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Stratification and averaging for exponential sums:
bilinear forms with generalized Kloosterman sums

EMMANUEL KOWALSKI, PHILIPPE MICHEL AND WILL SAWIN

Abstract. We introduce a new comparison principle for exponential sums over
finite fields in order to study “sum-product” sheaves that arise in the study of gen-
eral bilinear forms with coefficients given by trace functions modulo a prime q.
When these functions are hyper-Kloosterman sums with characters, we succeed
in establishing cases of this principle that lead to non-trivial bounds below the
Pólya-Vinogradov range. This property is proved by a subtle interplay between
étale cohomology in its algebraic and diophantine incarnations. We give a first
application of our bilinear estimates concerning the first moment of a family of
L-functions of degree 3.
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1. Introduction

1.1. Presentation of the results

Let q > 1 be an integer and let K (·; q) be a complex-valued q-periodic arithmetic
function. A recurrent problem in analytic number theory is to evaluate how such
functions correlate with other natural arithmetic functions f (n), where f could
be the characteristic function of an interval, or that of the primes, or the Fourier
coefficients of some automorphic form. When facing such problems, one is often
led to the problem of bounding non-trivially some bilinear forms

B(K ,↵,�) =
XX

m6M,n6N
↵m�nK (mn; q),

where the ranges of the variables M, N > 1 usually depend on q, and ↵ =
(↵m)m6M , � = (�n)n6N are complex numbers which, depending on the initial
problem, are quite arbitrary. One of the main objectives is to improve on the trivial
bound

kKk1k↵k2k�k2(MN )1/2

for ranges of M and N that are as small as possible compared to q; indeed, this
uniformity is often more important than the strength of the saving compared to the
trivial bound.

A natural benchmark is the Pólya-Vinogradov method, which often provides
non-trivial bounds as long as M, N > q1/2. Indeed, obtaining a result below that
range is usually extremely challenging. When the modulus q is composite, a num-
ber of techniques exploiting the possibility of factoring q (starting with the Chinese
Remainder Theorem) become available, and results exist in fair generality.

In this paper, we will only consider the case where q is a prime, and when K
is a trace function (see [7] for a background survey).

The landmark result in this setting is the work of Burgess [3], which provides
a non-trivial bound for the sum X

n6N
�(n)

when � is a non-trivial Dirichlet character modulo q and N > q3/8+⌘, for any
⌘ > 0. This is therefore well below Pólya-Vinogradov range. The ideas of Burgess
(especially the “+ab shifting trick”) combine successfully the multiplicativity of �
and the (almost) invariance of intervals by additive translations.

Another twist of Burgess’s method was given by the works of Karatsuba and
Vinogradov, Friedlander-Iwaniec [12] and subsequently Fouvry-Michel [11] to
bound non-trivially the bilinear sums B(K ,↵,�) for various choices of functions
K and ranges M, N shorter than q1/2. In particular, using some version of the
Sato-Tate equidistribution laws due to Katz [17], Fouvry and Michel considered

K (x; q) = e
✓
xk + ax

q

◆
, k 2 Z� {0, 1, 2}, a 2 F⇥q , (x, q) = 1,
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and proved that for any � > 0, there exists ⌘ > 0 such that
XX

m6M,n6N
↵m�nK (mn; q)⌧ k↵k2k�k2(MN )1/2�⌘ (1.1)

as long as
M, N > q� and MN > q3/4+�. (1.2)

The condition MN > q3/4+� is believed to be a barrier in this setting analogous to
the condition N > q1/4+� in the Burgess bound for short character sums.

In our previous paper [21], motivated by the study of moments of L-functions
(especially in our papers with Blomer, Milićević and Fouvry [1, 2]), we obtained
bounds of type (1.1) when K (·; q) is a hyper-Kloosterman sum, namely

Klk(x; q) =
1

q
k�1
2

X

y1,··· ,yk2F⇥q
y1···yk=x

e
✓
y1 + · · · + yk

q

◆
,

where k > 2 is some fixed integer. More precisely, we proved that (1.1) holds as
long as

M, N > q� and MN > q7/8+�

for some � > 0. The argument was delicate and quite difficult.
In this second paper, we introduce a new approach that is both more robust

and more powerful. The main complete exponential sum that needs to be bounded
in this general setting is a difference of two exponential sums, which in previous
work was bounded by estimating separately the main terms on both sides. Here, we
show that the two underlying cohomology groups are equal, hence the main terms
cancel, without explicitly calculating them. To establish the desired cohomological
comparison, we define a stratification of the parameter space, and show using van-
ishing cycles that if the result fails at any point of one of the strata, it fails on the
generic point. Using a variant of Katz’s diophantine criterion of irreducibility, this
implies that the original exponential sum estimate fails on average over the stratum.
We check that the strata are defined by equations of a specific type, which makes
the averaged exponential sum estimate amenable to classical analytic techniques,
specifically separation of variables.
Remark 1.1. As the referee pointed out to us, a similar stratification strategy is
present in the paper [26] of J. Xu on multiplicative character sums, where the key
applications are related to multi-variable Burgess estimates. The main differences
are that in Xu’s method the stratification is more abstract, whereas for us it is ex-
plicit, and Xu’s method relies on the higher moments of the exponential sums, while
we use only the first moment.
Our main application in this paper is the proof of the estimate (1.1) in the full
range (1.2) for generalized hyper-Kloosterman sums with character twists, whose
definition we now recall. Let k > 1 be an integer, and let � = (�1, . . . ,�k) be a
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tuple of k Dirichlet characters modulo q, each of which might be trivial. The (k �
1)-dimensional generalized Kloosterman sums associated to � are the exponential
sums defined for x 2 F⇥q by

Klk(x;�, q) =
1

q
k�1
2

X

y1,··· ,yk2F⇥q
y1···yk=x

�1(y1) · · ·�k(yk)e
✓
y1 + · · · + yk

q

◆
.

The hyper-Kloosterman sums (which correspond to the case �i = 1) were intro-
duced by Deligne [25], and these generalisations were introduced and studied by
Katz in [16, Chapter 4]. As an application of the Riemann Hypothesis over finite
fields, Deligne and Katz established the highly non-trivial pointwise bounds

|Klk(x;�, q)| 6 k.

The finer properties of these sums were studied in great depth by Katz in [16]
and [17]. Among other things, Katz proved equidistribution statements that de-
scribe precisely the distribution of generalized Kloosterman sums inside C, at least
for most possible choices of � .

A special case of our main result, Theorem 4.1, is the following:

Theorem 1.2. Assume that � has Property NIO of Definition 2.1, for instance all
�i are trivial. For any � > 0 there exists ⌘ > 0 such that for any integer k > 2, any
prime number q, and any integers M, N > 1 such that

M, N > q�, MN > q3/4+�

we have
XX

m6M,n6N
↵m�nKlk(amn;�, q)⌧ k↵k2k�k2(MN )1/2�⌘

for any a 2 F⇥q and for arbitrary families of complex numbers ↵ = (↵m)m6M and
� = (�n)n6N . The implied constant depends only on � and k.

Property NIO (short for “Not Induced or Orthogonal”) is an elementary combinato-
rial property that we define below in Section 2; it is easy to check, and it is “generi-
cally” satisfied in some sense. For instance, the case � = (1, . . . , 1) corresponding
to hyper-Kloosterman sums themselves has NIO, and so does (1, . . . , 1,�) if k is
odd.

The exponent 3/4 = 2⇥ 3/8 seem to be a recurring barrier: it occurs in clas-
sical subconvexity estimates for L-functions, and more recently (see [6, 8]) when
dealing with sums of the shape

X

p6N
p prime

K (p; q),
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where p ranges over prime numbers, or
X

n6N
� f (n)K (n; q),

where K is a general trace function modulo q and (� f (n))n6N are the Hecke eigen-
values of a fixed Hecke eigenform f (cuspidal or Eisenstein).

For special bilinear forms, where one of the variables is smooth, i.e., for

B(K ,↵, 1N ) =
XX

m6M,n6N
↵mK (mn; q),

the barrier occurs at a shorter range, and we again are able to prove an estimate that
reaches this barrier.

A special case of Theorem 4.3 is:
Theorem 1.3. Assume that � has NIO. For any � > 0 there exists ⌘ > 0 such that
for k > 2 an integer, q a prime and M, N > 1 some integers satisfying

M, N > q�, MN2 > q1+�

we have XX

m6M,n6N
↵mKlk(amn;�, q)⌧ k↵k2(MN2)1/2�⌘

for any a 2 F⇥q and for any tuple of complex numbers ↵ = (↵m)m6M , where the
implicit constant depends on � and k.
In particular, for M = N , we obtain a non-trivial bound as long as

M = N > q1/3+�

for some � > 0. If we denote by d2(n) the classical divisor function, we deduce the
following result:
Corollary 1.4. Assume that � has NIO. For any � > 0, there exists ⌘ > 0 such
that for any integer k > 2, any prime number q, and any N > q2/3+� , we have

X

n6N
d2(n)Klk(an;�, q)⌧ Nq�⌘,

for any a 2 F⇥q where the implicit constant depends on � and k.
It is of considerable interest to generalize results like Theorem 1.2 to other trace
functions K modulo q. We believe that the methods in this paper could be ap-
plicable when K satisfies suitable big monodromy assumptions, and has the fol-
lowing property: K belongs to a family Ka parameterized by non-trivial additive
characters x 7! e(ax/p) of Fq , and this family satisfies a relation of the type
Kaµ(x) = K (a⌫x) for some fixed non-zero integers µ and ⌫. For instance, this
holds for the generalized Kloosterman sums with µ = 1, ⌫ = k when defining

Ka(x) =
1

q
k�1
2

X

y1,··· ,yk2F⇥q
y1···yk=x

�1(y1) · · ·�k(yk)e
✓
a(y1 + · · · + yk)

q

◆
.
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1.2. Applications to moments of L-functions

As with our previous paper [21], Theorems 1.2 and 1.3 have applications to the
evaluation of moments of L-functions indexed by Dirichlet characters modulo q.
As a simple illustration, we will prove in Section 3 the following result, which
generalizes some recent work of Zacharias [28]:

Theorem 1.5. Let f be a primitive holomorphic cusp form of level 1. For q prime,
let ⇠ be a non-trivial Dirichlet character modulo q. There exist an absolute constant
� > 0 such that

1
q � 1

X

� (mod q)

L( f ⌦ �, 1/2)L(⇠�, 1/2) = 1+ O f
�
q��

�
.

Remark 1.6. Zacharias established this asymptotic for ⇠ = 1 using amongst other
ingredients the bounds from [21] for K (x) = Kl3(x; (1, 1, 1), q); he evaluated
more generally a mollified version of this average, enabling him to establish that,
for q large, there is a positive proportion of � (mod q) such that L( f ⌦�, 1/2) and
L(�, 1/2) are both non-vanishing. Most likely a similar result may be established
in our case.
As in [1, 2, 21], we also expect that our results will prove useful to estimate other
averages of certain L-functions of degree 3 and 4 indexed by Dirichlet characters.
For instance, we may consider:

• The twisted first moment

1
q � 1

X

� (mod q)

L( f ⌦ �, 1/2)L(⇠�, 1/2)
Y

i
"
ki
⇠i�

,

where ⇠ = (⇠i )i a tuple of characters of modulus q (possibly trivial) and k =
(ki )i is a family of integers;

• The shifted second moment

1
q � 1

X

� (mod q)

L( f ⌦ �, 1/2)L( f ⌦ ⇠�, 1/2).

1.3. Principle of the stratification and averaging method

We denote K (x) = Klk(ax;�, q) for a fixed k-tuple � with Property NIO and a
fixed a 2 F⇥q .

As in our previous work (and [11, 12]), the proof starts with an application of
the +ab-shifting trick of Karatsuba and Vinogradov. Let us recall that the shifting
trick builds on the almost invariance of an interval under sufficiently small trans-
lations. The interval to be shifted here is that of the n variable (either directly for
Theorem 1.3 or after an application of Cauchy’s inequality for Theorem 1.2) and the
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shift is by product +ab with (a, b) 2 [A, 2A[⇥[B, 2B[ for A, B suitable parame-
ters (such that AB = N ). As K (mn; q) depends only on the congruence class of
mn (mod q) the replacement of n $ n + ab leads to the following transformations

mn (mod q)$ m(n + ab) = am(an + b) = s(r + b) (mod q),

(m1n,m2n) (mod q)$ (am1(an + b), am2(an + b))
= (s1(r + b), s2(r + b)) (mod q),

with (r, s), (r, s1, s2) taking values in Fq ⇥ F⇥q or Fq ⇥ (F⇥q
2 � 1(F⇥q

2
)). Under

suitable assumptions on A,M, N one can then show that the above maps are es-
sentially injective (i.e., have fibers bounded in size by qo(1)). However, these maps
are far from being surjective, so performing such a change of variable will result
in a loss. This can be tamed by an application of the Hölder inequality with a suf-
ficiently large exponent, which we denote by 2l in the sequel. This process leads
then to the problem of bounding sums of the shape

X

b2B

�
�6I (K , b)

�
�,

X

b2B

�
�6I I (K , b)

�
�,

where B denotes the set of 2l-uples of integers b = (b1, · · · , b2l) 2 [B, 2B[2l and

6I (K , b) =
X

r2Fq

X

s2F⇥q

K(sr, sb),

6I I (K , b) =
X

r2Fq

XX

s1,s22F⇥q
s1 6=s2

K(s1r, s1b)K(s2r, s2b),

where

K(r, b) =
lY

i=1
K (r + bi )K (r + bi+l). (1.3)

The goal is to give individual bounds for sums6I (K , b) and6I I (K ,b)with square-
root cancellation, namely we wish to prove that

6I (K , b)⌧ q, 6I I (K , b)⌧ q3/2.

A key fact is that these bounds do not always hold, but it will be enough to prove
them outside a sufficiently small subset Bdiag of “diagonal” tuples b. This subset
will be the set of Fq -points of a proper algebraic subvariety V diag ⇢ A2lFq . In fact,
it is crucial (to avoid the loss involved in Hölder’s inequality) to prove the required
estimates outside of a variety V diag with large codimension, and we will do this
with

codim
�
V diag

�
>
l � 1
2

. (1.4)
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The outcome is that by taking l very large, we obtain non-trivial estimates of
B(K ,↵,�) and B(K ,↵, 1N ) in the ranges defined by

MN > q3/4+� and MN2 > q2/3+�

for any � > 0.
We now sketch the proof in the case of general bilinear forms (the special

bilinear forms are easier). Setting

R(r, b) =
X

s2F⇥q

K(sr, sb),

we observe that

6I I (K , b) =
X

r2Fq
|R(r, b)|2 �

X

s2F⇥q

X

r2Fq
|K(sr, sb)|2.

This is the difference of two sums of positive terms, which therefore individually
will have main terms, and we need these main terms to compensate exactly for
b /2 V diag. Our argument for this in [21] relies on separate evaluations of both sums
to witness the coincidence of the main terms. But one can check that this evaluation
only holds outside of a codimension 1 subvariety, which is far from (1.4) except in
the case l = 2.

In this paper, we compare directly the two terms in the difference. This com-
parison is not a combinatorial or analytic rearrangement of terms, but is a cohomo-
logical comparison using the ideas of `-adic cohomology to interpret exponential
sums. Using this formalism, we interpret the functions

(r, b)! K(r, b), R(r, b)

as trace functions of `-adic sheavesK andR on A⇥A2l , which are pointwise pure
of weight 0 and mixed of weight 6 1 respectively. The functions

(r, b)! |K(r, b)|2, |R(r, b)|2

are the trace functions of the endomorphisms sheaves End(K) and End(R). By
means of the Grothendieck-Lefschetz trace formula and of Deligne’s most general
form of the Riemann Hypothesis over finite fields [4], the desired bound

X

r2Fq
|R(r, b)|2 �

X

s2F⇥q

X

r2Fq
|K(sr, sb)|2 ⌧ q3/2

for a given b can be interpreted as stating that the specialized sheaves Kb and Rb
have decompositions into geometrically irreducible components whose multiplici-
ties precisely match.
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This interpretation relies on the relationship between Kb and Rb. As Rb is
obtained from applying a cohomology functor to Kb, each irreducible component
% of Kb defines a summand e% of Rb. We check explicitly that these summands
e% are nontrivial, which implies that the exponential sums match if and only if all
the summandse% are themselves irreducible, and are pairwise non-isomorphic as %
varies.

The sheafRb is a sheaf on the affine line, lisse away from a finite set of singu-
lar points that vary depending on b. Using Deligne’s semicontinuity theorem, and
assuming that the local monodromy of Rb is tame, we can show that the decom-
position into irreducible components of Rb is constant on any set of parameters b
over which this varying finite set Sb of singular points does not itself develop singu-
larities (i.e., over which the size of Sb is constant). The tameness condition can be
verified for large primes (which is sufficient for us) by expressing Rb as the char-
acteristic p fiber of a sheaf defined in characteristic zero. This reduces the problem
to the generic points of the strata of the stratification of the parameter space by the
number of singular points in Sb.

To get a handle on this stratification, we first calculate the set of singular points.
By an explicit inductive argument, we show how the strata can be expressed by
equations in the coefficients bi and auxiliary variables; these equations split into
sums of different terms involving different subsets of the bi ’s. We can then estimate
the average of the complete sums 6I I (K , b) over a single stratum using only es-
timates for one-variable exponential sums, as long as the number of equations and
auxiliary variables is not too large (which means that we must keep control of these
numbers in the inductive argument). From this average estimate and the geometric
interpretation, we deduce that the sheavesKb andRb have the same decomposition
into irreducibles when b belongs to a stratum of sufficiently large dimension. This
proves the desired result for all b except those in low-dimensional strata, which
we simply consider as part of “diagonal” subset. It is therefore crucial that our
induction is efficient enough to get a good bound on the codimension of this subset.

Stratifications where the validity of a desired estimate on a stratum only de-
pends on its validity at the generic point exist for arbitrary families of complete
exponential sums, arising from the stratification of a constructible `-adic sheaf into
lisse sheaves. They can often be computed by vanishing cycles methods, such
as Deligne’s semicontinuity theorem. We expect that proving estimates for indi-
vidual strata by passing to the average and applying elementary analytic methods
(which are known to perform very well when the number of variables to average
over is large enough) will be a useful strategy for many families of exponential
sums.
Remark 1.7. (1) It would be reasonable to expect that the correct codimension is

codim
�
V diag

�
> l + o(l)

as l ! +1, which would indeed be best possible (it is easy to see that the codi-
mension is 6 l). A lower bound of this quality was established in [11] in the case
K (x) = e((xk + a)/q) already mentioned. Although the bound (1.4) only goes
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half of the way to this expectation, it is nevertheless sufficient for our purpose, and
it seems that even the full lower bound would not help in improving the exponents
3/4 and 2/3 in Theorems 1.2 and 1.3.

(2) Readers who have some familiarity with either [11] or [21] will have no-
ticed that we will make a compromise in our argument: the new variables s and
(s1, s2) belong to the subsets [A, 2AM] and [A, 2AM]2 � 1([A, 2AM]2) of the
larger sets F⇥q or F⇥q

2�1(F⇥q
2
), so that we lose something by “forgetting” this fact

by positivity. It is certainly possible to compensate for this loss using the comple-
tion method, introducing additional twists by additive characters in the s-variable,
and handling them by arguments similar to those of [21, Section 4.5]. However,
when l is very large, the improvement in the final bounds is very small (because
of (1.4)), and more importantly the final limiting exponents 3/4 and 2/3 are not
improved. So we have chosen to avoid the completion step, in order to simplify
an already complex argument. It should be noted however that, for small values of
l, the completion step is worth pursuing, and that is was crucial in [21] to obtain
non-trivial bounds for l = 2 (which was the only case that could be handled in [21],
because, as noted earlier, the diagonal variety in that paper was of codimension 1).

Notation

For any prime number `, we fix an isomorphism ◆ : Q` ! C. Let q be a prime
number. Given an algebraic variety XFq, a prime ` 6= q and a constructibleQ`-sheaf
F on X , we denote by tF : X (Fq) �! C its trace function, defined by

tF (x) = ◆
⇣
Tr
�
Frx,Fq | Fx

�⌘
,

where Fx denotes the stalk of F at x . More generally, for any finite extension
Fqd/Fq , we denote by tF (·;Fqd ) the trace function of F over Fqd , namely

tF
⇣
x;Fqd

�
= ◆
⇣
Tr
�
Frx,Fqd | Fx

�⌘
.

An `-adic sheaf will aways means a Q`-sheaf. For standard facts in `-adic coho-
mology (such as proper base change, cohomological dimension, etc), we refer to
the books of Fu [13] and Milne [23], and to the notes of Deligne [25].

We will usually omit writing down ◆. In any expression where some element z
of Q` has to be interpreted as a complex number, we mean to consider ◆(z).

We denote by F_ the dual of a constructible sheaf F ; if F is a middle-
extension sheaf, we will use the same notation for the middle-extension dual.

Let  (respectively �) be a non-trivial additive (respectively multiplicative)
character of Fq . We denote by L (respectively L� ) the associated Artin-Schreier
(respectively Kummer) sheaf on A1Fq (respectively on (Gm)Fq ), as well (by abuse
of notation) as their middle extension to P1Fq . The trace functions of the latter are
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given by

t 
⇣
x;Fqd

⌘
=  

⇣
TrFqd /Fq

�
x
�⌘

if x 2 Fqd , t 
⇣
1;Fqd

⌘
= 0,

t�
⇣
x;Fqd

⌘
= �

⇣
NrFqd /Fq

�
x
�⌘

if x 2 F⇥qd , t� (0;Fqd ) = t�
⇣
1;Fqd

⌘
= 0.

For the trivial additive or multiplicative character, the trace function of the middle-
extension is the constant function 1.

Given � 2 Fqd , we denote by L � the Artin-Schreier sheaf of the character of
Fqd defined by x 7!  (TrFqd /Fq (�x)).

If XFq is an algebraic variety,  (respectively �) is an `-adic additive character
of Fq (respectively `-adic multiplicative character) and f : X �! A1 (respectively
g : X �! Gm) is a morphism, we denote by either L ( f ) or L ( f ) (respectively
by L�(g) or L� (g)) the pullback f ⇤L of the Artin-Schreier sheaf associated to
 (respectively the pullback g⇤L� of the Kummer sheaf). These are lisse sheaves
on X with trace functions x 7!  ( f (x)) and x 7! �(g(x)), respectively. The
meaning of the notation L ( f ), which we use when putting f as a subscript would
be typographically unwieldy, will always be unambiguous, and no confusion with
Tate twists will arise.

Given a variety X/Fq , an integer k > 1 and a function c on X , we denote
by L (cs1/k) the sheaf on X ⇥ A1 (with coordinates (x, s)) given by ↵⇤L (c(x)t),
where ↵ is the covering map (x, s, t) 7! (x, s) on the k-fold cover

n
(x, s, t) 2 X ⇥ A1 ⇥ A1 | tk = s

o
.

Given a field extension L/Fp, and elements ↵ 2 L⇥ and � 2 L , we denote by [⇥↵]
the scaling map x 7! ↵x on A1L , and by [+�] the additive translation x 7! x + �.
For a sheaf F , we denote by [⇥↵]⇤F (respectively [+↵]⇤F ) the respective pull-
back operation.

We will usually not indicate base points in étale fundamental groups; whenever
this occurs, it will be clear that the properties under consideration are independent
of the choice of a base point.
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We thank É. Fouvry and I. Shparlinski for comments, and the referee for useful
remarks, especially for the reference to the paper [26] of J. Xu.
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2. Preliminaries

We begin by defining Property NIO, and a useful variant called CGM (for “Con-
nected Geometric Monodromy”). These are motivated by results of Katz (see [17,
Corollary 8.9.2, Theorem 8.8.1-8.8.2]).

Definition 2.1. Let A be a finite cyclic group and � = (�1, . . . ,�k) a tuple of
characters of A. Let 3 = �1 · · ·�k .

(1) The tuple � is Kummer-induced if there exists a divisor d of k, d 6= 1, and a
tuple (⇠1, . . . , ⇠k/d) of characters of A such that the �’s are all the characters
with �d = ⇠ j for some j , with multiplicity;

(2) The tuple � is self-dual if there is a character ⇠ such that the set of characters
� 2 � , with multiplicity, is stable under � 7! ⇠��1. The character ⇠ is called
a “dualizing character”;

(3) A self-dual tuple � is alternating if k is even and 3 = ⇠ k/2, and otherwise, it
is symmetric;

(4) A tuple � has Property NIO if it is not Kummer-induced and, if k is even, if it
is not self-dual symmetric;

(5) A tuple � has Property CGM if it is not Kummer-induced, and �1 · · ·�k = 1,
and one of the following conditions holds:

• k is odd;
• � is not self-dual;
• k is even, � is self-dual and alternating, and the dualizing character ⇠ is
trivial.

Example 2.2. We consider Dirichlet characters modulo q in these examples.
(1) Consider the case k = 2 and q odd, � = (�1,�2). Denote by �(2) the

non-trivial real character of F⇥q . Then � is:

• Kummer-induced if and only if �2 = �1�(2);
• If not Kummer-induced, always self-dual alternating, taking ⇠ = �1�2 as dual-
izing character.

In particular, for � = (1,�2), the alternating case is �2 = 1, corresponding to the
“classical” Kloosterman sum, and the non self-dual case is �22 6= 1. The Kummer-
induced tuple � = (1,�(2)) corresponds to Salié sums.

(2) If k is odd, then � has NIO if and only if it is not Kummer-induced. In
particular, this is the case if �1 = . . . = �k�1 = 1.

(3) If �1 = · · · = �k = 1, then � has NIO.

In the next section, we will need the following useful lemma which bounds the
number of integral points in a box that satisfy a system of polynomial equations
modulo q. We thank the referee for giving us a convenient reference.
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Lemma 2.3. Let k > 1 be an integer and let A > 0. Let XZ ⇢ AkZ be an algebraic
variety of dimension d > 0 given by the vanishing of 6 A polynomials of degree
6 A. Let p be a prime number and 0 6 B < p/2 an integer. Then
�
�
�
n
x = (x1, . . . , xk) 2 Fkp | x 2 X

�
Fp
�
and B 6 xi 6 2B for 1 6 i 6 k

o��
�⌧ Bd

where the implied constant depends only on k and A, and the notation B 6 xi 6 2B
means that the unique integer between 1 and p�1 congruent to xi modulo p belongs
to the interval [B, 2B].

See [26, Lemma 1.7] for a proof.

3. An application to moments of L-functions

In this section, we will prove Theorem 1.5, which we recall is a variation of a recent
result of Zacharias [28].

Let f be a primitive cusp form of level 1, trivial nebentypus and weight k f ,
with Hecke eigenvalues � f (n). For Dirichlet characters � and ⇠ modulo q, we
consider the L-function

L(( f � ⇠)⌦ �, s) = L( f ⌦ �, s)L(�⇠, s)

of degree 3. Note that for Re(s) > 1, we have the Dirichlet series expansion

L(( f � ⇠)⌦ �, s) =
X

n>1
�(n)

�
� f ? ⇠

�
(n)n�s .

We wish to evaluate the average

M =
1

q � 1
X

� (mod q)

L(( f � ⇠)⌦ �, 1/2),

proving thatM = 1+ O(q�↵) for some ↵ > 0.
The proof is very similar to [28, Section 6.2], which corresponds to the case

⇠ = 1, so we will only sketch certain steps.
We assume for simplicity that ⇠ is even (i.e., ⇠(�1) = 1), and we will only

evaluate the even moment

M+ =
2

q � 1
X+

� (mod q)

L(( f � ⇠)⌦ �, 1/2),

where
P+

restricts the sum to even primitive characters modulo q. We will prove
thatM+ = 1

2 + O(q�↵) for some ↵ > 0. The sum over odd characters satisfies
the same asymptotics, hence this implies Theorem 1.5.
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Define 0R(s)=⇡�s/20(s/2) and let L1(s)=L1( f, s)L1(�⇠, s), where

L1( f, s) = 0R

✓
s +

k � 1
2

◆
0R

✓
s +

k + 1
2

◆
, L1(�⇠, s) = 0R(s),

are the archimedean L-factors of L( f, s) and L(�⇠, s) respectively. Further, let

"(( f � ⇠)⌦ �) = "( f )"2�"�⇠ ,

where "⌘ denotes the normalized Gauss sum of a Dirichlet character. Define then
the completed L-function

3(( f � ⇠)⌦ �, s) = q3s/2L1(s)L(( f � ⇠)⌦ �, s).

For ⇠ and � even, we then have the functional equation

3(( f � ⇠)⌦ �, s) = "(( f � ⇠)⌦ �)3( f ⌦ � � �⇠ , 1� s).

Let 0 < ↵ < 1/4 be a parameter to be fixed later. For � even, non-trivial and
not equal to ⇠�1, we apply the approximate functional equation to the L-function
L(( f � ⇠) ⌦ �, s), in an unbalanced form ([15, Theorem 5.3] with q replaced by
the conductor q3 and X = q1/2�2↵). After adding the contribution of the character
⇠�1, which is⌧ q�1/5+" for any " > 0, this givesM+ =M1 +M2, where

M1 =
2

q � 1
X+

� (mod q)

X

n>1

�(n)(� f ? ⇠)(n)
n1/2

V
✓

n
q2�2↵

◆
,

M2 =
2

q � 1
X+

� (mod q)

"(( f � ⇠)⌦ �)
X

n>1

�(n)(� f ? ⇠)(n)
n1/2

V
✓

n
q1+2↵

◆
,

where the function V is defined by

V(y) =
1
2i⇡

Z

(1)

L1
�1
2 + s

�

L1
�1
2
� G(s)y�s

ds
s

, G(s) = exp
�
s2
�
,

for y > 0. Shifting the s-contour to the right if y > 1 or to Re(s) = �1/2 if y 6 1,
we deduce that

yiV(i)(y)⌧A,i, f (1+ y)�A

for any A > 0 and i > 0, and

V(y) = 1+ O(y1/2) for y 6 1.

It follows from the first of these bounds that, for any  > 0, the contribution to both
sums of the integers n > q3/2+ is⌧A, f, q�A for any A > 0.
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We first boundM1. We add toM1 the contribution of the trivial character, up
to an error term bounded by O(q�1/5), and perform the summation over the even
characters � . We obtain

M1 =
X

n⌘±1 (mod q)

(� f ? ⇠)(n)
n1/2

V
✓

n
q2�2↵

◆
+ O

�
q�1/5

�

= V
✓

1
q2�2↵

◆
+ O

�
q�↵+"� = 1+ O

�
q�↵+"�,

for any " > 0, where the first term V(q�2+2↵) is the contribution of the trivial
solution n = 1 of the congruence n ⌘ ±1 (mod q).

Now we considerM2. We add toM2 the contribution of the trivial character,
up to an error of size⌧ q"+

1
2+↵�1 ⌧ q"+↵�1/2, for any " > 0. We then perform

the summation over � even. We have

1
q � 1

X+

� (mod q)

"(( f � ⇠)⌦ �)�(n) =
"( f )
q � 1

X+

� (mod q)

"2�"�⇠�(n)

=
"( f )
q1/2

(Kl3(n; ⇠, q) + Kl3(�n; ⇠, q)) ,

where we abbreviate

Kl3(±n; ⇠, q) = Kl3(±n; (1, 1, ⇠), q).

Hence we have

M2=
"( f )
q1/2

X

n

(� f ? ⇠)(n)
n1/2

(Kl3(n; ⇠, q)+Kl3(�n; ⇠, q))V
✓

n
q1+2↵

◆
+O

�
q�1/5

�
.

We open the Dirichlet convolution

(� f ? ⇠)(n) =
X

ab=n
� f (a)⇠(b).

By standard techniques (dyadic subdivisions, inverse Mellin transform to separate
the variables), we establish thatM2 is, up to a factor⌧ q" for any " > 0, bounded
by the sum of⌧ (log q)2 bilinear sums of the type

M2(M, N ) =
1

(qMN )1/2

X

m,n
� f (m)⇠(n)Kl3(amn; ⇠, q)V

⇣m
M

⌘
W
⇣ n
N

⌘
,

where
1 6 MN 6 q1+2↵,
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a = 1 or �1, and V and W are smooth functions, compactly supported in [1, 2],
such that

xi V i (x), xiW i (x)⌧ f," qi"

for any " > 0 and i > 0.
We set M = qµ and N = q⌫ . The trivial bound is

M2(M, N )⌧ q"
✓
MN
q

◆1/2
= q(µ+⌫)/2�1/2+"

for any " > 0, which is⌧ q�↵+" if µ + ⌫ 6 1� 2↵. Now assume that

1� 2↵ 6 µ + ⌫ 6 1+ 2↵.

Estimating the sum over n by the Pólya-Vinogradov technique (completion), sum-
ming trivially over the m variable, we obtain

M2(M, N )⌧ q"
✓
M
N

◆1/2
⌧ q1/2�⌫+↵+"

for any " > 0. This bound is⌧ q�↵+" if ⌫ > 1
2 + 2↵. We then assume that

⌫ 6 1
2 + 2↵.

If ⌫ is small, so that µ is large, we apply [8, Theorem 1.2] to the sum over m,
summing trivially over n. We get

M2(M, N )⌧ Nq�1/8+↵+" = q�1/8+⌫+↵+"

for any " > 0. Again, this is⌧ q�↵+" provided ⌫ 6 1
8 � 2↵. Now assume that

1
8 � 2↵ 6 ⌫ 6 1

2 + 2↵.

Then 1
2 � 4↵ 6 µ 6 7

8 + 4↵. The general bilinear form estimate in [6, Theorem
1.17] gives

M2(M, N )⌧ q"+↵ min
�
N�1 + M�1q1/2,M�1 + N�1q1/2

�1/2
,

which is⌧ q�↵+" provided ↵ 6 1/32 and

max(µ, ⌫) > 1
2 + 2↵.

We finally consider the case when ↵ 6 1/32 and

1
2 � 4↵ 6 µ, ⌫ 6 1

2 + 2↵.
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In this situation, we can then apply Theorem 1.2 for the triple � = (1, 1, ⇠), which
has Property NIO for any ⇠ by Example 2.2 (2). We obtain the bound

M2(M, N )⌧ q"
✓
MN
q

◆1/2
(MN )�⌘ ⌧ q2↵+"(MN )�⌘ ⌧ q2↵�3⌘/4+"

for any " > 0, where ⌘ > 0 is the saving exponent in Theorem 1.2 when the
parameter � there is � = 1

4 � 8↵. Hence, for ↵ > 0 fixed and small enough, we
obtain

M2(M, N )⌧ q�⌘
0+"

for some fixed ⌘0 > 0 and any " > 0, where the implied constant depends on "
and f .

4. Reduction to complete exponential sums

In this section, we will state the general forms of Theorems 1.2 and 1.3, and reduce
their proofs to certain bounds for families of exponential sums over finite fields. In
fact, we begin with slightly more general bilinear sums.

Let q be a prime number, and let K : Fq ! C be any function. Let M, N be
integers such that 1 6 M, N 6 q � 1. LetM be a subset of the positive integers
m 6 q � 1 of cardinality M . We set M+ = maxm2Mm. Let finally

N = {n | 1 6 n < N }.

Given tuples of complex numbers ↵ = (↵m)m2M and � = (�n)n2N , we set

B(K ,↵,�) =
XX

m2M, n2N
↵m�nK (mn).

We will prove the following:

Theorem 4.1. Fix an integer k > 2. Let q be a prime and let a 2 F⇥q . Let � be
a k-tuple of Dirichlet characters modulo q. Suppose that � has Property NIO, and
define K (x) = Klk(ax;�, q). With notations as above, for any integer l > 2 and
any " > 0, we have

B(K ,↵,�)⌧ q"k↵k2k�k2(MN )1/2

0

@ 1
M

+

 
q
3
4+

3
4l

MN

! 1
l
1

A

1/2

,

where the implied constant depends only on (k, l, "), provided one of the following
two conditions holds:

q
3
2l 6 N <

1
2
q
1
2�

3
4l ,

q
3
2l 6 N , NM+ <

1
2
q1�

3
2l .
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Remark 4.2. This bound is non-trivial only for l large enough, precisely for l >
9. As we will explain, this limitation results from our simplifying choice of not
applying the completion method to detect that an auxiliary variable belongs to some
interval in Fq .
In the special case of “type I” sums, we obtain:

Theorem 4.3. With the same notation and assumption as in Theorem 4.1, espe-
cially assuming that � has NIO, and with the additional condition that �n = 1 for
n 2 N , for any integer l > 1 and any " > 0, we have

B(K ,↵, 1)⌧ q"k↵k1�
1
l

1 k↵k
1
l
2 M

1
2l N

 
q1+

1
l

MN2

!1/2l

,

where the implied constant depends on (k, l, "), provided one of the following two
conditions holds:

q
1
l 6 N 6

1
2
q1/2+1/2l ,

q
1
l 6 N , NM+ 6

1
2
q1+1/2l .

Remark 4.4. As l gets large, this bound is non-trivial if

M+N 6 q, MN2 > q1+�

for some � > 0. In particular for M = M+ = N , this is non trivial if

N > q1/3+�.

4.1. The type II bilinear sum

We now start the proof of the reduction step for Theorem 4.1.
Applying Cauchy’s inequality, we obtain

|B(K ,↵,�)| 6 k�k2

 
X

n
|
X

m
↵mK (mn)|2

!1/2
⌧ k�k2

⇣
k↵k22N + S 6=

⌘1/2
,

where
S 6= =

X

m1 6=m2

↵m1↵m2
X

n
K (m1n)K (m2n).

We now use the+ab-shift trick of Karatsuba-Vinogradov as in [11,21]. For this we
introduce two integer parameters A, B > 1 such that AB 6 N . Using the notation
a ⇠ A for A 6 a < 2A, we then have

S 6= =
1
AB

X

a⇠A,b⇠B

XX

m1 6=m2

↵m1↵m2
X

n+ab2N
K (m1(n + ab))K (m2(n + ab)).
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Using the fact that N is an interval, we deduce as in [11, page 126, (7.2)] (see
also [21, (2.11)] that

S 6= ⌧
log q
AB

XX

a,m1,m2,n
a⇠A,m1 6=m2

|↵m1↵m2 |

�
�
�
�
�

X

b⇠B
K (m1(n + ab))K (m2(n + ab))e(bt)

�
�
�
�
�

for some t 2 R and n varying over an interval of length⌧ N+AB. For (r, s1, s2) 2
(F⇥q )3 set

⌫(r, s1, s2) =
XX

a,m1 6=m2,n
a⇠A,an⌘r,ami⌘si

�
�↵m1↵m2

�
�,

so that

S 6= ⌧
log q
AB

XX

r,s1,s2
⌫(r, s1, s2)

�
�
�
�
�

X

b⇠B
K (s1(r + b))K (s2(r + b))e(bt)

�
�
�
�
�

(by the change of variable r = a · n, si = a · mi , i = 1, 2). We have
XX

r,s1,s2
⌫(r, s1, s2) =

XX

a,n,m1 6=m2

|↵m1↵m2 | 6 ANk↵k21 6 AMNk↵k22

and
XX

r,s1,s2
⌫(r, s1, s2)2 =

XX

a,n,m1 6=m2

|↵m1 ||↵m2 |
XX

a0,n0,m01 6=m
0
2

a0n0⌘an, a0m0i⌘ami (mod q)

|↵m01 ||↵m02 |.

Now assume that
2AN < q. (4.1)

Then the equation a0n0 ⌘ an (mod q) is equivalent to an0 ⌘ a0n (mod q), which
is equivalent to an0 = a0n. Therefore if we fix a and n0, the integers a0 and n are
determined up to qo(1) values.

Suppose that a, a0, n, n0 are so chosen. For i = 1, 2, we then have
XX

mi ,m0i
ami⌘a0m0i (mod q)

|↵mi ||↵m0i |6
XX

mi ,m0i
ami⌘a0m0i (mod q)

|↵mi |
2 +

XX

mi ,m0i
ami⌘a0m0i (mod q)

|↵m0i |
2 ⌧ k↵k22.

Indeed, sinceM is a subset of [1, q � 1], once mi (respectively m0i ) is given, the
congruence ami ⌘ a0m0i (mod q) uniquely determines m0i (respectively mi ). There-
fore XX

r,s1,s2
⌫(r, s1, s2)2 ⌧ qo(1)ANk↵k42. (4.2)
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Alternatively, if we assume instead of (4.1) that

2AM+ < q, (4.3)

then the same reasoning with the equation am1 ⌘ a0m01 (mod q) also leads to (4.2).
Fix an integer l > 2. We apply Hölder’s inequality in the following form:

XX

r,s1,s2
⌫1�

1
l +

1
l

�
�
�
�
�

X

b⇠B
· · ·

�
�
�
�
�

6

 
XX

r,s1,s2
⌫

!1� 1l
0

@
XX

r,s1,s2
⌫

�
�
�
�
�

X

b⇠B
· · ·

�
�
�
�
�

l
1

A

1/ l

6

 
XX

r,s1,s2
⌫

!1� 1l  XX

r,s1,s2
⌫2

!1/2l 0

@
XX

r,s1,s2

�
�
�
�
�

X

b⇠B
· · ·

�
�
�
�
�

2l
1

A

1/2l

6q"k↵k22(AN )1�
1
2l M1� 1l

 
X

b2B
|6I I (K , b)|

!1/2l
,

where B = [B, 2B[2l , and

6I I (K , b) =
X

r2Fq

XX

s1,s22F⇥q
s1 6=s2

K(s1r, s1b)K(s2r, s2b)

is the exponential sum defined in (1.3), where

K(r, b) =
lY

i=1
K (r + bi )K (r + bi+l).

We observe at this point that the sum 6I I (K , b) is independent of the parameter a
such that K (x) = Klk(ax;�, q), by changing the variables s1 and s2 to as1 and as2
respectively.

We will estimate these sums in different ways depending on the position of b.
Precisely:

Theorem 4.5. There exist affine varieties

V1 ⇢W ⇢ A2lZ

defined over Z such that

codim
�
V1
�

= l, codim(W) >
l � 1
2
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which have the following property: for any prime q large enough, depending only
on k, for any tuple � of characters of F⇥q with Property NIO, for any a 2 F⇥q , and
for all b 2 F2lq , with

K (x) = Klk(ax;�, q),

we have

6I I (K , b)⌧ q3 if b 2 V1
�
Fq
�
, (4.4)

6I I (K , b)⌧ q2 if b 2 (W � V1)
�
Fq
�
, (4.5)

6I I (K , b)⌧ q3/2 if b /2W
�
Fq
�
. (4.6)

In all cases, the implied constant depends only on k.

We emphasize that the varieties V1 andW are independent of the tuple of charac-
ters. After a number of preliminaries, the final proof of this theorem will be found
in Section 14 (see page 1527).

We will apply these estimates for the parameters b belonging to the box
[B, 2B)2l , and for this we use Lemma 2.3.

Let BV (respectively BW ) be the set of b 2 B such that b 2 V1(Fq) (respec-
tively b 2W(Fq)). Since the subvarieties V1 andW are defined over Z, it follows
from Lemma 2.3 that

X

b
|6I I (K , b)|⌧ q3

�
�BV

�
�+ q2

�
�BW

�
�+ q3/2B2l

⌧ q3B2l�codim(V1) + q2B2l�codim(W) + q3/2B2l .
(4.7)

We have codim(V1) = l and codim(W) > (l � 1)/2 by Theorem 4.5. We choose
B so that the first and third terms in (4.7) are equal, namely

B = q3/2l .

We also choose A so that AB = N , i.e.

A = N/B = Nq�
3
2l .

Writing codim(W) = � l, we deduce that

|B(K ,↵,�)| 6 k�k2
�
k↵k22N + S 6=

�1/2
,

where

S 6= ⌧
q"

AB
k↵k22(AN )1�

1
2l M1� 1l

⇣
q2B(2�� )l) + q3/2B2l

⌘1/2l
.
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Hence

|B(K ,↵,�)|⌧q"k↵k2k�k2(MN )1/2

0

@ 1
M

+

 
q2B�� l

AM2N
+

q
3
2

AM2N

!1
2l
1

A

1/2

⌧q"k↵k2k�k2(MN )1/2

0

@ 1
M

+

 
q2�

3
2�+ 3

2l

(MN )2
+
q
3
2+

3
2l

(MN )2

!1
2l
1

A

1/2

.

(4.8)

This holds under the condition that

A = Nq�
3
2l > 1

and that either of (4.1) or (4.3) hold.
In particular, since � > 1/3, the second term on the right-hand side of (4.8) is

smaller than the third. This implies Theorem 4.1. Theorem 1.2 follows by choosing
l large enough depending on �.

4.2. Bounding type I sums

We turn now to Theorem 4.3, and consider the special bilinear form

B(K ,↵, 1N ) =
XX

m2M, n2N
↵mK (mn).

Given l > 2, a trivial bound is

B(K ,↵, 1N ) 6 k↵k
1� 1l
1 k↵k

1
2l
2 M

1
2l N .

Proceeding as before, we get

B(K ,↵, 1N ) =
1
AB

XX

a⇠A, B⇠B

X

m2M
↵m

X

n+ab2N
K (m(n + ab))

⌧"
q"

AB

XX

r2Fq ,s2F⇥q

⌫(r, s)

�
�
�
�
�

X

b⇠B
⌘bK (s(r + b))

�
�
�
�
�
,

with
⌫(r, s) =

XXX

a⇠A, m2M, n2N
am=s, an⌘r (mod q)

|↵m |

and |⌘b| 6 1. We have
X

r,s
⌫(r, s)⌧ AN

X

m2M
|↵m |.
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We also have
X

r,s
⌫(r, s)2 =

X
· · ·
X

a,m,n,a0,m0,n0
am⌘a0m0,a0n⌘an0 (mod q)

|↵m ||↵m0 |.

Assuming that
2AN < q or 2AM+ < q (4.9)

we show by the same reasoning as above that
X

r,s
⌫(r, s)2 ⌧

X

a,m
|↵m |2

X
· · ·
X

n,a0,m0,n0
am=a0m0

a0n=an0 (mod q)

1⌧" q"AN
X

m
|↵m |2.

We next apply Hölder’s inequality in the form

XX

r2Fq ,s2F⇥q

⌫(r, s)

�
�
�
�
�

X

B<b62B
⌘bK (s(r + b))

�
�
�
�
�

6

 
X

r,s
⌫(r, s)

!1� 1l  X

r,s
⌫(r, s)2

! 1
2l
0

@
X

r,s

�
�
�
�
�

X

B<b62B
⌘bK (s(r + b))

�
�
�
�
�

2l
1

A

1
2l

⌧" q"(AN )1�
1
2l k↵k

1� 1l
1 k↵k

1
l
2

0

@
X

r,s

�
�
�
�
�

X

B<b62B
⌘bK (s(r + b))

�
�
�
�
�

2l
1

A

1
2l

.

Expanding the 2l-th power, we have

XX

r2Fq ,s2F⇥q

�
�
�
�
�

X

B<b62B
⌘bK (s(r + b))

�
�
�
�
�

2l

6
X

b2B

�
�6I (K , b)

�
�,

with
6I (K , b) =

X

r2Fq

X

s2F⇥q

K(sr, sb) =
X

r2Fq
R(r, b). (4.10)

Note that 6I (K , b) is independent of the choice of a 2 F⇥q such that K (x) =
Klk(ax;�, q). We have reached the bound

B(K ,↵, 1N )⌧ q"k↵k1�
1
l

1 k↵k
1
l
2 M

1
2l N

 
(MN )�1

AB2l
X

b2B

�
�6I (K , b)

�
�
! 1
2l

. (4.11)

As before, we can prove different bounds on 6I (K , b) depending on the position
of b.



1476 EMMANUEL KOWALSKI, PHILIPPE MICHEL AND WILL SAWIN

Theorem 4.6. Let V1 andW be the affine varieties on Theorem 4.5. For any prime
q large enough, depending only on k, for any tuple � with Property NIO, for any
a 2 F⇥q and for all b 2 F2lq , with

K (x) = Klk(ax;�, q),

we have

6I (K , b)⌧ q2 if b 2 V1
�
Fq
�
, (4.12)

6I (K , b)⌧ q3/2 if b 2 (W � V1)
�
Fq
�
, (4.13)

6I (K , b)⌧ q if b /2W
�
Fq
�
. (4.14)

In all cases, the implied constant depends only on k.

This is also proved ultimately in Section 14 (page 1528).
Taking this for granted, and using the same notation codim(W) = � l as before,

we have therefore
X

b2B

�
�6I (K , b)

�
�⌧

�
�BV

�
�q2 +

�
�BW

�
�q3/2 + |B|q

⌧ Blq2 + B(2�� )lq3/2 + B2lq,

by Lemma 2.3. Choosing
B = q1/ l

to equate the first and third terms above and

A = N/B = Nq�1/ l ,

we obtain from (4.11) the estimate

B(K ,↵, 1N )⌧k,"⌧ q"k↵k1�
1
l

1 k↵k
1
l
2 M

1
2l N

 
(MN )�1

AB2l
⇣
qB2l + q1/2B(3�� )l

⌘
! 1
2l

⌧k," q"k↵k
1� 1l
1 k↵k

1
l
2 M

1
2l N

 
q1+

1
l

MN2
+
q
3
2��+ 1

l

MN2

!1/2l

,

assuming that (4.9) holds and that A > 1. Since � > 1/2 (by Theorem 4.5), the
second term on the right-hand side of the last inequality is smaller than the first.
Together with (4.9), this leads to Theorem 4.3, and Theorem 1.3 follows by letting
l get large.
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5. Algebraic preliminaries

We collect in this section some definitions and statements of algebraic geometry that
we will use later. Most are standard, but we include some proofs for completeness
and by lack of a convenient reference.

LetCFq be a smooth and geometrically connected curve with smooth projective
model S. The conductor of a constructible `-adic sheaf F on C is defined by

c(F )=g(S) + rank(F ) + |Sing(F )| +
X

x2Sing(F )

Swanx (F )+dim H0c (CFq ,F ),

where g(S) is the genus of S, Sing(F ) is the set of points of S where the middle-
extension of F is not lisse and Swanx (F ) is the Swan conductor at x .

Let CFq be a curve (not necessarily smooth or irreducible). Let (Ci )i2I be
the geometrically irreducible components of CFq and ⇡i : eCi ! Ci their canonical
desingularization. We define the conductor of a constructible `-adic sheaf F on
CFq by

c(F ) =
X

i2I
c
�
⇡⇤i (F |Ci )

�
+

X

x2Csing

mx (C),

where Csing is the singular set of C and mx (C) the multiplicity of x as a singularity
of C .

If CFq is a curve, f is a function on C and F an `-adic sheaf on C , then

c
�
F ⌦ L f (x)

�
⌧ c

�
L f (x)

�2 c(F )2, (5.1)

where the implied constant is absolute.
We will use the following version of Deligne’s Riemann Hypothesis over finite

fields [4].

Proposition 5.1. Let Fq be a finite field with q elements and let C be a curve over
Fq . Let F and G be constructible `-adic sheaves on C which are mixed of weights
6 0 and pointwise pure of weight 0 on a dense open subset. Suppose that the
restriction of F ⌦ G_ to any geometrically irreducible component of C has no
trivial summand. We then have

X

x2C(Fq )
tF (x;Fq)tG(x;Fq)⌧

p
q,

where the implied constant depend only on the conductors of F and of G.

Proof. If C is smooth and geometrically connected, and F and G are geometrically
irreducible middle-extensions, this is deduced from Deligne’s results in [5, Lemma
3.5]; the extension to general F and G satisfying our assumptions is immediate.
For a general smooth curve, one need only apply the bound to each component
separately.
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For a general curve, observe that the difference between the sum over C and
the sum over a desingularization of C is the sum over the singular points of tF (x;
Fq)tG(x;Fq)minus the sum over points of the desingularization lying over singular
points of tF (x;Fq)tG(x;Fq). Since the size of both those sets of points may be
bounded in terms of the sum of the multiplicities of singular points, and the value
of tF (x;Fq)tG(x;Fq) at those points may be bounded in terms of the conductors,
this contribution is also bounded in terms of the conductors.

We will also use a criterion for a sheaf to be lisse that might be well-known but
for which we do not know of a suitable reference.

Lemma 5.2. Let Spec(O) be an open dense subset of the spectrum of the ring of
integers in a number field and U ! Spec(O) a reduced scheme of finite type. Let
` be a prime number invertible in O. Let r > 1 be an integer and let F be a
constructible `-adic sheaf on U .

Assume that:

(1) For any finite-field valued point Spec(k) ! Spec(O), the sheaf Fk on Uk is
lisse of rank r;

(2) For any finite-field valued point Spec(k) ! Spec(O), any generic point ⌘ of
Uk , and any s 2 0(Spec(Oet

⌘ ),F ), if s is non-zero at the special point of the
étale local ringOet

⌘ , then it is non-zero at the generic point.

Then F is lisse on U .

Proof. Let x 2 Uk ⇢ U and let s be a non-zero section of F over the étale local
ring Oet

x at x . Since (the pullback of) F is lisse on Oet
x,k by Assumption (1), the

generic point ofOet
x,k belongs to the support of s. Hence (the pullback of) s is non-

zero at the special point of Oet
⌘ , which maps to the generic point Oet

x,k (for some
generic point ⌘ ofUk). By Assumption (2), we deduce that the generic point ofOet

⌘
belongs to the support of (the pullback of) s. Since this generic point maps to the
generic point of Oet

x , this means that the support of s contains the generic point of
Oet
x , hence because the support of s is closed, it is the whole Spec(Oet

x ).
Now let (s1, . . . , sr ) be a basis of the stalk Fx = 0(Oet

x ,F ). These sections
define a morphism

Q r
` ! FOet

x

whose induced map on stalks is, by the above, injective. By Assumption (1) and
the fact that the rank of the stalk of a constructible `-adic sheaf is a constructible
function, the rank of the stalk of F at every point is r . Hence both stalks have the
same dimension, thus the induced map on stalks is an isomorphism. This means
that F is locally constant at x , and we conclude that F is lisse.
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6. Generalized Kloosterman sheaves

In this section, we summarize the basic properties of the generalized Kloosterman
sheaves whose trace functions are the sums Klk(x;�, q). These were defined by
Katz in [16, Theorem 4.1.1], building on Deligne’s work [25, Sommes trig., The-
orem 7.8]. They are special cases of the hypergeometric sheaves defined by Katz
in [17, 8.2.1].

Throughout this section, we fix a prime number p, a prime number ` 6= p, and
we consider a finite field Fq of characteristic p with q elements and a non-trivial
`-adic additive character  of Fq . We fix an integer k > 2 coprime to q, and a
tuple � = (�1, . . . ,�k) of `-adic characters of F⇥q . We denote by 3(�) (or 3 if �
is understood) the product �1 · · ·�k .

Proposition 6.1 (Generalized Kloosterman sheaves). There exists a constructible
Q`-sheafK` = K`k, (�) on P1Fq , called a generalized Kloosterman sheaf, with the
following properties:

(1) For any d > 1 and any x 2 Gm(Fqd ), we have

tK`
�
x;Fqd

�
= Klk

�
x;�,Fqd

�

=
(�1)k�1

qd(k�1)/2

X

x1···xk=x
�1
�
NFqd /Fq x1

�
· · ·�k(NFqd /Fq xk) 

⇣
TrFqd /Fq (x1+· · · +xk)

⌘
;

(2) The sheaf K`k, (�) is lisse of rank k on Gm;
(3) On Gm , the sheafK`k, (�) is geometrically irreducible and pure of weight 0;
(4) The sheaf K`k, (�) is tamely ramified at 0, and its I (0)-decomposition is

M

�2�

L� ⌦ J
�
n�
�
,

where J (n) is a unipotent Jordan block of size n, and n� is the multiplicity of
� in �;

(5) The sheaf K`k, (�) is wildly ramified at1, with a single break equal to 1/k,
and with Swan conductor equal to 1;

(6) The stalks of K`k, (�) at 0 and1 both vanish;
(7) If � 2 PGL2(Fq) is non-trivial, there does not exist a rank 1 sheaf L such that

we have a geometric isomorphism

� ⇤K`k, (�) ' K`k, (�)⌦ L

over a dense open set;
(8) The conductor of K`k, (�) is k + 3.

Proof. Let j : Gm ! P1 be the open inclusion. We define

K`k, (�) = j!Kl( ;�; 1, . . . , 1)
✓
n � 1
2

◆
,
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where the sheaf on the right-hand side is the lisse sheaf on Gm defined by Katz
in [16, 4.1.1]. We also have a formula in terms of hypergeometric sheaves, namely

K`k, (�) = j!H1(!, ;�,;)

✓
n � 1
2

◆

(see [17, 8.4.3]). Assertions (1) and (2) are, respectively, assertions (2) and (1)
of [16, 4.1.1]. Assertion (3) results from the identification with hypergeometric
sheaves and [17, Theorem 8.4.2 (1), (4)].

Assertions (4) and (5)) are given in [17, Theorem 8.4.2 (6)]. Assertion (6) is
clear from the definition as an extension by zero of a sheaf on Gm .

Finally, (7) is a special case of [10, Proposition 3.6 (2)], and (8) follows from
the definition of the conductor and the previous statements.

All parts of Definition 2.1, including the definition of Property CGM and Prop-
erty NIO, make sense for tuples of `-adic characters of F⇥q . When we wish to em-
phasize the base finite field, we will speak of Property CGM or NIO over Fq . The
names CGM and NIO are justified by the following theorem of Katz.

Theorem 6.2 (Katz). Assume that k > 2, that p > 2k + 1 and that � is not
Kummer induced. Let G be the geometric monodromy group of K`k, (�). We then
have G0 = G0,der , the derived group. Moreover

(1) If k is odd, then G0 = G0,der = SLk;
(2) If k is even, then G0 = G0,der is either

• SOk if � is self-dual and symmetric;
• Spk if � is self-dual and alternating;
• SLk if � is not self-dual.

Finally, if � has CGM, then G = G0 is either SLk or Spk .

Proof. The claims about G0 are proved by Katz in [17, Theorem 8.11.3 and Corol-
lary 8.11.2.1].

To evaluate G, note that when G0 = SLk , G is contained in GLk . To show
G = G0, it suffices to show the determinant is trivial. But the determinant character
is L3 by [17, Lemma 8.11.6], and we have assumed 3 trivial.

If G0 6= SLk then k is even and � is self-dual. Let ⇠ be the dualizing char-
acter (Definition 2.1). Under the assumptions 3 = 1 and ⇠ = 1, we always have
3 = ⇠ k/2, so the self-duality is alternating. Thus G0 = Spk , hence G is con-
tained in GSpk , and it suffices to show that the similitude character is trivial, i.e.,
that K`k, (�) is actually self-dual and not just self-dual up to a twist. This fol-
lows from [17, Theorem 8.8.1]. Reviewing Definition 2.1, we obtain the desired
statements.

The need to sometimes increase the base field is justified by the following
lemma that will allow us to work with tuples satisfying the weaker CGM Property.
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Lemma 6.3. Assume that � has NIO. Then there exists an `-adic character �0,
possibly over a finite extension Fq⌫ of Fq , such that the tuple �0� has CGM over
Fq⌫ .

Proof. If k is even and � is self-dual alternating, take �0 to be the inverse of a
square root of the duality character. Otherwise, take �0 to be the inverse of a k-th
root of 3.

For convenience, we will most often simply denoteK`k = K`k, (�) since we
assume that  and � are fixed.

The next lemma computes precisely the local monodromy of K`k, (�) at1.

Lemma 6.4. Assume p > k > 2. Denote by e the additive character x 7!  (kx)
of Fq . Then, as representations of the inertia group I (1) at 1, there exists an
isomorphism

K`k, (�) ' [x 7! xk]⇤
⇣
L
�k+1(2)
⌦ L3 ⌦ Le 

⌘
,

where �(2) is the unique non-trivial character of order 2 of F⇥q .

Proof. This follows from a more precise result of L. Fu [13, Proposition 0.8] (who
describes the local representations of the decomposition group).

7. Sheaves and statement of the target theorem

As in the previous section, we fix a prime number p, a prime number ` 6= p, and
we consider a finite field Fq of characteristic p with q elements and a non-trivial
`-adic additive character  of Fq . We assume that p > 2k + 1.

Let � be a k-tuple of `-adic characters of F⇥q . We define

F = K`k, (�),

a constructible `-adic sheaf on A1Fq . In this section we impose no further conditions
on � .

Fix l > 2. For 1 6 i 6 2l, let fi = s(r + bi ) on A2+2l with coordinates
(r, s, b).

We now define the “sum-product” sheaf

K(�) =
O

16i6l
f ⇤i F ⌦ f ⇤i+lF_

on A2+2lFq .
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Let V/Z be the open subset ofA2+2lZ where s(r+bi ) 6= 0 for all i , so thatK(�)

is lisse on VFq for all q. Let ⇡ : A2+2l ! A1+2l be the projection (r, s, b) 7! (r, b)
(defined over Z). We define

R(�) = R1⇡!K(�),

a constructible `-adic sheaf on A1+2lFq .
We will most often drop the dependency on � in these notation and write K =

K(�) andR = R(�).
We define the diagonal variety V1 by the condition

V1 =
n
b 2 A2l | for all i , there exists j 6= i such that bi = b j

o
.

Note that V1 does not depend on the tuple of characters considered.

Lemma 7.1. Outside V1, we have R0⇡!K = R2⇡!K = 0.

Proof. This is very similar to [21, Lemma 4.1 (2)]. By the proper base change
theorem, the stalk of Ri⇡!K at x = (r, b) 2 A1+2l is

Hi
c

 

A1Fq ,
lO

i=1
[⇥(r + bi )]⇤F ⌦ [⇥(r + bi+2)]⇤F_

!

,

where s is the coordinate on A1. This cohomology group vanishes for i = 0 and
any x , and it vanishes for i = 2 and x /2 V1 by [10, Theorem 1.5].

We now compute the local monodromy at infinity of the sheaf K. For any
additive character  , we denote by e the character x 7!  (kx).

Lemma 7.2.

(1) Let r 2 Fq and b 2 F2lq be such that r + bi 6= 0 for all i . Let (r + bi )1/k be a
fixed k-th root of r + bi in Fq . Define signs "i = 1 for 1 6 i 6 l and "i = �1
for l + 1 6 i 6 2l.
The local monodromy at s =1 of Kr,b is isomorphic to the local monodromy
at s =1 of the sheaf

M

(⇣2,...,⇣2l )2µ
2l�1
k

Le 

  

(r + b1)1/k +
2lX

i=2
"i⇣i (r + bi )1/k

!

s1/k
!

,

where µk is the group of k-th roots of unity in Fq .
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(2) Let K be a field of characteristic p - k, and let r 2 K and b 2 K 2l be such
that r + bi 6= 0 for all i . Assume that K contains all k-th roots (1+ bi/r)1/k
of 1 + bi/r for all i . Let  be a non-trivial `-adic additive character and let
� be a k-tuple of multiplicative characters of a finite subfield of K . The local
monodromy at t =1 of the lisse sheaf

eK =
O

16i6l
K`k, (�)(t (1+ bi/r))⌦K`k, (�)(t (1+ bi+l/r))_

on Gm,K is isomorphic to the local monodromy at t =1 of the sheaf

M

(⇣2,...,⇣2l )2µ
2l�1
k

Le 

  

(t (1+ b1/r))1/k +
2lX

i=2
"i⇣i (t (1+ bi/r))1/k

!!

.

Proof. Since Lemma 6.4 has the same form as [21, Lemma 4.9], up to the additional
factor L3, the first assertion may be proved exactly like [21, Lemma 4.16 (1)] (with
� = 0 there), replacing throughout the tensor product

2O

i=1
[⇥(r + bi )]⇤K`k ⌦ [⇥(r + bi+2)]⇤K`_k

by
lO

i=1
[⇥(r + bi )]⇤K`k, (�)⌦ [⇥(r + bi+2)]⇤K`k, (�)_

(note that the factors involving 3 cancel-out at the end). The second statement is
proved in the same manner.

Let eZ ⇢ A1+2lZ be the image of

eZ=

(

(r, b, x)2A1+4l | xki =r+bi for 16 i62k,
lX

i=1
xi =

2lX

i=l+1
xi

)

⇢A1+4lZ (7.1)

under the projection onto (r, b). Let

Z = eZ [
[

16i62l
{r = �bi }.

Let U be the complement of Z . We emphasize that eZ , Z and U are defined over Z,
and independent of � .

Lemma 7.3. The subscheme eZ of A2l+1 is closed and irreducible, and R is lisse
on UFq .
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Proof. This is analogue to [21, Lemma 4.26, (1) and (2)], so we will be brief.1 The
projection (r, b, x) 7! (r, b) from the subscheme

Z 0 =
n
(r, b, x) 2 A1+4l | xki = r + bi for 1 6 i 6 2k

o

to A1+2l is finite, since the domain is defined by adjoining the coordinates (x1, . . .,
x2l) to A1+2l , and each satisfies a monic polynomial equation. Thus the closed
subscheme eZ defined by (7.1) is also finite over A1+2l , and its image eZ is closed.
Moreover, the subscheme (7.1) is the divisor in Z 0 given by the equation

lX

i=1
xi =

2lX

i=l+1
xi .

In particular, this subscheme, and consequently its projection eZ , is irreducible.
To prove thatR is lisse onUFq , we use Deligne’s semicontinuity theorem [22].

The sheaf K is lisse on the complement of the divisors given by the equations r =
�bi and s = 0 in A2+2l . We compactify the s-coordinate by P1 and work on

X =
�
A1 ⇥ P1 ⇥ A2l

�
\ {(r, s, b) | (r, b) 2 U}.

By extending by 0, we view K as a sheaf on X which is lisse on the complement in
X of the divisors s = 0 and s = 1 (because U is contained in the complement of
the divisors r = �bi and thus X is as well). Let

⇡ (2) : X �! U

denote the projection (r, s, b) 7! (r, b). Then ⇡ (2) is proper and smooth of relative
dimension 1 andR|U = R1⇡ (2)

⇤ K.
Since the restrictions ofK to the divisors s =1 and s = 0 are zero, this sheaf

is the extension by zero from the complement of those divisors to the whole space
of a lisse sheaf. Deligne’s semicontinuity theorem [22, Corollary 2.1.2] implies that
the sheaf R is lisse on U if the Swan conductor is constant on each of these two
divisors. By Proposition 6.1, the generalized Kloosterman sheaf has tame ramifica-
tion on s = 0, hence any tensor product of generalized Kloosterman sheaves (such
asK) has tame ramification, hence Swan conductor 0, on s = 0. On the other hand,
Lemma 7.2 gives a formula for the local monodromy representation ofK at s =1
as a sum of pushforward of representations from the tame covering x 7! xk . Since
the Swan conductor is additive and since the Swan conductor is invariant under
pushforward by a tame covering (see, e.g., [16, 1.13.2]), it follows that
Swan1(Kr,b)

=
X

⇣2,...,⇣2l2µk

Swan1

 

L 

  

(r + b1)1/k +
2lX

i=2
"i⇣i (r + bi )1/k

!

s1/k
!!

= k2l�1

by definition of U , since the Swan conductor of L (at) is 1 for a 6= 0.

1 To avoid confusion, note that what is called Z in [21] is not the analogue of what is called Z
here.
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Lemma 7.4. The subscheme Z is a hypersurface in A1+2lZ . It is defined by the
vanishing of a polynomial P in Z[r, b1, . . . , b2l ] such that, for any fixed b 62 V1,
the polynomial Pb = P(·, b) of the variable r is not zero.

Proof. First we check that eZ is a hypersurface in A1+2lZ . It is the projection of the
closed subscheme

eZ=

(

(r, b, x) 2 A1+4l | xki =r+bi for 16 i62l,
lX

i=1
xi =

2lX

i=l+1
xi

)

⇢A1+4l .

This closed subscheme is pure of dimension 2l, since the first 2l equations let us
eliminate the variables bi and the last equation is nontrivial. The projection eZ ! eZ
is finite (as already observed in the proof of the previous lemma) and hence eZ is a
closed subscheme of A2l+1 that is pure of dimension 2l, i.e., a hypersurface. Since
Z is the union of eZ and the hyperplanes with equation r + bi = 0, it is also a
hypersurface.

Let P 2 Z[r, b] be a polynomial whose vanishing set is eZ . Suppose b is
such that Pb is the zero polynomial in the variable r , i.e., such that the projection
eZb! A1 given by (r, x) 7! r is surjective.

The scheme C ⇢ A1+2l given by the equations

xki = r + bi 1 6 i 6 2k

is a curve and the projection C ! A1 given by (r, x) 7! r is finite. The fiber eZb is
the intersection of C and the hyperplane

lX

i=1
xi =

2lX

i=l+1
xi ,

so that Pb = 0 if and only if the function

F =
lX

i=1
xi �

2lX

i=l+1
xi

vanishes on an irreducible component of C .
If we assume that b /2 V1 then by definition there exists some i such that

bi 6= b j for all j 6= i . Locally on A1 with coordinate r near the point r = �bi , the
covering maps x jk = r + b j for j 6= i are étale, so the functions x j (on the curve C)
“belong” to the étale local ring R of A1 at �bi . The function xi , however, does not
belong to R, hence the function F is non-zero in an algebraic closure of the fraction
field of R, which is also an algebraic closure of the function field of any irreducible
component of C . This concludes the proof.
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Definition 7.5. The sheaf R⇤ on UFq is the maximal quotient of the sheaf R|UFq
that is pure of weight 1 (see [4]).
Define f : U ! A2l over Z by (r, b) 7! b.

Below, by EndVb(G), where G is a lisse sheaf on VFq ,b, we mean the ⇡1(VFq ,b⇥
Fq)-homomorphisms, etc.

Let b 2 A2lFq and let (b) be the residue field of b. Since Rb = R1⇡!Kb by
the proper base change theorem, there exists a natural Gal((b)/(b))-equivariant
morphism

EndVb(Kb) �! EndUb(Rb).
Since every Vb-endomorphism of Kb preserves the weight filtration, the image of
this morphism is contained in the subring of endomorphisms of Rb that preserve
the weight filtration, and hence we have an induced morphism

✓b : EndVb(Kb) �! EndUb(R⇤b),

which by construction is still Frobenius-equivariant.
In the next definition, we already describe the subvarietyW of Theorem 4.5;

in particular, we see that it is independent of the tuple of characters � , since this is
the case for X1 and Z . The difficulty will be to prove that it satisfies the required
properties.
Definition 7.6. We denote X1 = A2l � V1, and for any integer j > 0, we let

X j = {b 2 X1 | |Zb| 6 j}.

We defineW to be the union of V1 and of all irreducible components of all X j of
dimension strictly less than (3l + 1)/2.
By definition, we therefore have the codimension bound

codim(W) >
l � 1
2

. (7.2)

Our main geometric goal will be to prove the following result:

Theorem 7.7. Assume that � has NIO. If p is large enough, depending only on k
and l, then the natural morphism ✓b is an isomorphism for all b 2 A2l(Fq)�W(Fq).
Furthermore, each geometrically irreducible component of R⇤b has rank greater
than one.

The basic strategy to be used is as follows:

(1) We show that for q large enough and for b 2 A2l(Fq) outside an explicit
subscheme W1 of codimension l � 1, the natural morphism ✓b is injective.
This reduces the target statement to a proof that the dimensions EndVb(Kb)
and EndUb(R⇤b) are equal;
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(2) We show that, when these dimensions agree for the generic point of an irre-
ducible component of a stratum, this implies the corresponding statement on
the whole irreducible component;

(3) Finally, we prove the target theorem at the generic point of an irreducible com-
ponent of a stratum with dimension > (3l + 1)/2.

The most difficult part is the last one. This we prove by showing the strata can be
covered by the vanishing sets of equations of a certain type in products of curves.
Using this description, and a variant of Katz’s Diophantine criterion for irreducibil-
ity, we show that the dimension of the space of endomorphisms ofK is equal to that
of the space of endomorphisms of R that are invariant under the Galois group of
the function field of this cover. Finally, by a vanishing cycles argument, we show
that the Galois group in fact acts trivially.
Remark 7.8. We have defined U , the stratification X j , andW as objects over the
integers rather than over a finite field Fq . This is used in a few different places:
first, when comparing the generic point and the special point of a stratum, we use
a tameness property of the sheaf R, which we verify by showing that the sheaf is
defined over the integers. Second, when describing the defining equations of the
strata, at one point we make a large characteristic assumption. Third, we need the
setW to be uniform in q to allow us to apply Lemma 2.3.

8. Integrality

We fix an integer n > 1 and an integer k > 2. Let ` be a prime number. We denote
in this section S = Spec(Z[µn, 1/n`]). For any `-adic character e� of µn , we have
an associated lisse `-adic sheaf Le� over S defined by Kummer theory. If Fq is a
residue field of S of characteristic p - n`, so that q ⌘ 1 mod n, then there is a
natural isomorphism between the group of `-adic characters e� of µn and the group
of `-adic characters � of order dividing n of F⇥q , such that �(x) = e�(⇠), where ⇠ is
the n-th root of unity in Z[µn, 1/n`] mapping to x (q�1)/n . We then have a natural
isomorphism Le�,Fq = L� of `-adic sheaves.

Proposition 8.1. Let e� be a k-tuple of characters of µn . There exists an `-adic
sheaf Runiv(e�) on A1+2lS , lisse on US , with the following property: for any prime
p - `n, for any finite field Fq of characteristic p which is a residue field of a prime
ideal in Z[µn, 1/n`], for any non-trivial additive character  of Fq , we have

Runiv(e�)|A1+2lFq = R(�),

where � is the k-tuple of `-adic characters of F⇥q corresponding to e� .

Proof. We will first construct a sheaf Runiv(e�) over S with the desired specializa-
tion property, and we will then check that the sheaf thus defined is lisse on US .
The existence statement is a fairly straightforward generalization of [21, Lemma
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4.27], but we give full details since the precise construction is needed to check the
lisseness assertion.

Let X1 ⇢ Gk+1
m be the subscheme over S with equation

x1 · · · xk = t

and let
f1 : X1 �! A1

be the projection (x1, . . . , xk, t) 7! t . Let X2 be the subscheme of G2lkm ⇥ A2+2l
over S defined by the equations

kY

j=1
xi, j = s(r + bi ), 1 6 i 6 2l,

and let f2 : X2 �! A1+2l be the projection

f2(x1,1, . . . , x2l,k, r, s, b) = (r, b).

Let further X ⇢ X2 be the closed subscheme over S defined by the equation x1,1 =
1. The morphism

Gm ⇥ X ! X2
defined by

�
t, x1,1, . . . , x2l,k, r, s, b

�
7!

�
t x1,1, . . . , t x2l,k, r, tks, b

�

is an isomorphism, with inverse given by

�
x1,1, . . . , x2l,k, r, s, b

�
7!

✓
x1,1, 1,

x1,2
x1,1

, . . . ,
x2l,k
x1,1

, r,
s
tk

, b
◆

.

Let now p - n` be a prime and Fq a finite field of characteristic p that is a residue
field of a prime ideal in S. Let  be a non-trivial additive character of Fq . We have
an isomorphism

K`k, (�)

✓
1� k
2

◆
[1� k] ' R f1,!L (x1 + · · · + xk)⌦

kO

i=1
L�i (xi )

of sheaves on A1Fq . By definition and Lemma 7.1, it follows that

R(�) = R2l(k�1)+1 f2,!

 

L 

 
kX

j=1

 
lX

i=1
xi, j �

lX

i=1
xl+i, j

!!

⌦
kO

j=1

lO

i=1
L� j

�
xi, j/xl+i, j

�
!

.
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We now translate this by “transport of structure” to Gm ⇥ X ' X2. First, we have
f2 = f � p2 where p2 is the projection Gm ⇥ X ! X . Next, let f : X ! A1+2l
be the projection onto (r, b), and let g : X ! A1 be defined by

g(x1,1, . . . , x2l,k, r, s, b) =
kX

j=1

 
lX

i=1
xi, j �

lX

i=1
xl+i, j

!

.

Let g0 be the function

g0 =
kX

j=1

 
lX

i=1
xi, j �

lX

i=1
xl+i, j

!

on X2. Then g0 corresponds to tg under the isomorphism X2 ' Gm⇥X . Moreover,
the sheaves L� j (xi, j/xl+i, j ) are transported to L� j (xi, j/xl+i, j ) under this isomor-
phism (since both variables involved are multiplied by t). We conclude that

R(�)[�2l(k � 1)� 1] ' R( f � p2)!

 

L (tg)⌦
kO

j=1

lO

i=1
L� j

�
xi, j/xl+i, j

�
!

on A1+2lFq .
We can now apply the strategy of [21, Lemma 4.23]. By the projection formula,

we have

Rp2!

 

L (tg)⌦
kO

j=1

lO

i=1
L� j

�
xi, j/xl+i, j

�
!

=

 
kO

j=1

lO

i=1
L� j

�
xi, j/xl+i, j

�
!

⌦ Rp2!L (tg)

and Rp2!L (tg) is the pullback along g of the Fourier transform of the extension
by zero of the constant sheaf onGm,Fq , which is (Ru⇤Q`[�1])Fq for u : Gm ! A1
the inclusion.

We then define the sheaf

Runiv(e�) = R2l(k�1) f!

 

g⇤
�
Ru⇤Q`

�
⌦

kO

j=1

lO

i=1
Le� j

�
xi, j/xl+i, j

�
!

over S. The preceeding computation gives an isomorphism Runiv(e�)Fq ' R(�)
over Fq .

Furthermore, since the complex

R f!

 

g⇤
�
Ru⇤Q`

�
⌦

kO

j=1

lO

i=1
L� j

�
xi, j/xl+i, j

�
!

,
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is supported in degree 2l(k � 1) over UFq for all Fq , the corresponding complex

R f!

 

g⇤
�
Ru⇤Q`

�
⌦

kO

j=1

lO

i=1
Le� j

�
xi, j/xl+i, j

�
!

is supported in a single degree on S.
We will now check thatRuniv(e�) is lisse onUS . By the specialization property

and Lemma 7.3, we know that Runiv(e�) is lisse on UFq for any residue field Fq
of characteristic p - `n, and that it has constant rank. Because it is a constructible
sheaf, its rank is a constructible function, and hence it has the same rank everywhere
on US .

Write Runiv = Runiv(e�) for simplicity. We show that Runiv is lisse on US
by contradiction. By the criterion in Lemma 5.2, if Runiv is not lisse on US , then
there exists a finite-field-valued point (say over Fq ) and a section of Runiv over
the étale local ring Oet

⌘ for some generic point ⌘ of UFq which is non-zero at the
special point, but zero at the generic point. If we denote by i the inclusion of ⌘ in
Spec(Oet

⌘ ), then such a section corresponds to a morphism i⇤Q`! Runiv over this
local ring that is non-trivial at the generic point. Because

Runiv = R2l(k�1) f!

 

g⇤
�
Ru⇤Q`

�
⌦

kO

j=1

lO

i=1
Le� j

�
xi, j/xl+i, j

�
!

and the complex

R f!

 

g⇤
�
Ru⇤Q`

�
⌦

kO

j=1

lO

i=1
Le� j

�
xi, j/xl+i, j

�
!

is supported in a single degree, we obtain a nontrivial map.

Ri⇤Q`[�2l(k � 1)]! R f!

 

g⇤
�
Ru⇤Q`

�
⌦

kO

j=1

lO

i=1
Le� j

�
xi, j/xl+i, j

�
!

. (8.1)

We then apply the Verdier duality functor, taking our base scheme S = Spec(Oet
⌘ ).

In this case our dualizing complex is Q` and we set D(F ) = Hom(F ,Q`). Later,
we will apply also apply Verdier duality on schemes of finite type over S (see,
e.g., [13, Chapter 8, Chapter 10.1] for the `-adic formalism of Verdier duality in
this setting). As usual, for a scheme of finite type over S with structural morphism
$ , we set D(F ) = Hom(F ,$ !Q`). Dualizing the morphism (8.1), we obtain a
morphism

D R f!

 

g⇤
�
Ru⇤Q`

�
⌦

kO

j=1

lO

i=1
Le� j

�
xi, j/xl+i, j

�
!

! D Ri⇤Q`[2l(k � 1)], (8.2)

that is also nontrivial, since by double-duality its dual is (8.1).
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We have

D Ri⇤Q` = Ri!DQ` = Ri!i !Q` = Ri!Q`[�2] = Ri⇤Q`[�2],

where the last two equalities follow respectively from the fact that i is the inclusion
of a smooth divisor of codimension one and the fact that i is proper. The left-hand
side of (8.2) is

R f⇤D

 

g⇤
�
Ru⇤Q`

�
⌦

kO

j=1

lO

i=1
Le� j

�
xi, j/xl+i, j

�
!

=R f⇤D
⇣
g⇤
�
Ru⇤Q`

�⌘
⌦

kO

j=1

lO

i=1
Le��1j

�
xi, j/xl+i, j

�
,

since duality is local, and therefore commutes with twisting with a locally con-
stant sheaf. Hence the existence of a non-trivial morphism (8.2) would lead to a
morphism

i⇤R f⇤D g⇤
�
Ru⇤Q`

�
⌦

kO

j=1

lO

i=1
Le��1j

�
xi, j/xl+i, j

�
! Q`

⇥
2l(k � 1) + 2

⇤

that is nontrivial at ⌘. Finally, this would force the stalk of the sheaf

i⇤R f⇤D g⇤
�
Ru⇤Q`

�
⌦

kO

j=1

lO

i=1
Le��1j

�
xi, j/xl+i, j

�

in degree�2l(k�1)�2 to be nontrivial at the generic point of A2l+1. We will now
prove that this last property fails.

Away from the vanishing set of g, the sheaf g⇤(Ru⇤Q`) is the constant sheaf
Q`, so its dual is Q`[2(2l(k � 1))], where 2l(k � 1) is the relative dimension of X .

On the other hand, we claim that the morphism g is smooth in a Zariski-open
neighborhood of the vanishing set of g. To check this, because g0 = gt , it suffices
to check that g0 is smooth in a neighborhood of its vanishing set. Examining just the
contribution

Pk
j=1 xi, j to g0, observe that the only equation defining X2 involving

(xi,1, . . . , xi,k) is of the form
Qk

j=1 xi, j = ↵, so the derivative of this contribution in
a transverse direction is nonzero, and g0 is smooth, unless xi,1 = xi,2 = · · · = xi,k .
In this case, all the xi are equal to some k-th root of s(r + bi ), and thus

g0 =
lX

i=1
(s(r + bi ))1/k �

2lX

i=l+1
(s(r + bi ))1/k,

which is non-zero when (r, b) 2 U .
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Since g is smooth in a neighborhood of the vanishing locus of g, the sheaf
D g⇤(Ru⇤Q`) = g!D(Ru⇤Q`) is there a shift (and Tate twist) of g⇤D(Ru⇤Q`),
which is a shift (and Tate twist) of g⇤Ru!Q`, and thus vanishes on the zero-set of
g. We conclude that D g⇤(Ru⇤Q`) is everywhere supported in degree

�4l(k � 1).

Finally, we observe that f is an affine morphism from a scheme of dimension 2l(k�
1). By results of Gabber (see [14, XV, Theorem 1.1.2]), the support of the sheaf

Rd f⇤D

 

g⇤(Ru⇤Q`)⌦
kO

j=1

lO

i=1
Le��1j

�
xi, j/xl+i, j

�
!

has dimension 2l(k � 1) � d � 4l(k � 1) relative to S. Hence, its stalk in degree
2� 2l(k � 1) has support of dimension

2l(k � 1) + 2l(k � 1)� 2� 4l(k � 1) = �2

and therefore vanishes at the generic point of the special fiber, which has dimension
�1 (relative to Spec(Oet

⌘ )). This is the desired contradiction.

9. Injectivity

Let

W1 = V1 [ {b 2 A2l | at most two coordinates of b have multiplicity 1}.

This is a closed subvariety of codimension l � 1 of A2lZ . The goal of this section is
to prove the following injectivity statement for ✓b:

Theorem 9.1. Let p > 2k+1 be a prime and let Fq be a finite field of characteristic
p with q elements. Let � be a k-tuple of `-adic characters of F⇥q with Property
CGM.

For p large enough, depending only on (k, l) and for b 2 A2l(Fq) outside
W1(Fq), the natural morphism

✓b : EndVb(Kb) �! EndUb
�
R⇤b
�

is injective.

We begin with a lemma. First, we observe that for any b, and any geometrically
irreducible componentH of Kb, we can meaningfully speak of the weight one part
of R1⇡!H, sinceH is defined over a finite field extension of Fq .
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Lemma 9.2. For any b 2 A2l(Fq), the morphism ✓b is injective if, and only if, for
any geometrically irreducible component H of Kb, the weight one part of R1⇡!H
is non-zero.

Proof. SinceKb is pointwise pure, hence geometrically semisimple, it is geometri-
cally isomorphic to a direct sum

M

i2I
F�nii

for some geometrically irreducible sheaves Fi and some integers ni > 1. Then

R1⇡!Kb '
M

i2I

�
R1⇡!Fi

��ni ,

and the maximal weight one quotient of R1⇡!Kb is also the corresponding direct
sum of the maximal weight one quotients (R1⇡!Fi )w=1 of R1⇡!Fi , with multiplic-
ity ni . If one of these quotients vanishes, then any u 2 EndVb(Kb) that is non-zero
only on the corresponding summand Fi satisfies ✓b(u) = 0.

Conversely, suppose that all the quotients (R1⇡!Fi )w=1 are non-zero. By
Schur’s Lemma, the endomorphism algebra EndUb(R⇤b) is isomorphic to a prod-
uct of matrix algebras Mni (Q`). For each i , ✓b maps an endomorphism u to the
endomorphism of (R1⇡!Fi )w=1,�ni represented by a block matrix with diagonal
scalar matrices in each block, whose entries are the coefficients of the matrix in
Mni (Q`) corresponding to u. Since the blocks have non-zero size, such a matrix is
zero if and only if u is zero.

Let G be the geometric monodromy group of K`k, (�). Let b 2 A2l(Fq). We
denote by B ⇢ A1 the set of values {bi }. For any family % = (%x )x2B of irreducible
representations of G, we denote byH% the sheaf

H% =
O

x2B
%x (K`k, (�))(s(r + x)),

on A2 with coordinates (r, s).

Lemma 9.3. Assume that � has CGM. Any geometrically irreducible component
H ofKb is isomorphic toH% for some family % = (%x )x2B such that, for all x 2 B,
the representation %x is an irreducible summand of the representation Std⌦n1 ⌦
(Std_)⌦n2 , where

n1 =
X

16i6l
bi=x

1, n2 =
X

l+16i62l
bi=x

1. (9.1)

Proof. Write

Kb =
O

x2B
K`k, (�)(s(r + x))⌦n1 ⌦

�
K`k, (�)(s(r + x))_

�⌦n2 .
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By the Goursat-Kolchin-Ribet criterion (see [17] or [10]), which may be applied
since the sheaf K`k, (�) has geometric monodromy group SLk or Spk by Theo-
rem 6.2, the sheaf M

x2B
K`k, (�)(s(r + x))

has geometric monodromy group G|B|, so that its irreducible components corre-
spond exactly to the tuples %.

Lemma 9.4. Let b be a point in A2l �V1. LetH% be an irreducible component of
Kb. Then the rank of R1⇡!H% on the dense open set where Pb(r) 6= 0 is equal to
the rank ofH% divided by k.

Proof. Note that the set where Pb does not vanish is indeed a dense open subset by
Lemma 7.4.

Let r be such that Pb(r) 6= 0. Then by proper base change, the stalk of R1⇡!H%

at r is equal to H1c (Gm,Fq ,H%,r ).
Because Pb(r) 6= 0, Lemma 7.2 shows that the local monodromy representa-

tion at1 of Kb,r is isomorphic to a sum of sheaves of the form L (↵ · s1/k) for
nonzero ↵. Each sheaf L (↵ · s1/k) has all breaks 1/k at1, so the same is true for
Kb,r .

The sheafH%,r is a summand of Kb,r , hence it also lisse on Gm , tamely rami-
fied at 0, and has all breaks 1/k at1. Moreover, it also satisfies

H0c
⇣
Gm,Fq ,H%

⌘
= H2c

⇣
Gm,Fq ,H%

⌘
= 0,

and therefore the Euler-Poincaré characteristic formula for a lisse sheaf on Gm im-
plies that

dim H1c
⇣
Gm,Fq ,H%,r

⌘
= ��

⇣
Gm,Fq ,H%,r

⌘
= Swan0

⇣
H%,r

⌘
+ Swan1

⇣
H%,r

⌘

=
1
k
rk
�
H%

�
.

In the next lemmas, we fix a point b in A2l � V1, and an index i such that
bi 6= b j for j 6= i .

We denote ✏ = �1 if 1 6 i 6 l, and ✏ = 1 if l+1 6 i 6 2l. For any character
� , we denote n� the multiplicity of � in � , which is 0 if � 62 � .

For an irreducible component

H% =
O

x2B
%x (K`k, (�))(s(r + x))

of Kb (all are of this type by Lemma 9.3), we denote

M% =
O

x2B
x 6=bi

%x (K`k, (�))(s(r + x)). (9.2)
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SinceM% is tamely ramified at 0, its local monodromy representation at s = 0 can
be expressed as a sum of Jordan blocks, which we write

M

⌘

L⌘ ⌦ J (m⌘),

where ⌘ runs over a finite set of characters.

Lemma 9.5. With notation as above, the rank of the weight one part of R1⇡!H% on
the nonempty open set where Pb(r) 6= 0 is equal to

X

⌘

max(m⌘ � n⌘✏ , 0).

Proof. Because bi occurs with multiplicity one in B, the representation %bi is nec-
essarily the standard representation if i 6 l or its dual if i > l (see (9.1)), and in
any case has rank k. This implies that

rk
�
H%

�
= k rk

�
M%

�

and hence by Lemma 9.4, we have

rk
⇣
R1⇡!H%

⌘
= rk

�
M%

�
=
X

⌘

m⌘,

so that it suffices to show that the weight < 1 part of R1⇡!H% has the rank
X

⌘

min
�
m⌘, n⌘✏

�
.

To prove this, observe that the weight < 1 part is the sum over the singularities
of the sheaf of the local monodromy invariants (see, e.g., [21, Lemma 4.22(2)]).
Because H%,r is a summand of Kb,r which by Lemma 7.2 has no nontrivial local
monodromy invariants at 1, H%,r has no nontrivial local monodromy invariants
at1.

If i 6 l, then the local monodromy representation at 0 is given by

H%,r =M% ⌦K`k, (�)(s(r + bi ))=

 
M

⌘

L⌘ ⌦ J (m⌘)

!

⌦

 
M

�2�

L� ⌦ J (n� )

!

=
M

⌘

M

�2�

L⌘� ⌦ J (m⌘)⌦ J (n� ).

The dimension of the invariant subspace of L⌘� ⌦ J (m⌘) ⌦ J (n� ) is zero unless
⌘� = 1, in which case it is min(m⌘, n� ), hence the result follows in that case. If
l + 1 6 i 6 2l, the same calculation applies, except that L��1 appears instead of
L� .

The next lemma continues with the same notation.
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Lemma 9.6. Assume that � has CGM. Then the rank of the weight one part of
R1⇡!H% is at least two.

Proof. By the previous lemma, it is enough to prove that
X

⌘

max(m⌘ � n⌘✏ , 0) > 2. (9.3)

Since b 62 W1, there are at least three elements of B that occur with multiplicity
one, say bi , b j and b j 0 .

Let � = 1 if j 6 l and � = �1 if j > l, so that %b j is the standard representa-
tion if � = 1 and the dual representation if � = �1.

Let
M0

% =
O

x2B
x 6=bi ,b j

%x
�
K`k, (�)

�
(s(r + x))

so that
M% =M0

% ⌦K`k, (�)
�
s
�
r + b j

��

if � = 1 and
M% =M0

% ⌦K`k, (�)
�
s
�
r + b j

��_

if � = �1.
LetL✓⌦J (r) be a Jordan block in the local monodromy representation ofM0

%

at s = 0. We estimate the contribution from this factor in the local monodromy
representation (9.2) ofM%.

This contribution contains a direct sum
M

�2�

L��✓ ⌦ J
�
n� + r � 1

�
. (9.4)

If the character ✓ is nontrivial, then the tuple of characters ✓✏�✏� cannot be equal to
� , up to permutation because this would contradict the CGM assumption. Hence,
there exists a character � such that n� > n��✏✓✏ , and therefore the Jordan blocks
(9.4) include a character ⌘ = ��✓ with m⌘ > n⌘✏ . Hence these blocks have a
contribution

> min
�
n� + r � 1� n��✏✓✏ , 0

�
> r

to the sum on the left-hand side of (9.3).
On the other hand, if ✓ is trivial, then the character � with n� maximal con-

tributes
> min

�
n� + r � 1� n� , 0

�
= r � 1.

In particular, we obtain (9.3) except if the local monodromy ofM0
% at zero consists

of at most one unipotent Jordan block of rank two, or of at most one nontrivial
character of rank one, plus a sum of any number of trivial representations. This
conditions means that local monodromy representation of M0

% at zero is either
trivial or is a pseudoreflection (unipotent or not).
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In the first case, we have a sheaf with trivial local monodromy at 0 that is
expressed as a tensor product. Then all the tensor factors must have scalar lo-
cal monodromy at 0. This is impossible here, since one of the tensor factors is
K`k, (�)(s(r + b j 0)) or its dual, and the local monodromy of this sheaf is not
scalar (because k > 2).

If the local monodromy representation is a pseudoreflection, then when it
is expressed as a tensor product, all but one of the tensor factors must be one-
dimensional, and the remaining factor must have local monodromy that is given
by a pseudoreflection times a scalar. Again, because one of the tensor factors
is K`k, (�)(s(r + b j 0)) or its dual, this must be the special factor, and this can
only happen when k = 2 by Proposition 6.1. All the remaining tensor factors are
one-dimensional. But since the geometric monodromy group is SL2 in that case
(because � has CGM), and the only one-dimensional representation of SL2 is the
trivial representation, and this only appears in even tensor powers of the standard
representation, we conclude that all remaining factors must have even multiplicity.
This is a contradiction, since we have three factors with multiplicity one, and the
sum of the multiplicities is 2l, which is even.

Now Theorem 9.1 follows immediately from Lemma 9.2 and Lemma 9.6.

10. Specialization statement

We continue with the previous notation. Recall that X1 = A2l � V1 and that X j
is defined in Definition 7.6. We recall that we have the projection f : U ! A2l .

Lemma 10.1. For each j , the subvariety X j is closed in X1.
For each irreducible component X of X j that intersects the characteristic zero

part, the morphism

f : Z \ f �1(X � X \ X j�1)! X � X \ X j�1

is finite étale.

Proof. These claims follow from Lemma 7.4. Indeed, Z is the solution set of a
family of nonzero polynomials in one variable indexed by points of X1 = A2l �
V1. The set X j is constructible, so to show it is closed it suffices to show that
it is closed under specialization. The polynomial factorizes completely over any
geometric generic point into one distinct factor for each root, raised to some power,
and each factor has at most one root over the special point, so the number of roots
over the special point is at most the number of roots over the generic point, as
desired.

To check that Z \ f �1(X � X \ X j�1) is finite étale over X � X \ X j�1, we
consider the polynomial P(r) over the étale local ring of a point of X � X \ X j�1,
which is an integral strict Henselian local ring, and use the fact that the polynomial
has the same number of roots over the special point and over the generic point.
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By the previous discussion each linear factor over the geometric generic point must
admit a root over the residue field, which means the polynomial is monic. Because it
is monic, and the ring is strict henselian, we can factor it into a product of irreducible
factors, each with exactly one root in the residue field. Over the generic point each
such factor will have only one root in the residue field, hence have only one root
in the fraction field. Therefore, because the generic point has characteristic zero,
so all polynomials are separable, each such factor is a power of (x � ↵) where ↵
is its unique root, so the polynomial is a product of linear factors, with at most one
distinct linear factor with each possible root in the residue field, hence its vanishing
set is the disjoint union of the vanishing sets of these linear factors and thus is finite
étale.

Fix j > 0. Let X ⇢ X j ⇢ A2l be an irreducible component of X j over
Z which intersects the characteristic zero part. We consider a finite field Fq of
characteristic p > 2k + 1 such that XFq is irreducible and nonempty.

Lemma 10.2. Let � be a k-tuple of characters of F⇥q .The sheafR⇤|(U\ f �1(XFq�
XFq \ X j�1)) is tamely ramified around the divisor Z [ {1}.

Proof. Let n be the lcm of the orders of the characters �i . By the remarks before
Proposition 8.1, there exists a tuplee� of characters ofµn such that � is associated to
this tuple. Let Runiv(e�) be the sheaf over Z[µn, 1/(n`)] given by Proposition 8.1.
This sheaf Runiv(e�) is lisse on the open set U \ f �1(X j � X \ X j�1), whose
complement is the étale divisor Z [ {1}. Hence, by Abyankhar’s Lemma [24,
Exposé XIII, Section 5], the sheafRuniv(e�) is tamely ramified, and hence so is

Runiv(e�)|A1+2lFq = R(�),

and alsoR⇤(�).

Proposition 10.3. Let ⌘ be the generic point of XFq , and let ⌘̄ be a geometric
generic point over ⌘. Let � be a k-tuple of characters of F⇥q with Property CGM.
Suppose that

dimEndU⌘̄
�
R⇤⌘̄
�

= dimEndV⌘̄
�
K⌘̄
�
.

Let b 2 X (Fq) such that b /2 X j�1 and b /2W1. Then we have

dimEndUb
�
R⇤b
�

= dimEndVb
�
Kb
�
.

Proof. Consider the sheaf

E = R2 f!
�
R⇤ ⌦R⇤,_

�

on A2lFq . We claim that:

(a) The restriction of E to X j � X j�1 is lisse;
(b) We have an isomorphism

E⌘̄ ' EndU⌘̄
�
R⇤⌘̄
�
(�1);
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(c) We have an isomorphism

Eb ' EndUb(R⇤b)(�1).

Moreover, let g : V ! A2l be the map (r, s, b) 7! b over Z and

eE = R4g!
�
K⌦K_

�

on A2lFq . We claim that:

(a’) The restriction of eE to X j � X j�1 is lisse;
(b’) We have an isomorphism

eE⌘̄ ' EndV⌘̄
�
K⌘̄
�
(�1);

(c’) We have an isomorphism

eEb ' EndVb(Kb)(�1).

Assuming these facts, we have

dimEndUb
�
R⇤b
�

= dimEb = dimE⌘̄ = dimEndU⌘̄
�
R⇤⌘̄
�

= dimEndV⌘̄
�
K⌘̄
�

= dim eE⌘̄ = dim eEb = dimEndVb(Kb),

with the identities following from respectively (c), (a), (b), the assumption, (b’),
(a’), and (c’). (In particular, when we apply assumption (a) and (a’), we use the
fact that b is a specialization of ⌘̄, hence they lie on the same connected component
of X j � X j�1, and so any lisse sheaf on X j � X j�1 has equal ranks at these two
points.)

We now prove the claims. The assertions (b)/(b’) and (c)/(c’) follow from the
proper base change theorem, Poincaré duality, and semisimplicity.

Assertion (a) is a consequence of Deligne’s semicontinuity theorem and the
tameness ofR⇤. Specifically, by Lemma 10.1, we know thatU , over XFq � (XFq \
X j�1), is the complement of a finite étale divisor inside a morphism smooth and
proper of relative dimension one, andR⇤ ⌦R⇤,_ is a lisse sheaf on it. By Lemma
10.2, the Swan conductor ofR⇤⌦R⇤,_ at this divisor vanishes, and so by Deligne’s
semicontinuity theorem [22, Corollary 2.1.2] the cohomology sheaf is lisse.

Assertion (a’): Let Y = XFq�(XFq\X j�1). ThenK⌦K_ is lisse on V⇥A2l Y .
Let

�
K⌦K_

�⇡1(V⇥A2l Y ) be its (geometric) monodromy invariants. Then there is a
natural map �

K⌦K_
�⇡1(V⇥A2l Y )

! K⌦K_

over V ⇥A2l Y , where we interpret
�
K⌦K_

�⇡1(V⇥A2l Y ) as a constant sheaf. This
induces by functoriality a map

R4g!
�
K⌦K_

�⇡1(V⇥A2l Y )
! R4g!K⌦K_
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over Y . Because V is an open subset ofA2l+2 whose fibers under g are all nonempty,
the top cohomology of a constant sheaf along g is a constant sheaf, so this gives a
map

�
K⌦K_

�⇡1(V⇥A2l Y )
! R4g!K⌦K_.

We claim that this last map is an isomorphism. It is sufficient to check this on the
stalk at each point b. To do this, first check that the monodromy group of K ⌦K_
over V ⇥A2l Y is equal to the monodromy of the same sheaf on Vb. This can be
done using Goursat-Kolchin-Ribet, since � has CGM and p > 2k+ 1. We also use
the fact that, because Z is finite etale over Y , and Z includes {�b1, . . . ,�b2l}, no
bi , b j that are distinct generically on the Y stratum can become equal at any point
of Y .

Next observe that this map is simply the natural map from the monodromy
invariants of K ⌦ K_ to the monodromy coinvariants of K ⌦ K_. Because the
monodromy is semisimple, it is an isomorphism.

11. Diophantine preliminaries for the proof of the generic statement

This section uses independent notation from the rest of the paper. In particular, we
will use the letter k to denote finite fields.

We will use the following variant of the Diophantine Criterion for irreducibility
of Katz (compare [20, page 25] and [21, Lemma 4.14]).

Lemma 11.1. Let w be an integer. Let X be a geometrically irreducible separated
scheme of finite type over a finite field k, and let U be a normal open dense subset
of X . Let ` be a prime different from the characteristic of k. Let F be an `-adic
sheaf on X , mixed of weights 6 w on X , and lisse and pure of weight w on U . We
have then

dimEnd⇡1(U⇥Fq )(F |U) = lim sup
⌫!+1

1

|k|⌫(dim(XFq )+w)

X

x2X (k⌫)

�
�tF (x; k⌫)

�
�2, (11.1)

where k⌫ is the extension of k of degree ⌫ in a fixed algebraic closure.
In particular, if the right-hand side of the formula above is equal to 1, then

F |U is geometrically irreducible.

Proof. Let n = dim(XFq ). Up to performing a Tate twist on F , we may assume
that w = 0. For any x 2 X (k⌫) we have then

�
�tF (x; k⌫)

�
�2 6 rk(F )2,
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hence by trivial counting we get
1

|k|n⌫
X

x2X (k⌫)

�
�tF (x; k⌫)

�
�2=

1
|k|n⌫

X

x2U(k⌫)

�
�tF (x; k⌫)

�
�2+

1
|k|n⌫

X

x2(X�U)(k⌫)

�
�tF (x; k⌫)

�
�2

=
1

|k|n⌫
X

x2U(k⌫)

�
�tF (x; k⌫)

�
�2 + OF

�
|k|�⌫

�
.

This shows that we may restrict the sum on the right-hand side of (11.1) to U(k⌫).
Since F and its dual F_ are lisse and pointwise pure of weight 0 on U , the

sheaf End(F ) = F ⌦ F_ is also lisse and pointwise pure of weight 0 on U .
Moreover, for all x 2 U(k⌫), we have

tEnd(F )(x; k⌫) = |tF (x; k⌫)|2.

By the Grothendieck-Lefschetz trace formula, we have
1

|k|n⌫
X

x2U(k⌫)

�
�tF (x; k⌫)

�
�2 =

1
|k|n⌫

Tr
�
Frk⌫ |H

2n
c (U ⇥ Fq ,End(F ))

�

+
1

|k|n⌫
2n�1X

i=0
(�1)iTr

�
Frk⌫ |H

i
c (U ⇥ Fq ,End(F ))

�
.

By Deligne’s Riemann Hypothesis [4], all eigenvalues of the Frobenius of k⌫ act-
ing on the cohomology group Hi

c (U ⇥ Fq ,End(Fk)) have modulus 6 |k|i/2, and
therefore

�
�Tr
�
Frk⌫

�
�Hi

c
�
U ⇥ Fq ,End(F )

��
| 6 dim

�
Hi
c
�
U ⇥ Fq ,End(F )

��
|k|i⌫/2,

so that we derive
1

|k|n⌫
X

x2U(k⌫)

�
�tF (x; k⌫)

�
�2 =

1
|k|n⌫

Tr
�
Frk⌫ |H

2n
c
�
U ⇥ Fq ,End(F )

��
+ O

�
|k|�⌫/2

�
.

On the other hand, we have a Frobenius-equivariant isomorphism

H2nc
�
U ⇥ Fq ,End(F )

�
' End(F )⇡1(U⇥Fq )(�n).

The eigenvalues of Frobenius on End(F )⇡1(U⇥Fq )(�n) have modulus q
n . There-

fore
|k|�n⌫Tr

�
Frk⌫ |H2nc

�
U ⇥ Fq ,End(F )

��

is the sum of the ⌫-th power of dim H2nc (U ⇥Fq ,End(F )) complex numbers, each
of of modulus 1, and by a standard lemma, we have therefore

lim sup
⌫!+1

1
|k|n⌫

Tr
�
Frk⌫ |H2nc

�
U ⇥ Fq ,End(F )

��
= dim H2nc

�
U ⇥ Fq ,End(F )

�

= dimEnd⇡1(U⇥Fq )(F ),

by the geometric semi-simplicity of F |U .
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This result, combined with the injectivity statement, reduces the desired iso-
morphism to a bound on exponential sums, where b are summed over a stratum of
the stratification. The technique we will use to obtain cancellation is a form of sep-
aration of variables, where we essentially obtain cancellation in the sum over each
individual coordinate bi .

We now describe a general geometric form of the type of separation of vari-
ables that we will use.

• Let m and N be natural numbers. Let S be a finite set;
• Let OK be the ring of integers of a number field, and B a separated scheme of
finite type overOK [1/N ];

• Let Ci for i 2 S be curves over B. Let A be a smooth geometrically irreducible
curve over Z[1/N ]. We will use s as a variable for points of A and xi for points
of Ci ;

• We denote C = C1 ⇥B · · · ⇥B Cn . We view functions on Ci as functions on C
by composing with the i-th projection;

• For 1 6 j 6 m, let f j = ( fi, j )16i6n 2 0 be a tuple of functions on the curves
Ci , and let g j be a function on B;

• Let Y ✓ C be the common zero locus of the m functions

6 j := g j +
X

i2S
fi, j 2 0(C,OC), j = 1, · · · ,m;

• Let ⇡ : Y ⇥ A ! Y be the obvious projection, and gi : Y ⇥ A ! Ci ⇥ A the
obvious morphisms;

• Let ` be a prime number dividing N . For i 2 S, and q some prime ideal of OK
coprime to N , we assume given a lisse `-adic sheafFi , pointwise pure of weight
0, on Ci ⇥ AFq . We denote by (%, xi , s) 7! ti (%, xi , s; k) the trace function of
Fi over some finite extension k/Fq ;

• For s 2 A(k) and % 2 B(k) we set

Fi,%,s := Fi |Ci ⇥B {%}⇥ {s}

the sheaf on Ci ⇥ k obtained by restricting to the fiber of % and “freezing” the
s-variable. We assume that for any q, any k/Fq and any point s 2 A(k) the
conductor of Fi,%,s is bounded by some constant C > 1;

• For q some prime of OK coprime with n, we are given a lisse `-adic sheaf G,
pointwise pure of weight 0, on B ⇥ AFq . We denote by (%, s) 7! t⇤(%, s; k) its
trace function.

We make the following “twist-independence” assumption:
(TI). For all i , for all % 2 B and for all s1 6= s2 in A, the lisse sheaf Fi,%,s1 ⌦
F_i,%,s2 on each geometrically irreducible component of Ci,% has no geometrically
irreducible component that is of rank 1.
The implicit constants associated with the symbols O(· · · ) or ⌧ are assumed to
depend on C, A, the maps ( f j ) j=1,··· ,m , and the conductors of the sheaves involved.

The main estimate on exponential sums we will need is the following
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Proposition 11.2. Assume that Assumption (TI) holds. We have

X

(%,x)2Y (k)

�
�
�
�
�

X

s2A(k)
t⇤(%, s; k)

nY

i=1
ti (%, xi , s; k)

�
�
�
�
�

2

=
X

(%,x)2Y (k)

X

s2A(k)
|t⇤(%, s, k)|2

nY

i=1
|ti (%, xi , s; k)|2+O

⇣
|k|dim B+|S|/2+2

⌘
.

(11.2)

Remark 11.3. One can often show (by fibering by curves) that as |k| ! 1 the
first term on the righthand side of (11.2) satisfies

X

(%,x)2Y (k)

X

s2A(k)
|t⇤(%, s, k)|2

nY

i=1
|ti (%, bi , s; k)|2 � |k|dim(Y⇥A)Fq ,

while the error term is

⌧ |k|(n�m+1)�1/2 ⌧ |k|dim(Y⇥A)Fq�1/2

as soon as

m 6
|S|� 3
2

.

Example 11.4. Take B a point, Ci = A = Gm , Fi = [(bi , s) 7! bi s]⇤K`2 on G2m ,
and G = Q`. Define fi, j (bi ) = b ji and Y be the subvariety of G

n
m defined by the

equations
X

bi = · · · =
X

bmi = 0.

One has dim VFq = n�m for q large enough. Then (TI) is satisfied and Proposition
11.2 states that

X
· · ·
X

b1,...,bn2F⇥qP
bi=···=

P
bmi =0

�
�
�
�
�
�

X

s2F⇥q

nY

i=1
Kl2(bi s; q)

�
�
�
�
�
�

2

=
X

· · ·
X

b1,...,bn2F⇥qP
bi=···=

P
bmi =0

X

s2F⇥q

nY

i=1
|Kl2(bi s; q)|2 + O

�
q(n�m+1)�1/2�,

provided m 6 (n � 3)/2.
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Proof. We will omit the indication of the finite field, which is always k, in the
notation for trace functions. Opening the square, we have

X

(%,x)2Y (k)

�
�
�
�
�

X

s2A(k)
t⇤(%, s)

nY

i=1
ti (%, xi , s)

�
�
�
�
�

2

=
X

(%,x)2Y (k)

X

s2A(k)
|t⇤(%, s)|2

nY

i=1
|ti (%, xi , s)|2

+
XX

s1,s22A(k)
s1 6=s2

X

(%,x)2Y (k)
t⇤(%, s1)t⇤(%, s2)

nY

i=1
ti (%, xi , s1)ti (%, xi , s2).

(11.3)

We detect the condition (%, x) 2 Y (k) through additive characters. Thus, let  a
non-trivial character of k. For x = (xi )i2S 2 C(k), we have

�(%,x)2Y (k) =
mY

j=1

1
|k|

X

� j2k
 
�
� j6 j (%, x)

�
=

1
|k|m

X

�2km
 

 

g j (%)+
mX

j=1

X

i2S
� j fi, j (xi )

!

=
1

|k|m
X

�2km
 (g�(%))

nY

i=1
 ( fi,�(xi )),

where � = (� j ) j6m , and

g�(%) =
mX

j=1
� j g j (%), fi,�(xi ) =

mX

j=1
� j fi, j (xi ).

Thus the second sum on the right-hand side of (11.3) is equal to
1

|k|m
XX

s1,s22A(k)
s1 6=s2

X

�2km

X

(%,x)2C(k)
 (g�(%))t⇤(%, s1)t⇤(%, s2)

⇥
Y

i2S
ti (%, xi , s1)ti (%, xi , s2) ( fi,�(xi ))

=
1

|k|m
XX

s1,s22A(k)
s1 6=s2

X

�2km

X

%2B(k)
 (g�(%))t⇤(%, s1)t⇤(%, s2)

⇥
Y

i2S

0

@
X

xi2Ci,%(k)
ti (%, xi , s1)ti (%, xi , s2) ( fi,�(xi ))

1

A .

For s1 6= s2, it follows from the twist-independence assumption and the Riemann
Hypothesis (Proposition 5.1 and (5.1)) that for each i 2 S, we have

X

xi2Ci,%(k)
ti (%, xi , s1)ti (%, xi , s2) ( fi,�(xi ))⌧ |k|1/2
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and t⇤(%,s1)t⇤(%,s2)⌧1 for all %2 B(k). Hence the sum above is⌧ |k|dim B+|S|/2+2,
which concludes the proof.

12. Parameterization of strata

The goal of this section is to give a convenient parameterization of the irreducible
components of the strata of the stratification (X j ) (Definition 7.6).

Let j be an integer with X j non-empty. Let X ⇢ X j ⇢ A2l be an irreducible
component of X j over Z which intersects the characteristic zero part. Let ⌘ be a
geometric generic point of X .

We will show that X is the projection of a space defined by equations of a
certain explicit type; more precisely, these will be exactly of the type that can be
handled using Lemma 11.2, allowing us to evaluate the sums that appear in Lemma
11.1. To describe these equations and to perform an inductive process, where we
express better and better approximations of X as the image of such space, we need
to package certain data, which we do using the following definitions.

Definition 12.1. A perspective datum5 on X is a tuple

5 =
�
m, S, B, (Ci ), (bi ), ( fi, j ), (g j )

�

where

• m > 0 is an integer;
• S ✓ {1, . . . 2l};
• B is a separated scheme of finite type over Q̄;
• (Ci )i2S is a family of relative curves over B;
• (bi )i2S is a family of functions bi : B ! A1 if i /2 S and bi : Ci ! A1 if i 2 S,
such that if i 2 S, the function bi is not constant on any irreducible component
of any geometric fiber of Ci ! B;

• ( fi, j ) i2S
16 j6m

is a family of functions fi, j : Ci ! A1;

• (g j )16 j6m is a family of functions g j : B ! A1.

To simplify the notation, we will sometimes write 5 · m, . . . ,5 · (g j ) for the cor-
responding data.

Let 5 be a perspective datum over X . We denote C5 the fiber product over B
of the curves Ci for i 2 S, and Y5 the subvariety of C5 defined as the zero locus of
the functions

g j +
X

i2S
fi, j

for 1 6 j 6 m, where we extend the functions fi, j and the functions g j by pullback
to C5.



1506 EMMANUEL KOWALSKI, PHILIPPE MICHEL AND WILL SAWIN

A perspective over X is a triple (5,Y, �̄ ) where

• 5 is a perspective datum on X ;
• Y is an irreducible component of Y5;
• �̄ is a geometric point of Y ;

such that the morphism g : Y5 ! A2l defined by (b1, . . . , b2l) induces a quasi-
finite morphism

Y � g�1(V1)! A2l � V1

which maps �̄ to ⌘̄.
The goal of this section will be to construct a perspective on X where Y is

irreducible and the image of the map Y ! A2l is X . More precisely, the main
result is the following:

Theorem 12.2. There exists a perspective (5,Y, �̄ ) on X such that Y is irre-
ducible, �̄ is a geometric generic point of Y , and

2l � |5 · S| + 25 · m 6 4(2l � dim(X)).

The reader is encouraged to first finish reading the proof of the main theorems of
this paper, assuming that this statement holds, since this will illustrate how the
perspective data is exploited in the final steps.

The basic strategy is the following:

(1) We start with a perspective with S as large as possible, m as small as possible,
but �̄ potentially a quite special point of Y (Lemma 12.3). We plan to reduce
dimY while keeping the growth of m and the loss of |S| controlled by a step-
by-step induction;

(2) At each step, we find some equations that are satisfied at �̄ but not at the generic
point of Y (Lemmas 12.4 and 12.5);

(3) We construct a new perspective by adding these new equations (which may
require also adjoining some new variables to B and Ci ), lowering dimY (Lem-
ma 12.6). However, the solution set in Y of these new equations might not
contain any irreducible components of the solution set in Y5 of the new equa-
tions, since they may instead be absorbed into other irreducible components of
Y5. To deal with this, we must assume Y5 = Y ;

(4) We can ensure that this condition holds by a Diophantine argument, which
requires increasing |S| (Lemma 12.9). This requires certain irreducibility as-
sumptions on B and on the curves Ci , which we ensure in Lemma 12.10 by a
direct construction;

(5) Finally, we prove Theorem 12.2 by showing that an induction involving all
these steps terminates in a suitable perspective.

We begin by the exhibiting trivial examples of perspectives that will be used to start
the induction process (or to terminate it in a trivial case).
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Lemma 12.3.

(1) The tuple

50 =

✓
0, {1, . . . , 2l},Spec(Q̄),

⇣
A1
⌘

16i62l
, (IdA1)16i62l ,;,;

◆

is a perspective datum, and (50, X, ⌘̄) is a perspective;
(2) The tuple

51 = (0,;, X,;, (bi |X),;,;)

is a perspective datum and (51, X, ⌘̄) is a perspective.

Proof. This is an elementary check. In (1), we have Y50 = A2l , and the morphism
X ! A2l is quasi-finite, while in (2) we have C51 = X , with the same conclu-
sion.

In the next three lemmas, we begin the proof of the second step by studying
how the roots of the polynomial Pb, which are the r-coordinates of the points in the
fiber Zb, can change under specialization.

Let F be an algebraically closed field. Let r0, b1, . . . , b2l be elements of F .
Formally, the polynomial Pb 2 F[r] is the product

Pb =
2lY

i=1
(r + bi )

Y

(⇣i )2µ2lk

 
2lX

i=1
⇣i (r + bi )1/k

!

.

This expansion makes sense unambiguously in an algebraic closure K of the com-
plete local field F((r � r0)), provided we fix a choice of k-th roots of r + bi in K .
In particular, the order of vanishing of Pb at r0 is the sum of the valuation of the
factors, where the valuation on F((r � r0)) is extended uniquely to K .

For 1 6 i 6 2l, fix k-th roots (r0 + bi )1/k of r0 + bi in F consistent with the
choice of (r + bi )1/k in K . Then the multiplicity of the factor

2lX

i=1
⇣i (r + bi )1/k

at r0 is 8
>>>>><

>>>>>:

0 if
2lX

i=1
⇣i (r0 + bi )1/k 6= 0,

1/k if
2lX

i=1
⇣i (r0 + bi )1/k = 0 but

X

16i62l
r0+bi=0

⇣i 6= 0,
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and otherwise it is equal to the multiplicity of the formal power series
X

16i62l
r0+bi 6=0

⇣i (r + bi )1/k 2 F[[r]] ⇢ K

at r0, when one choses the branch of (r + bi )1/k with constant coefficient (r0 +
bi )1/k .

Lemma 12.4. Let R be a local integral domain with algebraically closed residue
field F , and let K be an algebraic closure of the fraction field of R. Let b1, . . . , b2l
be elements of R, and b̄ 2 F2l their reductions modulo the maximal ideal. Let r0
be some root of Pb̄ 2 F[r]. Assume that there exist at least two roots of Pb in K
that reduce to r0. For 1 6 i 6 2k, fix a k�th root of r0 + bi in F .

Consider an algebraic closure eK of K ((u)). For ⇣ 2 µ2lk , let n(⇣ ) > 0 be the
multiplicity of

2lX

i=1
⇣i (r + bi )1/k

at r0, as defined above.
There is no solution (u0, v1, . . . , v2l) 2 R1+2l of the system of equations

vki = u0 + bi (12.1)
u0 + bi = 0, for all i such that r0 + bi = 0 (12.2)
2lX

i=1
⇣ivi = 0, for all ⇣ such that

2lX

i=1
⇣i (r0 + bi )1/k = 0 2 F (12.3)

X

16i62l
r0+bi 6=0

⇣iv
1�kt
i = 0, if n(⇣ ) > 2 and 0 6 t 6 n(⇣ )� 1. (12.4)

Proof. Suppose that there exists a solution u0 2 R. We estimate from below the
multiplicity of u0 as a root of Pb. For each factor of Pb, the valuation at u0 is at
least the valuation of the corresponding factor of Pb̄ at r0, hence by summing, the
order of vanishing of Pb at u0 is at least the order of vanishing of Pb̄ at r0. But this
contradicts the assumption that there exist two roots of Pb reducing to r0.

Lemma 12.5. Let R be a local integral domain with algebraically closed residue
field F containing a primitive k-th root of unity. Let b1, . . . , b2l be elements of
R and b̄ the reduction of b modulo the maximal ideal. Assume that deg(Pb̄) <
deg(Pb).

(1) If b /2 V1, then for any ⇣ = (⇣i ) 2 µ2lk there exists an integer n⇣ > 0 such that

2lX

i=1
⇣i b̄

n⇣

i 6= 0 2 F;
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(2) There exist some ⇣ = (⇣i ) 2 µ2lk and some integer ⌫ with 0 6 ⌫ 6 n⇣ �1 such
that

2lX

i=1
⇣i bni 6= 0 2 R.

Proof. Writing

2lX

i=1
⇣i (r+bi )1/k =r1/k

2lX

i=1
⇣i (1+bi/r)1/k =r1/k

1X

t=0

 
t�1Y

j=0

1/k � j
1+ j

! 
2lX

i=1
⇣i bti

!
1
r t

for (⇣i ) 2 µ2lk , we first see that if (1) fails, then the left-hand side is identically 0,
which implies that b 2 V1. Then we obtain

deg(Pb) = 2l + k2l�1 �
X

(⇣i )2µ2lk

m⇣ ,

where m⇣ > 0 is the largest integer such that

2lX

i=1
⇣i bti = 0

for 0 6 t 6 m⇣ . If condition (2) does not hold, we therefore deduce that deg(Pb) 6
deg(Pb̄), which contradicts the assumption.

The next lemma is one of the key ingredients of the proof of Theorem 12.2.

Lemma 12.6. Let 5 be a perspective datum on X and (5,Y, �̄ ) a perspective. If
Y5 is irreducible, so that Y = Y5, and �̄ is not a geometric generic point of Y5,
then there exists a perspective (50,Y 0, �̄ 0) with

50 · S = 5 · S, dim(50 · B) 6 dim(5 · B) + 1 dim(Y 0) < dim(Y ).

Proof. Let ↵̄ be a geometric generic point of Y , and �̄ its image inA2l . By definition
of a perspective, the fiber of Y ! A2l over ⌘̄ is finite, and since it contains �̄ ,
it cannot contain the point ↵̄ that specializes to �̄ . Hence �̄ 6= ⌘̄, and since ↵̄
specializes to �̄ , it follows that �̄ specializes to ⌘̄. In particular, we deduce that
�̄ /2 V1.

By definition, �̄ is a geometric generic point of X ⇢ X j . If �̄ was a point
of X j , it would follow that � = ⌘, which is not the case. Hence the fiber of
f : Z ! A2l � V1 over �̄ has > j + 1 points, whereas the fiber over ⌘̄ has j
points.
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Consider now the local ring R of the closure of �̄ at the point ⌘̄. It has alge-
braically closed residue field. The polynomial P�̄ 2 R[r] has > j + 1 roots, and
the specialization P⌘̄ has j roots. So either there exist two roots of P⌘̄ that have the
same image in the residue field, or deg(P�̄) > deg(P⌘̄).

Case 1 (two roots coincide).

Let r0 be the common reduction of at least two roots of P�̄ . We will apply Lem-
ma 12.4 to R and to this r0. We define the multiplicity n(⇣ ) for ⇣ 2 µ2lk as in that
lemma.

We consider the covering eB ! B ⇥A1, with coordinate u on A1, obtained by
adjoining k-th roots vi of u+ bi for all i /2 S. We then define B0 as the complement
in eB of the zero locus of u + bi for all i /2 S such that r0 + bi 6= 0. For i /2
S, the functions bi define functions B0 ! A1 by composing with the projection
B0 ! B.

For i 2 S, we consider the curve eCi ! eB obtained from the base change of
Ci⇥A1! B⇥A1 to B0 by adjoining a k-th root vi of u+bi , so we have a diagram

Ci  � Ci ⇥B eB  � eCi
# #
B  � eB.

If r0 + bi 6= 0, we define C 0i as the complement in Ci of the zero locus of u + bi ,
and otherwise we define C 0i = eCi . In all cases, the morphism C 0i ! Ci allows us to
define a function bi : C 0i ! A1. The fibers of this function over a geometric point
of B0 project to geometric fibers of Ci ! B, hence irreducible components project
to irreducible components, and so bi is not constant on any irreducible component
of any geometric fiber, since5 is a perspective datum.

We next define the scheme C0 ! B0 as the fiber product for i 2 S of the curves
C 0i over B

0.
There exists a lift �̄ 0 of �̄ in C0 such that u(�̄ 0) = r0 (indeed, we can lift �̄ to the

fiber product of the eCi over eB, and the resulting point lies in C0 since r0 + bi = 0
if u + bi = 0). We fix such a lift. This choice defines canonical k-th roots of
u(�̄ 0) + bi (�̄ 0) = r0 + bi , and we will use these later.

The functions g j , 1 6 j 6 m and fi, j of the perspective datum 5 extend to
B0 and C 0i , respectively, by composing with the projections B

0 ! B and C 0i ! Ci .
We will now add additional functions (corresponding to a change of the value of the
parameter m).

Precisely, let m0 = m +m1 +m2 +m3, where m1 (respectively m2, m3) is the
number of equations (12.2) in Lemma 12.4 (respectively number of equations (12.3)
or (12.4)). We define the additional functions g j and fi, j for m + 1 6 j 6 m0,
making a one-to-one correspondance between the values of j and the equations of
those three types.
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If j corresponds to an equation (12.2), i.e., to an integer i with 1 6 i 6 2l
such that r0 + bi = 0, then we define

8
><

>:

fi 0, j = u + bi for i 0 2 S if i 0 = i
fi 0, j = 0 for i 0 2 S if i 0 6= i
g j = 0,

if i 2 S, and otherwise we define
(
fi 0, j = 0 for i 0 2 S
g j = u + bi .

If j corresponds to an equation (12.3), i.e., to some ⇣ 2 µ2lk such that

2lX

i=1
⇣i (r0 + bi )1/k = 0,

we define 8
<

:

fi, j = ⇣ivi for i 2 S
g j =

P

i /2S
⇣ivi .

Finally, if j corresponds to an equation (12.4), i.e., to ⇣ 2 µ2lk and t such that
n(⇣ ) > 2 and 0 6 t 6 n(⇣ )� 1, then we define

8
><

>:

fi, j = ⇣iv
1�kt
i if i 2 S and r0 + bi 6= 0

g j =
P

i /2S
r0+bi 6=0

⇣iv
1�kt
i ,

(note that by the definition of C 0i , the function vi is non-vanishing). We now have
defined the perspective datum

50 = (m0, S, B0, (C 0i )i2S, (bi ), ( fi, j ) i2S
16 j6m0

, (g j )16 j6m0).

The associated variety, i.e., the vanishing locus Y 0 of

g j +
X

i2S
fi, j

for 1 6 j 6 m0, contains �̄ 0 by construction (see Lemma 12.4 again). Let Y 0 be
an irreducible component of Y 0 containing �̄ 0. We claim that (50,Y 0, �̄ 0) is the
required perspective.

First, for y 2 Y , the points of the fiber ofY 0 ! Y over y are determined by the
value of the function u on Y 0, whose values lie in the set of roots of the polynomial
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Pb(y). In particular, the fiber is finite, and hence Y 0 is quasi-finite over Y . It follows
on the one hand that Y 0 has dimension 6 dim(Y ), and on the other hand that Y 0 is
quasi-finite over A2l � V1. So (50,Y 0, �̄ 0) is a perspective.

We have dim(B0) 6 dim(B)+ 1. It remains therefore to check that dim(Y 0) <
dim(Y ). We have already observed that dim(Y 0) 6 dim(Y ). Suppose the dimen-
sions were equal. Then, since Y 0 ! Y is quasi-finite, the geometric generic point
�̄ 0 would map to ↵̄ in Y , and therefore to �̄ inA2l . By applying finally Lemma 12.4,
we obtain a contradiction: since two roots of P�̄ reduce to the same root of P⌘̄, there
cannot be solutions in R of the system of equations (12.2), (12.3), (12.4), whereas
this is exactly what we obtain from the fact that �̄ is the image of �̄ 0.

Case 2 (the degree drops).
We now consider instead Lemma 12.5, and define integers n⇣ for ⇣ 2 µ2lk as

the least integer > 0 such that

2lX

i=1
⇣i b̄

n⇣

i 6= 0

at ⌘̄ (this exists by statement (1) in the lemma). We define m0 = m+m1, where m1
is the number of pairs (⇣ , ⌫) with ⇣ 2 µ2lk and 0 6 ⌫ 6 n⇣ . For m + 1 6 j 6 m0,
corresponding in one-to-one fashion to (⇣ , ⌫), we define

8
<

:

fi, j = ⇣i b⌫i for i 2 S
g j =

P

i /2S
⇣i b⌫i .

Then 50 = (m0, S, B, (Ci ), (bi ), ( fi, j ) i2S
16 j6m0

, (g j )16 j6m0) is a perspective datum

(since the bi have not changed, the non-constancy condition is also unchanged).
The point �̄ belongs to the associated variety Y 0 ⇢ Y5 ⇢ C5 (by definition of
n⇣ ), so (50,Y 0, �̄ ) is a perspective, where Y 0 is the irreducible component of Y 0
containing �̄ . By Lemma 12.5, on the other hand, ↵̄ does not lie in Y 0, so all its
irreducible components, including Y 0, have dimension < dim(Y5) = dim(Y ).

In the next lemma, we produce from a perspective another one with a specific
value of the parameter m.

Lemma 12.7. Let (5,Y, �̄ ) be a perspective on X . There exists a perspective
(50,Y 0, �̄ ) such that

50 · S = 5 · S, 50 · B = 5 · B, 50 · (Ci ) = 5 · (Ci ) 50 · (bi ) = 5 · (bi )
50 · m = dim(5 · B) + |5 · S|� dim(Y )

Y 0 is isomorphic to Y , Y5 ⇢ Y 05 as B-schemes.
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Proof. Let m0 = dim(5 · B) + |5 · S|� dim(Y ). It is the codimension of Y in C5.
Let X be the subspace of 0(C5,O) generated by the functions

h j = g j +
X

16 j6m
fi, j

for 1 6 j 6 m. We claim that for any integer ⌫ with 0 6 ⌫ 6 m0, there
exist ('1, . . . ,'⌫) in X such that all irreducible components of the zero locus
V ('1, . . . ,'⌫) in C5 that contain Y have codimension ⌫ in C5.

We prove this by induction on ⌫. The statement is true for ⌫ = 0. Assume that
⌫ 6 m0 and that the property holds for ⌫ � 1 and the functions ('1, . . . ,'⌫�1). Let
W be an irreducible component of the zero locus V ('1, . . . ,'⌫�1). It has codimen-
sion ⌫�1 < m0 = codim(Y ) in C5 so Y is a proper closed irreducible subset of W .
Hence there exists j such that h j does not vanish identically on W , and in particu-
lar the set of ' 2 X such that ' does not vanish on W is a non-empty Zariski-open
subset of X . Taking intersection of these open sets, there exists '⌫ 2 X such that
'⌫ is non-vanishing on all irreducible components W containing Y . It follows that
('1, . . . ,'⌫) satisfy the induction assumption.

For ⌫ = m0, this means that all irreducible components of V ('1, . . . ,'m0)
containing Y have codimension m0 = codim(Y ) in C5. Hence Y is one of the
irreducible components of V ('1, . . . ,'m0).

For 1 6 ⌫ 6 m0, write

'⌫ =
X

16 j6m
↵⌫, j h j .

We define
g0⌫ =

X

16 j6m
↵⌫, j g j , f 0i,⌫ =

X

16 j6m
↵⌫, j

X

i2S
fi, j ,

for i 2 S and 1 6 ⌫ 6 m0 so that

g0⌫ +
X

i2S
f 0i,⌫ = '⌫ .

Then
50 = (m0, S, B, (Ci )i2S, (bi ), ( f 0i, j ) i2S

16 j6m0
, (g0j )16 j6m0)

is a perspective datum on X ; by construction Y is an irreducible component of
Y50 and Y5 ⇢ Y 05 as B-schemes, so (50,Y, �̄ ) is a perspective with the desired
properties.

In the next lemma, we have a single perspective, so we do not use the selector
notation.
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Lemma 12.8. Let (5,Y, �̄ ) be a perspective on X . For any T ⇢ S and b 2 B , we
put

e0T,b =
Y

i2T
0
�
Ci,b,OCi,b

�
, 0T,b =

Y

i2T

�
0(Ci,b,OCi,b)/b

�
,

where the b is the residue field at b. The spaces e0T,b and 0T,b are b-vector
spaces. For 1 6 j 6 m, we denote f T, j,b = ( fi, j )i2T 2 e0T,b.

Assume that S is not empty, that B is irreducible, and that the generic fiber of
Ci ! B is geometrically irreducible for all i 2 S.

One of the following properties holds:

(a) The scheme Y5 has a unique geometrically irreducible component whose pro-
jection to B is dominant;

(b) There exists a proper subset T ⇢ S such that the images of ( f T,1,⌘, . . . , f T,m,⌘)
span a subspace of 0T,⌘ of dimension 6 m � (|S|� |T |)/2, for ⌘ the generic
point of B.

Proof. There exists a number field and an open dense subsetO of its ring of integers
in a number field such that the persective datum is defined overO. We fix one model
of5 overO, and we will use the same notation for its components as for the original
objects over Q̄. We assume that property (b) does not hold and we will show that
(a) holds. We will do this by studying fibers of Y5 ! B over finite-valued field
points of a suitable dense open subset of B, using the point-counting criterion for
irreducibility over finite fields.

For b 2 B, the condition that the all curves Ci,b are geometrically irreducible
is a constructible condition. So is the condition ( f T,1,b, . . . , f T,m,b) generate a
subspace of 0T,b of dimension > m � (|S|� |T |)/2 for all proper subsets T of S.

By assumption, including the negation of (b), these properties both hold at the
generic point, hence we can find a dense open subset B� where both properties hold.

Let Spec() ! Spec(O) be a finite-field valued point of Spec(O). Fix b 2
B�(). Let  be a fixed non-trivial additive character of  . We denote V = Y5,b, .
We compute |V ()| using additive characters (as in the proof of Proposition 11.2).
For � 2 m and x 2 C5(), we denote

f�(x) =
mX

j=1
� j
X

i2S
fi, j (x)

and

⇠(�) =  

 
mX

j=1
� j g j (b)

!

.
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We have

|V ()| =
1

||m
X

x2C5,b()

mY

j=1

X

�2

 

 

�

 

g j (x) +
X

i2S
fi, j (x)

!!

=
1

||m
X

x2C5,b()

mY

j=1

X

�2

 
�
�g j (b)

�
 

 

�
X

i2S
fi, j (x)

!

=
1

||m
X

�2m
⇠(�)E(b;�),

where
E(b;�) =

X

x2C5,b()

 ( f�(x)).

By definition of C5 as a fiber product, we have the separation of variable formula

E(b;�) =
Y

i2S

X

x2Ci,b()
 

 
mX

j=1
� j fi, j (x)

!

.

Let

S� =

(

i 2 S |
mX

j=1
� j fi, j is constant on Ci,b

)

⇢ S.

Applying the Weil bound for the exponential sums over Ci,b() (assuming the char-
acteristic is larger than the degree of the functions fi, j ), it follows that

E(b;�)⌧ |||S�|+(|S|�|S�|)/2 = ||(|S|+|S�|)/2.

We now split the expression for |V ()| above according to the value of S�, and
isolate the term corresponding to S� = S from the others. This gives |V ()| =
N1 + N2, where

N1 =
1

||m
X

�2m
S�=S

⇠(�)E(b;�), N2 =
1

||m
X

�2m
S� 6=S

⇠(�)E(b;�).

Taking T = S � {i} for a fixed i 2 S in the defining property of B�, we observe
that the tuple ( f T,1,b, . . . , f T,m,b) generates a subspace of 0T,b of dimension >
m � (|S|� |T |)/2 > m � 1/2, hence are linearly independent in 0T,b, and thus are
linearly independent in 0S,b. The condition S� = S arises then only when � = 0.
Hence

N1 =
1

||m
Y

i2S
|Ci,b()|.
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Since Ci,b is a geometrically irreducible curve (by the choice of B�), we have
|Ci,b()| = || + O(||1/2) for all i . Hence

N1 = |||S|�m
⇣
1+ O

⇣
||�1/2

⌘⌘|S|
+ O

⇣
||�m+|S|�1/2

⌘

= |||S|�m + O
⇣
|||S|�m�1/2

⌘
.

On the other hand, we have

N2 ⌧
1

||m
X

T⇢S
T 6=S

||n(T )||(|S|+|T |)/2,

where n(T ) is the dimension of the -vector subspace of m whose elements are all
� such that S� ⇢ T . We have n(T ) = ker('T ), where 'T : m ! 0T,b,/ is the
linear map

� 7!
mX

j=1
� j f T, j (mod ).

Since T is a proper subset of S, by the definition of B�, we must have dim Im('T ) >

m� |S|�|T |
2 , so that n(T ) < (|S|�|T |)/2, which implies n(T ) 6 (|S|�|T |)/2�1/2,

so we derive

N2 ⌧ ||�m+(|S|�|T |)/2+(|S|+|T |)/2�1/2 = |||S|�m�1/2.

We conclude that

|V ()| = |||S|�m + O
⇣
|||S|�m�1/2

⌘
.

Applying this to finite extensions of  and applying the Lang-Weil estimates, we
conclude that V is geometrically irreducible.

Recalling that V was the fiber of Y5 over an arbitrary point b 2 B�(), we
see that all the fibers of Y5 over finite-field valued points of B� with sufficiently
large characteristic are geometrically irreducible, so all the fibers of Y5 over points
of B� are geometrically irreducible. Therefore Y5 has a unique geometrically irre-
ducible component that is dominant over B, concluding the proof that condition (a)
holds.

Lemma 12.9. Let (5,Y, �̄ ) be a perspective on X defined over an open subscheme
Spec(O) of the ring of integers in a number field. Assume that S is not empty, that
B is geometrically irreducible, that each Ci is irreducible and that the generic fiber
of Ci ! B is geometrically irreducible for all i 2 S.

If Y5 is reducible and all irreducible components of Y5 are dominant over B,
then there exists a perspective (50,Y 0, �̄ ) on X such that dimY 0 = dimY and

1 6 |5 · S|� |50 · S| 6 2(5 · m �50 · m).
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Proof. We apply Lemma 12.8 to (5,Y, �̄ ), and use the same notation. Since Y5
is reducible and all its irreducible components are dominant over B, there are at
least two irreducible components that are dominant over B. By Lemma 12.8,
we conclude that there exists a proper subset T ⇢ 5 · S such that the span of
( f T,1,⌘, . . . , f T,m,⌘) in 0T has dimension 6 m � (|S|� |T |)/2.

For � 2 ker('T ) and i 2 T ,
Pm

j=1 � j fi, j is equal to an element of ⌘ and hence
a rational function on B. Let B⇤ be an open subset of B on which all these functions
are defined. Because Ci is irreducible,

Pm
j=1 � j fi, j is equal to this function on B⇤

not just at the generic point, but everywhere.
Let m0 be the dimension of the span X of ( f T,1, . . . , f T,m) in 0T . We have

then
1 6 |5 · S|� |T | 6 2(5 · m � m0).

Let eC be the fibre product ofCi for i 2 S�T with B⇤ over B. We have an evaluation
map

'T : Am ! 0T

sending (�i )i2T to
mX

j=1
� j f T, j .

We define B0 ⇢ eC to be the common zero locus of the functions
mX

j=1
� j

 

g j +
X

i2S
fi, j

!

for all � in ker('T ). These expressions are indeed well-defined functions on eC
because, as we saw earlier

mX

j=1
� j fi, j

is equal to a function on B⇤ for i 2 T if � 2 ker('T ).
Furthermore, we choose f 0i, j in X for i 2 T and 1 6 j 6 m0 so that f 0i, j =

Pm
⌫=1 � j,⌫ f i,⌫ for (� j,⌫)16 j6m0 a set of elements ofAm that span its image X under

'T . Define

g0j =
mX

⌫=1
�⌫, j

 

g⌫ +
X

i2S�T
fi,⌫

!

.

Then the tuple

50 =
⇣
m0, T, B0,

�
Ci ⇥B B0

�
i2T ,

�
b0i
�
i2T ,

�
f 0i, j
�
,
�
g0j
�⌘

is a perspective datum on X , where b0i is the extension of bi to C
0
i = Ci ⇥B B0 by

pullback for i 2 T , the composition B0 ! C̃ ! Ci = A1 if i 2 S � T , and the
projection B0 ! B ! A1 otherwise.
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By construction, the fiber product C50 is a locally closed subset of contained in
C5. The subscheme Y50 is an open subset of Y5, because it has the same set
of defining equations after restricting to an open subset B⇤ of B. Because the
irreducible component Y was dominant over B, its restriction to this open subset
has the same dimension, and because �̄ was dominant over B, it remains in this
open subset as well. Hence (50,Y 0, �̄ ) is the desired perspective on X .

The last preparatory lemma constructs a perspective where the base B satisfies
the assumptions of the last lemma.

Lemma 12.10. Let (5,Y, �̄ ) be a perspective on X . Then there exists a perspective
(50,Y 0, �̄ 0) such that

50 · m = 5 · m, 50 · S = 5 · S,

and dim(Y 0)  dim(Y ), and moreover

(a) 50 · B is irreducible;
(b) For all i 2 S, the curve50 ·Ci are irreducible and the fiber of50 ·Ci over the

geometric generic point of50 · B is irreducible;
(c) All irreducible components of Y50 are dominant over B, as is �̄ .

The strategy of the proof is to make several modifications to the given perspective
datum to ensure that these three conditions hold. We will first replace B by an
irreducible scheme, ensuring condition (a). We then pass to a finite cover of B over
which generic geometrically irreducible components of Ci are defined and choose
one for each i , ensuring condition (b). Finally we remove a closed subset from B,
containing all the irreducible components that are not dominant over B, ensuring
condition (c).

Proof. Let A ⇢ C5 be an irreducible component containing Y . Let B0 be the
schematic closure of the image of �̄ under the projection Y ! B. It is closed
and irreducible. Let � be its generic point. Let � 0 ! � be a finite extension such
that all irreducible components of the generic fibers of the curves Ci for i 2 S are
defined over � 0. Let then B0 ! B0 be a finite flat morphism whose generic fiber
is � 0 ! � (we can construct such a morphism by taking a generator of the field
extension � 0/�, and multiplying it by a regular function on B0 so that its minimal
polynomial P becomes monic; then the cover B0 of B0 obtained by adjoining a root
of P has the required property).

Fix a lift �̄ 0 of �̄ to Y ⇥B B0. Let Y 0 be an irreducible component of Y ⇥B B0
containing �̄ 0, and let A0 be an irreducible componet of C5 ⇥B B0 containing Y 0.
Because �̄ maps to the generic point � of B0, �̄ 0 must map to the generic point � 0
of B0 (the only point lying in the fiber), and so Y 0 ! B0 andA0 ! B0 are dominant
maps. BecauseA0 is an irreducible component of C5 ⇥B B0, and maps dominantly
to B0, it follows that A0� 0 is an irreducible component of the pullback C� 0 of the
product of the curves Ci to � 0. Hence there are irreducible components eCi,� 0 of
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Ci,� 0 for i 2 S, such that A0� 0 is contained in the product of the eCi,� 0 . Let C 0i be the
closure of eCi,� 0 . This is an irreducible curve over B0. We can pullback the functions
bi , g j and fi, j to B0 and C 0i , respectively. We have then constructed a perspective
datum

50 =
⇣
m, S, B0,

�
C 0i
�
,
�
b0i
�
,
�
f 0i, j
�
,
�
g0j
�⌘

.

The irreducible component Y 0 is contained in C50 , hence in Y50 . Since the mor-
phism Y50 ! Y5 is finite, it is an irreducible component of Y50 . It contains �̄ ’
and so maps dominantly onto B0.

Let B00 be the complement in B0 of the closure of the images of all irre-
ducible components of Y50 that are not dominant over B0. We can pullback the
data C 0i , b

0
i , g
0
j , fi, j ,Y

00 further to B00. This defines a perspective datum

500 =
⇣
m, S, B00,

�
C 00i
�
,
�
b00i
�
,
�
f 00i, j
�
,
�
g00j
�⌘

,

and a perspective (500,Y 00, �̄ 0).
By construction, B0 and B00 are geometrically irreducible. Since the curves C 00i

are generically irreducible, and their geometric generic fibers are defined over � 0,
they are generically geometrically irreducible. Because �̄ maps dominantly to B,
�̄ 0 maps dominantly to B0 and B00. Finally, all irreducible components of Y500 map
dominantly to B00 by construction.

We can now conclude this section.

Proof of Theorem 12.2. Consider the set P of perspectives (5,Y, �̄ ) on X such
that

2 dim(5 · B) + 2 dim(Y ) + |5 · S| 6 6l. (12.5)

This set is nonempty by Lemma 12.3 (1), hence it contains some element where

dim(Y ) + |5 · S|

is minimal.
Using Lemma 12.10, we obtain a perspective (5,Y, �̄ ) 2 P such that5 · B is

geometrically irreducible, the curves 5 · Ci are irreducible, the geometric generic
fibers of 5 · Ci are irreducible, and all irreducible components of Y5 as well as �̄
are dominant over B. By Lemma 12.7, we may assume that

5 · m = dim(5 · B) + |5 · S|� dim(Y )

(note that the last condition in Lemma 12.7 implies that all irreducible components
of Y50 as well as �̄ 0 are dominant over B for the new perspective given by that
lemma with input (5,Y, �̄ ).)

We will then see that, except in a trivial case, a perspective with these proper-
ties satisfies the desired conclusion that 5 · Y is irreducible, �̄ is the generic point
of Y , and

2l � |5 · S| + 25 · m 6 4(2l � dim(X)).
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First, if Y is irreducible and �̄ is the generic point of Y , then because Y is quasi-
finite over A2l , we have dim(Y ) = dim(X), hence

2l�|5 · S|+25 · m=2 dim(5 · B) + 2l + |5 · S|� 2 dim(Y )68l � 4 dim(Y )

=4(2l � dim(X)).

Next assume that Y is irreducible and �̄ is not the generic point of Y . Then Lemma
12.6 provides a perspective (50,Y 0, �̄ 0) with

|50 · S| = |5 · S|, |50 · B| 6 |5 · B| + 1, dim(Y 0) < dim(Y ),

so
2 dim(50 · B) + dim(Y 0) + |50 · S| 6 6l

but satisfying
dim(Y 0) + |50 · S| < dim(Y ) + |5 · S|,

which contradicts the minimality of5.
Suppose now that Y is reducible and 5 · S is nonempty. Then Lemma 12.9

provides a perspective (50,Y 0, �̄ 0) which satisfies |50 · S| < |5 · S|, and moreover

dim(Y ) = dim
�
Y 0
�
> dim

�
50 · B

�
+
�
�50 · S

�
��50 · m

> dim
�
50 · B

�
�5 · m + 1

2
�
|50 · S| + |5 · S|

�

= dim
�
50 · B

�
� dim(5 · B) + 1

2
�
|50 · S|� |5 · S|

�
+ dim(Y )

(12.6)

hence
2 dim

�
50 · B

�
� 2 dim(5 · B) 6 |5 · S|�

�
�50 · S

�
�,

which because of (12.5) implies

2 dim
�
50 · B

�
+ 2 dim(Y ) +

�
�50 · S

�
� 6 6l.

On the other hand, we have

dim
�
Y 0) +

�
�50 · S

�
� < dim(Y ) + |5 · S|,

again contradicting the assumption of minimality.
Finally, the remaining case when 5 · S is empty is trivial: in that case, Y is a

closed subscheme of5 · B so that

4 dim(X) 6 4 dim(Y ) 6 2 dim(5 · B) + 2 dim(Y ) 6 6l

and we may simply take the trivial perspective (51, X, ⌘̄) of Lemma 12.3 (2), for
which

2l � |51 · S| + 251 · m = 2l 6 4(2l � dim(X)).
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13. The generic statement

We continue with the previous notation. Fix j > 0. Let X ⇢ X j ⇢ A2l � V1 be
an irreducible component of X j over Z which intersects the characteristic zero part.
Let X be the closure of X in A2l .

Fix a perspective (5,Y, � ) on X such that Y5 is irreducible, � is a geometric
generic point of Y , and 2l � |S| + 2m 6 4 codimA2l (X), which exists by Theo-
rem 12.2. By definition, all of the perspective data is defined over Q̄. However, by
standard finiteness arguments, everything is necessarily defined over a finitely gen-
erated subring of Q̄, i.e., over a ringOK [1/N ], whereOK is the ring of integers of a
number field K and N > 1 is some integer. We will use the same notation Y,Ci , bi ,
etc. to refer to the objects over this ring. Since, by assumption, Y5,Q̄ is irreducible,
and equal to YQ̄, we deduce that Y5 is geometrically irreducible and equal to Y .

Because the geometric generic point of Y is a lift of the geometric generic point
of X , the image of Y in A2l is a dense subset of X . For all but finitely many prime
ideals ⇡ of OK [1/N ], with residue field denoted Fq , the variety YFq is irreducible
and nonempty, XFq is irreducible and nonempty, and the map YFq ! XFq is dom-
inant. In the remainder of this section, we only consider finite fields Fq arising in
this manner, and we also always assume that the characteristic of Fq is > 2k + 1.

Lemma 13.1. Assume that � has CGM. If p is large enough with respect to
(k, l, X) and dim(XQ) > (3l + 1)/2, then we have

X

y2Y (Fq )

X

r2F⇥q

�
�
�
�
�
�

X

s2F⇥q

lY

i=1
Klk(r(s+bi (y));�,q)Klk(r(s+bi+l(y));�,q)

�
�
�
�
�
�

2

=
X

y2Y (Fq )

X

r2F⇥q

X

s2F⇥q

�
�
�
�
�

lY

i=1
Klk(r(s + bi (y));�, q)Klk(r(s + bi+l(y));�, q)

�
�
�
�
�

2

+ O
⇣
qdim(XQ)+3/2

⌘
,

(13.1)

where the implied constant depends only on (5, k, l).

Proof. We first fix r 2 F⇥q . We apply Proposition 11.2 with data (m, B, S, (Ci ),
( f j ), (g j )) coming from the perspective datum 5, A = Gm , where the sheaf Fi is
[(bi , s) 7! s(r + bi )]⇤K`k, (�) and with the sheaf

G =
O

i /2S
[(y, s) 7! s(r + bi (y))⇤]K`k, (�).

Assumption (TI) holds by a Goursat-Kolchin-Ribet argument (see [17] and [10]).
Indeed, each irreducible component of Ci,% is a geometrically irreducible curve on
which bi is a nonconstant function. The sheaf Fi,%,s1 ⌦F_i,%,s2 is the pullback along
bi of the sheaf

H = [bi 7! (s1(r + bi ))]⇤K`k, (�)⌦ [bi 7! (s1(r + bi ))]⇤K`k, (�)_.
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The monodromy group after pulling back along the map bi is a finite index
subgroup, so it suffices to show that no finite-index subgroup of the geometric
monodromy group of H admits a one-dimensional irreducible component. How-
ever, by Goursat’s lemma, the geometric monodromy group of H is a product of
two copies of the monodromy group of K`k, (�), acting by the tensor product of
the standard representation with its dual. This group is connected, so has no proper
finite-index subgroups, and does not admit a one-dimensional representation, which
proves the claim.

The conductor of all the sheaves Fi,%,s , which are pullbacks of (shifted and
translated) generalized Kloosterman sheaves are bounded by constants depending
only on5.

Applying Proposition 11.2 we obtain

X

y2Y (Fq )

�
�
�
�
�
�

X

s2F⇥q

lY

i=1
Klk(r(s + bi (y));�, q)Klk(r(s + bi+l(y));�, q)

�
�
�
�
�
�

2

=
X

y2Y (Fq )

X

s2F⇥q

�
�
�
�
�

lY

i=1
Klk(r(s + bi (y));�, q)Klk(r(s + bi+l(y));�, q)

�
�
�
�
�

2

+ O
⇣
qdim BQ+|S|/2+2

⌘
,

where the implied constant depends only on (5, k, l).
Summing over r , we get the formula (13.1), except that the error term is

O(qdim BQ+|S|/2+3). However, since X is the vanishing set of m equations in a
fiber product of |S| curves over B, we have

dim XQ > dim BQ + |S|� m = dim BQ +
|S|
2

+ l �
✓
l + m �

|S|
2

◆

> dim BQ +
|S|
2

+ l � 2(2l � dim X) > dim BQ +
|S|
2

+ 1/2,

where the last two inequalities holds by the assumption on the perspective and the
assumption on dim X , respectively.

Let ⌘ be the generic point of XFq and let ⌘̄ be a geometric generic point over
⌘. Let ⌘0 be the the generic point of YFq . We fix a k-tuple � of characters of F⇥q .

Lemma 13.2. Assume that � has CGM. We have

dimEndV⌘0⇥Fq
⇣
K⌘0⇥Fq

⌘
= dimEndU⌘0⇥Fq

⇣
R⇤
⌘0⇥Fq

⌘
. (13.2)
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Proof. Let Y � be the smooth locus of Y . The endomorphisms EndV⌘0⇥Fq (K⌘0⇥Fq )
are the same as the endomorphisms of the pullback ofK to Y �Fq ⇥A2l V , because the
monodromy representations of both sheaves are the same (as they are normal, with
the same generic point). We calculate the endomorphisms by applying Lemma 11.1
obtaining the lim-sup of

q� dim X�2
X

y2Y (Fq )

X

r2F⇥q

�
�
�
�
�
�

X

s2F⇥q

lY

i=1
Klk(r(s+bi (y));�, q)Klk(r(s + bi+l(y));�, q)

�
�
�
�
�
�

2

.

We do the same for EndU⌘0⇥Fq (R
⇤
⌘0⇥Fq

), obtaining the lim-sup of

q� dim X�2
X

y2Y (Fq )

X

r2F⇥q

X

s2F⇥q

�
�
�
�
�

lY

i=1
Klk(r(s+bi (y));�, q)Klk(r(s+bi+l(y));�, q)

�
�
�
�
�

2

.

By Lemma 13.1, these two quantities are equal up to O(q�1/2), and therefore their
limsups are equal.

In the remainder of this section, we will prove an analogous statement with ⌘
instead of ⌘0. The method is to prove that

dimEndV⌘̄
�
K⌘̄
�

= dimEndV⌘0⇥Fq
⇣
K⌘0⇥Fq

⌘
(13.3)

and
dimEndU⌘0⇥Fq

⇣
R⇤
⌘0⇥Fq

⌘
= dimEndU⌘̄

⇣
R⇤⌘̄
⌘
. (13.4)

We will prove (13.3) immediately. The formula (13.4) is more difficult, and its
proof will use vanishing cycles.

Proposition 13.3. Assume that � has CGM. For any extension ⌘0 of ⌘ we have

dimEndV⌘̄
�
K⌘̄
�

= dimEndV⌘0⇥Fq
⇣
K⌘0⇥Fq

⌘
.

Proof. Let G be the geometric monodromy group of K, and let B be the set of dis-
tinct values of b1, . . . , b2l at ⌘. Then certainly the arithmetic monodromy group of
K⌘⇥Fq is contained in G

|B|. By Goursat-Kolchin-Ribet, the geometric monodromy
group of K⌘⇥Fq is G

|B|, so the arithmetic and geometric monodromy groups are
equal. Therefore Gal(⌘/⌘ ⇥ Fq) acts trivially on EndV⌘⇥Fq (K⌘0⇥Fq ) as this ac-
tion factors through the quotient of the arithmetic monodromy group by the ge-
ometric monodromy group. It follows that Gal(⌘/⌘0 ⇥ Fq) acts trivially and so
EndV⌘0⇥Fq (K⌘0⇥Fq ), which is the space of invariants of that action, is equal to the
whole space.
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In order to prove (13.4), we first introduce some notation. We writee⌘ = ⌘⇥Fq .
We consider the projective line P1e⌘ with coordinate r . We denote by Oet the étale
local ring of P1e⌘ at 1 and by K its field of fractions. We will often identify K
(respectively a separable closure K sep of K ) with the corresponding spectra.

What follows is the key lemma.

Lemma 13.4. With assumptions as above, the action of Gal(K sep/K ) on R⇤K sep is
unipotent.

Note that to make sense of this action, we use the fact that the image of the nat-
ural morphism Spec(K ) ! A1+2l has image in U , which follows from Lem-
ma 7.4.

Proof. We denote by � the special point of Spec(Oet ). We consider the projective
line P1Oet , with coordinate t , and denote by j (respectively by g) the open immersion
Gm,Oet ! P1Oet (respectively the open immersion A1Oet ! P1Oet ).

We consider the lisse sheaf

eK =
O

16i6l
K`k, (�)(t (1+ bi/r))⌦K`k, (�)(t (1+ bi+l/r))_

on Gm,Oet .
By the change of variable t = rs and the proper base change theorem, the

Gal(K sep/K )-action onRK sep is isomorphic to the action on H1(P1K sep, j!eK). Since
R⇤K sep is a quotient of RK sep , the lemma will follow if we prove that the action of
Gal(K sep/K ) on H1(P1K sep, j!eK) is unipotent.

By the long exact sequence for vanishing cycles, we have a long exact sequence

· · ·! Hi
⇣
P1� , j!eK

⌘
! Hi

⇣
P1K sep, j!eK

⌘
! Hi

⇣
P1� , R8j!eK

⌘
! · · · (13.5)

For each i , we have an isomorphism

Hi
⇣
P1� , j!eK

⌘
= Hi

⇣
P1� , j!

⇣
K`k, (�)⌦l ⌦ (K`k, (�)_)⌦l

⌘⌘
,

hence the Gal(K sep/K )-action on these spaces is trivial.
On the other hand, the vanishing cycle complex R8j!eK is zero away from

the point at1 of P1� (local acyclicity of smooth morphisms and lisseness of j!eK)
and is zero at 0 (because of tame ramification and Deligne’s semicontinuity theo-
rem).

We therefore only need to understand R8j!eK at t =1. By the second part of
Lemma 7.2, the local monodromy at infinity of j!eK is isomorphic to that of a direct
sum of sheaves of the form

Le 

 

(t (1+ b1/r))1/k +
2kX

i=2
"i⇣i (t (1+ bi/r))1/k

!

.
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Since (1 + bi/r)1/k belongs to the étale local ring Oet , this is isomorphic to the
local monodromy of a direct sum of sheaves of the form Le (� (r)t1/k). We have
Le (� (r)t1/k) = $⇤Le (� (r)u) where $ is the finite covering u 7! uk . We com-
pute the local monodromy at1 of this sheaf, which we denote G. This is a standard
computation. We use the long exact sequence

· · ·! Hi
⇣
P1� , g!G

⌘
! Hi

⇣
P1K sep, g!G

⌘
! Hi

⇣
P1� , R8g!G

⌘
! · · ·

and distinguish three cases:

(1) If � (r) = 0 in Oet , then G is tamely ramified at 1, so the vanishing cycles
vanish;

(2) If � (r) 6= 0 in Oet but � (r) = 0 at the special point, then all Hi ’s with
coefficients in g!G in the above exact sequence vanish except

H2(P1� , g!G),

which is one-dimensional with a trivial action of Gal(K sep/K ); this implies
that the action on Hi (P1� , R8g!G) is trivial;

(3) If � (r) 6= 0 at � , then all cohomology groups in the sequence vanish by prop-
erties of the Artin-Schreier sheaves.

In any of the three cases, by local acyclicity of smooth morphisms we see that
R8g!G vanishes outside the point at1, so knowing that Hi (P1� , R8g!G) has trivial
Galois action implies that the Galois action on the stalk at1 vanishes.

Since the vanishing cycle functor is additive and commutes with finite push-
forward, we conclude that Gal(K sep/K ) acts trivially on Hi (P1� , R8j!eK) for all i ,
hence by the exact sequence (13.5), this group acts unipotently on Hi (P1K sep, j!eK),
as desired.

Proposition 13.5. Assume that � has CGM. We have

dimEndU⌘0⇥Fq
⇣
R⇤
⌘0⇥Fq

⌘
= dimEndU⌘̄

⇣
R⇤⌘̄
⌘

.

Proof. We first note that we have an inclusion

EndU⌘̄
⇣
R⇤⌘̄
⌘
⇢ R⇤⌘̄ ⌦

⇣
R⇤⌘̄
⌘_

.

Moreover, we have a commutative triangle

Gal(K sep/K ) //

↵

''

O

O

O

O

O

O

O

O

O

O

O

⇡1(U⌘))

✏✏

Gal(⌘̄/e⌘)

where ↵ is surjective because K does not contain a finite extension ofe⌘.
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The fundamental group ⇡1(U⌘) acts on R⇤⌘̄ ⌦ (R⇤⌘̄)_ and the Galois group
Gal(⌘̄/e⌘) acts on EndU⌘̄(R⇤⌘̄), and these actions are compatible with the inclusion
above.

By Lemma 13.4, the action of Gal(K sep/K ) on R⇤⌘̄ ⌦ (R⇤⌘̄)_ is unipotent,
hence the action of Gal(⌘̄/e⌘) on EndU⌘̄(R⇤⌘̄) is also unipotent since ↵ is surjective.
But we know, by purity, that this action is semisimple, and it follows that the action
Gal(⌘̄/e⌘) on EndU⌘̄(R⇤⌘̄) is in fact trivial. In particular, we have

dimEndU⌘0⇥Fq
⇣
R⇤
⌘0⇥Fq

⌘
= dimEndU⌘̄

⇣
R⇤⌘̄
⌘

.

Finally, we can deduce:

Theorem 13.6. Let X be an irreducible component of X j which intersects the char-
acteristic zero part. Assume that p is a prime sufficiently large with respect to
(k, l, X). Let Fq be a finite field of characteristic p, and let ⌘ be the geometric
generic point of XFq . Suppose that X has dimension at least (3l + 1)/2. Let � be a
k-tuple of characters of F⇥q with Property CGM. Then we have

dimEndV⌘̄
�
K⌘̄
�

= dimEndU⌘̄
�
R⇤⌘̄
�
.

Proof. Since the assertion is geometric, we may replace Fq by a finite extension
that is a residue field of the base OK [1/N ] of the “spread-out” perspective. The
equality then follows, when the characteristic of Fq is sufficiently large in terms of
(k, l, X), by combining Proposition 13.3, Lemma 13.2 and Proposition 13.5.

14. Conclusion of the proof

We recall that we want to prove Theorem 7.7, which we restate for convenience:

Theorem 14.1. Assume that � has NIO. If p is large enough, depending only on
k, l, then for any b 2 A2l(Fq)�W(Fq), the natural morphism ✓b is an isomorphism.

Furthermore, each irreducible component ofR⇤b has rank greater than one.

Proof. Since � has NIO, by Lemma 6.3 there exists a character ⇠ , possibly over a
finite extension Fq⌫ of Fq , such that � 0 = ⇠� has CGM over Fq⌫ . Consider � as a
tuple of characters of F⇥q⌫ . Then K`k, (� 0) = L⇠ ⌦K`k, (�), and it follows that
the auxiliary sheaves K and R⇤ for � are obtained from those associated to � 0 by
twisting by a rank 1 sheaf L⇠ ((r + b1) . . . (r + bl)(r + b�1l+1) . . . (r + b2l)�1). Then
the corresponding endomorphism rings (and the morphism ✓b) are the same for �
and � 0. Up to renaming the field, this implies that we may as well assume that �
has CGM over Fq .
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Let b 2 A2l(Fq) �W(Fq) be a point. Let j be the minimum j such that
b 2 X j . Let X be an irreducible component of X j containing j . By taking q
sufficiently large, we may assume that X intersects the characteristic zero part. As
the set of irreducible components is finite and depends only on k, l, the minimum
value for q depends only on k, l.

If the dimension of X is less than (3l + 1)/2, then b 2 X ✓W .
Otherwise, let ⌘ be the generic point of X . Then by Theorem 13.6, taking q

sufficiently large,
dimEndV⌘̄

�
K⌘̄
�

= dimEndU⌘̄
�
R⇤⌘̄
�
.

BecauseW1 has dimension6 l + 1, and dim X > (3l + 1)/2 > l + 1 as l > 1, ⌘ is
not contained inW1. By Lemma 10.1, Z is finite étale over X j � X j�1. Because
the bi are sections of Z , and b is a specialization of ⌘ inside X j � X j�1, any two of
the bi which are unequal over ⌘ must remain unequal over b, so b 62W1.

So by Theorem 9.1, the natural map

✓b : EndVb
�
Kb
�
! EndUb

�
R⇤b
�

is injective, hence by Proposition 10.3, ✓b is an isomorphism.
Each irreducible component of R⇤b is the image of an idempotent element of

EndUb(R⇤b), which because ✓b is an isomorphism is induced by an idempotent el-
ement of EndVb(Kb), and thus is equal to the weight one part of the cohomology
of the image of that idempotent element of EndVb(Kb). In other words, it is the
weight one part of the cohomology of an irreducible component of Kb. Hence by
Lemma 9.6, its rank is at least two.

We finally can conclude the proof by showing how Theorem 14.1 allows us
to give the estimates for complete sums used in the proof of our main theorems.
In both cases, we use the fact (as remarked before the statements of Theorem 4.5
and 4.6) that we may assume that the function K is Klk(x;�, q). By Lemma 7.1
and the Grothendieck-Lefschetz trace formula, for any b 62 V1, the function R
is equal to minus the trace function of the sheaf R, if the additive character  is
chosen so that  (x) = e(x/q) for x 2 Fq .

Proof of Theorem 4.5. We have defined V1 andW , and they satisfy the codimen-
sion bounds stated in the theorem (see (7.2)).

We need to estimate the complete sums

6I I (b) =
X

r2Fq
|R(r, b)|2 �

X

s2F⇥q

X

r2Fq
|K(sr, sb)|2

for b 2 F2lq . Since Klk is bounded, we have 6I I (b) ⌧ q3 for all b, which is the
trivial bound (4.4).

If b 2 W(Fq) and b /2 V1(Fq), then we obtain 6I I (b) ⌧ q2 by estimating
the two terms in 6I I separately, and using the Riemann Hypothesis together with
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the fact that theR-sheaf is mixed of weights 6 1 on A2l � V1, and the K-sheaf is
pure of weight 0. This proves (4.5).

Now assume that b /2 W(Fq). By Theorem 14.1, the Frobenius-equivariant
map

✓b : EndVb(Kb)! EndUb
�
R⇤b
�

is an isomorphism. In particular the Frobenius automorphism of Fq has the same
trace on both spaces. The trace on EndUb(R⇤b) is, by the Grothendieck-Lefschetz
trace formula, equal to X

r2Fq
|R(r, b)|2 + O

�
q3/2

�
,

where the error term arises from the contribution of the H1c -cohomology and of the
weight < 1 part ofR. Similarly, the trace of Frobenius on EndVb(Kb) is equal to

X

s2F⇥q

X

r2Fq
|K(sr, sb)|2 + O

�
q3/2

�
,

where the error term arises from the contribution of the H1c -cohomology. Compar-
ing, we obtain (4.6).

It remains to observe that, in all these estimates, the implied constant depends
only on the sum of the Betti numbers of the relevant sheaves. These are estimated
in the usual way by reducing to expressions as exponential sums and applying the
Betti number bounds of Bombieri-Katz (see [19, Theorem 12] and [21, Proposition
4.24] for the analogue argument in our previous paper).

Proof of Theorem 4.6. We recall that we need to estimate

6I (b) =
X

r2Fq
R(r, b)

(see (4.10)). Since Klk is bounded, we have 6I (b) ⌧ q2 for all b, which is the
trivial bound (4.12).

If b 2 W(Fq) and b /2 V1(Fq), then we obtain 6I (b) ⌧ q3/2 because the
R-sheaf is of weights 6 1 on A2l � V1. This proves (4.13).

Finally, if b /2 W(Fq), then we obtain 6I (b) ⌧ q straightforwardly from
Deligne’s Riemann Hypothesis, since R⇤ is of weight 1 and has no geometrically
trivial irreducible component (by Theorem 14.1 it does not even have rank 1 com-
ponents), proving (4.14).

Again, the implied constants in these estimates depend only on the sum of the
Betti numbers of the relevant sheaves, and are estimated by reducing to expressions
as exponential sums and applying the Betti number bounds of Bombieri-Katz [19].
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miers, Ann. Sci. Éc. Norm. Sup. (4) 31 (1998), 93–130.

[12] J. B. FRIEDLANDER and H. IWANIEC, Incomplete Kloosterman sums and a divisor prob-
lem (with an appendix by B. J. Birch and E. Bombieri), Ann. of Math. (2) 121 (1985),
319–350.
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