,17~ at oo and by K its field of fractions. We will often identify K

(respectively a separable closure K5 of K) with the corresponding spectra.
What follows is the key lemma.

Lemma 13.4. With assumptions as above, the action of Gal(K*®?/K) on R« is
unipotent.

Note that to make sense of this action, we use the fact that the image of the nat-
ural morphism Spec(K) — A'*? has image in U, which follows from Lem-
ma74.

Proof. We denote by o the special point of Spec(O¢'). We consider the projective
line Péf, , with coordinate ¢, and denote by j (respectively by g) the open immersion
G, 00 — Pée, (respectively the open immersion Abg, — Pé,_,,).

‘We consider the lisse sheaf

K=& Kby ) +bi/r) @ Ky GO+ bisi /)

1<i<l

on Gm,oer .

By the change of variable # = rs and the proper base change theorem, the
Gal(K3°P/K)-action on R gsep is isomorphic to the action on H ! (P}(sep, JiK). Since
R"I‘(sep is a quotient of R sep, the lemma will follow if we prove that the action of
Gal(K*?/K) on H! (Pl ., jiK) is unipotent.

By the long exact sequence for vanishing cycles, we have a long exact sequence

e HI (P},, jﬂ%) ~ H (P}@ep, j,l%) S H (P},, R@j,i%) S (135)
For each i, we have an isomorphism
H' (P, ) = H' (Y, i (Keiy 00 ® Kby 00)))

hence the Gal(K*°P /K )-action on these spaces is trivial. _

On the other hand, the vanishing cycle complex R®jK is zero away from
the point at 0o of P (local acyclicity of smooth morphisms and lisseness of jiK)
and is zero at O (because of tame ramification and Deligne’s semicontinuity theo-
rem).

We therefore only need to understand R®j I€~at t = oo. By the second part of
Lemma 7.2, the local monodromy at infinity of ji/C is isomorphic to that of a direct
sum of sheaves of the form

2k
Ly <<r(1 +oi/r)E Y e+ bi/r»‘/") :
i=2
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Since (1 + b;/ r)V/k belongs to the étale local ring O, this is isomorphic to the
local monodromy of a direct sum of sheaves of the form C@ (y (r)t'/*). We have

L";(y(r)tl/k) = af*ﬁa (v (r)u) where w is the finite covering u +—> uk. We com-
pute the local monodromy at co of this sheaf, which we denote G. This is a standard
computation. We use the long exact sequence

o> HY (P},,g;g) - H (P}@ep,g!g> - H (P}T, Rd)g,Q) — ...

and distinguish three cases:

(1) If y(r) = 0 in O, then G is tamely ramified at oo, so the vanishing cycles
vanish;

Q) If y(r) # 0in O% but y(r) = 0 at the special point, then all H'’s with
coefficients in g|G in the above exact sequence vanish except

H*(P}, 219,

which is one-dimensional with a trivial action of Gal(K%P/K); this implies
that the action on H' (P}, R®gG) is trivial,

(3) If y(r) # 0 at o, then all cohomology groups in the sequence vanish by prop-
erties of the Artin-Schreier sheaves.

In any of the three cases, by local acyclicity of smooth morphisms we see that
R®g,G vanishes outside the point at 0o, so knowing that H' (P},, R®gG) has trivial
Galois action implies that the Galois action on the stalk at co vanishes.

Since the vanishing cycle functor is additive and commutes with finite push-
forward, we conclude that Gal(K*P/K) acts trivially on H' (P},, R®;iK) for alli,

hence by the exact sequence (13.5), this group acts unipotently on H’ (P}(sep, J1K),
as desired. O

Proposition 13.5. Assume that x has CGM. We have
dimEndy,, ;. (R}, ) = dimEndy, (Rj)
Proof. We first note that we have an inclusion
Vv
* * *
Moreover, we have a commutative triangle
Gal(K*P/K) — m1(Uy))
\ l
Gal(77 /1)

where « is surjective because K does not contain a finite extension of 7.
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The fundamental group 71(U;) acts on ”R; ® (R;)v and the Galois group
Gal(7/7) acts on Endy; (R;), and these actions are compatible with the inclusion
above.

By Lemma 13.4, the action of Gal(K*?/K) on R% ® (Rg)v is unipotent,
hence the action of Gal(i/7) on Endy;, (R;) is also unipotent since « is surjective.
But we know, by purity, that this action is semisimple, and it follows that the action
Gal(#/7) on Endy; (R%) is in fact trivial. In particular, we have

dim Endy,, (R:,XE) = dim Endy, (R;) . .

Finally, we can deduce:

Theorem 13.6. Let X be an irreducible component of X ; which intersects the char-
acteristic zero part. Assume that p is a prime sufficiently large with respect to
(k,1,X). Let Fy be a finite field of characteristic p, and let 1 be the geometric
generic point of qu. Suppose that X has dimension at least (3l + 1) /2. Let x be a

k-tuple of characters of F; with Property CGM. Then we have
dim Endy, (Kj7) = dimEndy; (R}).

Proof. Since the assertion is geometric, we may replace F, by a finite extension
that is a residue field of the base Og[1/N] of the “spread-out” perspective. The
equality then follows, when the characteristic of F, is sufficiently large in terms of
(k, 1, X), by combining Proposition 13.3, Lemma 13.2 and Proposition 13.5. O

14. Conclusion of the proof
We recall that we want to prove Theorem 7.7, which we restate for convenience:

Theorem 14.1. Assume that x has NIO. If p is large enough, depending only on
k, [, then forany b € A% (Fy)—W(F,), the natural morphism 0y is an isomorphism.
Furthermore, each irreducible component of Ry, has rank greater than one.

Proof. Since x has NIO, by Lemma 6.3 there exists a character &, possibly over a
finite extension F v of F;, such that x" = & x has CGM over F,v. Consider x as a
tuple of characters of quv. Then Kl 4 (x') = L& ® Klk y (x), and it follows that
the auxiliary sheaves IC and R* for x are obtained from those associated to x' by
twisting by a rank 1 sheaf L¢((r +b1) ... (r +b)(r + b1_+11) ...(r+by)™ Y. Then
the corresponding endomorphism rings (and the morphism 6p) are the same for x
and x’. Up to renaming the field, this implies that we may as well assume that x
has CGM over F,.
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Let b € A% (Fy) — W(F,) be a point. Let j be the minimum j such that
b € X;. Let X be an irreducible component of X; containing j. By taking ¢
sufficiently large, we may assume that X intersects the characteristic zero part. As
the set of irreducible components is finite and depends only on &, [, the minimum
value for g depends only on &, [.

If the dimension of X is less than (3] + 1)/2,then b€ X C W.

Otherwise, let n be the generic point of X. Then by Theorem 13.6, taking ¢
sufficiently large,

dim Endy; (KC7) = dim Endy; (R}).

Because VW, has dimension < [+ 1,anddimX > 3/ +1)/2 >+ 1asl > 1,nis
not contained in JV;. By Lemma 10.1, Z is finite étale over X; — X ;_1. Because
the b; are sections of Z, and b is a specialization of 1 inside X ; — X ;_;, any two of
the b; which are unequal over n must remain unequal over b, so b ¢ W .

So by Theorem 9.1, the natural map

91, : EndVb (]Cb) g EndUb (RZ)

is injective, hence by Proposition 10.3, 85 is an isomorphism.

Each irreducible component of R} is the image of an idempotent element of
Endy, (R}), which because 6 is an isomorphism is induced by an idempotent el-
ement of Endy, (K'p), and thus is equal to the weight one part of the cohomology
of the image of that idempotent element of Endy, (Kp). In other words, it is the
weight one part of the cohomology of an irreducible component of Xp. Hence by
Lemma 9.6, its rank is at least two. O

We finally can conclude the proof by showing how Theorem 14.1 allows us
to give the estimates for complete sums used in the proof of our main theorems.
In both cases, we use the fact (as remarked before the statements of Theorem 4.5
and 4.6) that we may assume that the function K is Klx(x; x,g). By Lemma 7.1
and the Grothendieck-Lefschetz trace formula, for any b ¢ VA the function R
is equal to minus the trace function of the sheaf R, if the additive character ¥ is
chosen so that ¥ (x) = e(x/q) forx € F,.

Proof of Theorem 4.5. We have defined V2 and WV, and they satisfy the codimen-
sion bounds stated in the theorem (see (7.2)).
We need to estimate the complete sums

Su®) =Y REHP =YY [Kr,sh)

rekF, seF; reFy

for b € FZ. Since Kl is bounded, we have £;7(b) < g for all b, which is the
trivial bound (4 .4).

If b € W(Fy) and b ¢ pA (Fy), then we obtain X;;(b) < g by estimating
the two terms in X;; separately, and using the Riemann Hypothesis together with
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the fact that the R-sheaf is mixed of weights < 1 on A2 — VA and the K-sheaf is
pure of weight 0. This proves (4.5).
Now assume that b ¢ W(F,). By Theorem 14.1, the Frobenius-equivariant
map
0p: Endy,(Kp) — Endy, (R})

is an isomorphism. In particular the Frobenius automorphism of F, has the same
trace on both spaces. The trace on Endy, (RZ) is, by the Grothendieck-Lefschetz

trace formula, equal to
> IR, B+ 0(47),

reky

where the error term arises from the contribution of the H!-cohomology and of the
weight < 1 part of R. Similarly, the trace of Frobenius on Endy, (K) is equal to

Z Z K (s, sb)* + 0(¢*/?),

squX reFy

where the error term arises from the contribution of the H!-cohomology. Compar-
ing, we obtain (4.6).

It remains to observe that, in all these estimates, the implied constant depends
only on the sum of the Betti numbers of the relevant sheaves. These are estimated
in the usual way by reducing to expressions as exponential sums and applying the
Betti number bounds of Bombieri-Katz (see [19, Theorem 12] and [21, Proposition
4.24] for the analogue argument in our previous paper). O

Proof of Theorem 4.6. We recall that we need to estimate

Z(b) = Y R(. b)

reky

(see (4.10)). Since Kl is bounded, we have Xj(b) <« q2 for all b, which is the
trivial bound (4.12).

If b€ W(F,)and b ¢ VA(Fq), then we obtain X;(b) < ¢>/* because the
R-sheaf is of weights < 1 on A% — V2. This proves (4.13).

Finally, if b ¢ W(F,), then we obtain X;(b) <« ¢ straightforwardly from
Deligne’s Riemann Hypothesis, since R* is of weight 1 and has no geometrically
trivial irreducible component (by Theorem 14.1 it does not even have rank 1 com-
ponents), proving (4.14).

Again, the implied constants in these estimates depend only on the sum of the
Betti numbers of the relevant sheaves, and are estimated by reducing to expressions

as exponential sums and applying the Betti number bounds of Bombieri-Katz [19].
O
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