

On the Luo-Yin results concerning Gevrey regularity and analyticity for Camassa-Holm-type systems

LEI ZHANG AND BIN LIU

Abstract. Luo and Yin established a generalized Ovsyannikov theorem in [1]. However, Lemma 3.7 on which Theorem 3.1 is crucially based is incorrect. In this note, we present a sufficient condition to Lemma 3.7 to ensure that Theorem 3.1 remains true. The cost is that the life-span of solutions will be smaller.

Mathematics Subject Classification (2010): 35A10 (primary); 34A34 (secondary).

In [1], Luo and Yin established a generalized Ovsyannikov theorem (see [1, Theorem 3.1]). However, Lemma 3.7 on which Theorem 3.1 is crucially based is incorrect. More precisely, the integral $\int_0^t \frac{\|u(\tau)\|_{\delta(\tau)}}{(\delta(\tau) - \delta)^\sigma} d\tau$ on the right hand side of (3.6) in [1] is not well-defined, and hence the proof is incorrect. Fortunately, we find a new condition (see (1.1) below) which ensures that $u(\tau) \in X_{\delta(\tau)}$, and so the proof of Lemma 3.7 remains true.

[1, Lemma 3.7] can be revised as follows.

Lemma 3.7 (revised). *Let $\sigma \geq 1$. For every $a > 0$, $u \in E_a$, $0 < \delta < 1$, and*

$$0 \leq t < D_\sigma \frac{a(1-\delta)^\sigma}{2^{\sigma+1}}, \quad (1.1)$$

with $D_\sigma \triangleq \frac{1}{2^\sigma - 2 + \frac{1}{2^{\sigma+1}}}$, we have

$$\int_0^t \frac{\|u(\tau)\|_{\delta(\tau)}}{(\delta(\tau) - \delta)^\sigma} d\tau \leq \frac{a2^{2\sigma+3}\|u\|_{E_a}}{(1-\delta)^\sigma} \sqrt{\frac{a(1-\delta)^\sigma}{a(1-\delta)^\sigma - t}}, \quad (1.2)$$

where

$$\delta(\tau) = \frac{1}{2}(1+\delta) + \left(\frac{1}{2}\right)^{2+\frac{1}{\sigma}} \left\{ \left[(1-\delta)^\sigma - \frac{\tau}{a}\right]^{\frac{1}{\sigma}} - \left[(1-\delta)^\sigma + (2^{\sigma+1}-1)\frac{\tau}{a}\right]^{\frac{1}{\sigma}} \right\} \in (\delta, 1).$$

This work was partially supported by the National Natural Science Foundation of China (No.11701198, No.11571126, No.11971185) and the Fundamental Research Funds for the Central Universities (No.5003011025).

Received July 26, 2018; accepted August 30, 2019.
 Published online December 2020.

Proof. We first verify that the norm $\|u(\tau)\|_{\delta(\tau)}$ is well-defined, for all $0 \leq \tau \leq t < D_\sigma \frac{a(1-\delta)^\sigma}{2^{\sigma+1}}$. Indeed, it follows from (1.1) that

$$0 \leq t < \frac{1}{2^{\sigma+1}} \frac{2^\sigma - 1}{2^\sigma - 2 + \frac{1}{2^{\sigma+1}}} \frac{a(1-\delta)^\sigma}{2^\sigma - 1} \leq \frac{a(1-\delta)^\sigma}{2^\sigma - 1}.$$

So we can use [1, Lemma 3.6] and obtain

$$(1 - \delta(\tau))^\sigma \geq \frac{1}{2^{\sigma+1}} \left((1 - \delta)^\sigma - \frac{\tau}{a} \right) + \frac{\tau}{a} = \frac{(1 - \delta)^\sigma}{2^{\sigma+1}} + \left(1 - \frac{1}{2^{\sigma+1}} \right) \frac{\tau}{a}. \quad (1.3)$$

By using condition (1.1), we have

$$\frac{(1 - \delta)^\sigma}{2^{\sigma+1}} > \frac{\tau}{a} \left(2^\sigma - 2 + \frac{1}{2^{\sigma+1}} \right). \quad (1.4)$$

Combing (1.3) and (1.4) leads to

$$(1 - \delta(\tau))^\sigma > \frac{\tau}{a} (2^\sigma - 1).$$

From the definition of the norm $\|\cdot\|_{\delta(\tau)}$, we find that $u(t) \in X_{\delta(\tau)}$. The rest of the proof is the same as [1, Lemma 3.7], and we omit the details here. \square

Even though the condition (1.1) keeps Lemma 3.7 to be valid, the life-span of the solutions will be smaller. For completeness, we give the sketch of proof for Theorem 3.1 by modifying the arguments in [1].

Theorem 3.1 (revised). *Let $\{X_\delta\}_{0 < \delta < 1}$ be a scale of decreasing Banach spaces, namely, for any $\delta' < \delta$ we have $\|\cdot\|_{\delta'} \leq \|\cdot\|_\delta$. Consider the Cauchy problem*

$$\begin{cases} \frac{du}{dt} = F(t, u(t)) \\ u|_{t=0} = u_0. \end{cases} \quad (1.5)$$

Let $T, R > 0, \geq 1$. For given $u_0 \in X_1$, assume that F satisfies the following conditions:

- (1) *If for $0 < \delta' < \delta < 1$ the function $tu(t)$ is holomorphic in $|t| < T$ and continuous on $|t| < T$ with values in X_δ and*

$$\sup_{|t| < T} \|u(t)\|_\delta < R$$

then $t \rightarrow F(t, u(t))$ is a holomorphic function on $|t| < T$ with values in X_δ ;

- (2) For any $0 < \delta' < \delta < 1$ and any $u, v \in \overline{B(u_0, R)} \subset X_\delta$, there exists a positive constant L depending on u_0 and R such that

$$\sup_{|t| < T} \|F(t, u) - F(t, v)\|_\delta \leq \frac{L}{(\delta - \delta')^\sigma} \|u - v\|_\delta;$$

- (3) For any $0 < \delta < 1$, there exists a positive constant M depending on u_0 and R such that

$$\sup_{|t| < T} \|F(t, u_0)\|_\delta \leq \frac{M}{(1 - \delta)^\sigma}.$$

Then there exist a $T_0 \in (0, T)$ and a unique solution $u(t)$ to the Cauchy problem (1.5), which for every $\delta \in (0, 1)$ is holomorphic in $|t| < D_\sigma \frac{T_0(1-\delta)^\sigma}{2^{\sigma+1}}$ with values in X_δ . Indeed,

$$T_0 = \min \left\{ \frac{1}{2^{2\sigma+4}L}, \frac{2^{\sigma+1}R}{2^{\sigma+1}2^{2\sigma+3}LR + MD_\sigma} \right\}, \quad D_\sigma = \frac{1}{2^\sigma - 2 + \frac{1}{2^{\sigma+1}}}.$$

Proof of Theorem 3.1. By following the same method in [1], we just give the sketch of proof. For any $a > 0$ and $u(t) \in \overline{B(u_0, R)} \in E_a$, we define

$$G(u(t)) \triangleq u_0 + \int_0^t F(\tau, u(\tau)) d\tau, \quad 0 \leq t < D_\sigma \frac{a(1-\delta)^\sigma}{2^{\sigma+1}},$$

where D_σ is defined in the revised Lemma 3.7.

Step 1: Similarly to [1], we have

$$\|G(u(t)) - u_0\|_\delta \leq \frac{a2^{2\sigma+3}LR}{(1-\delta)^\sigma} \sqrt{\frac{a(1-\delta)^\sigma}{a(1-\delta)^\sigma - t}} + \frac{tM}{(1-\delta)^\sigma},$$

which implies that

$$\|G(u(t)) - u_0\|_{E_a} \leq a2^{2\sigma+3}LR + \frac{aM}{2^{\sigma+1}}D_\sigma.$$

By choosing $a \leq \frac{2^{\sigma+1}R}{2^{\sigma+1}2^{2\sigma+3}LR + MD_\sigma}$, the G maps E_a into itself.

Step 2: Similarly to [1], we have $\|G(u(t)) - G(v(t))\|_{E_a} \leq \frac{1}{2}\|u - v\|_{E_a}$ for any $a \leq \frac{1}{2^{2\sigma+4}L}$. So G is a contraction map on $\overline{B(u_0, R)} \subseteq E_a$.

Step 3: By choosing

$$a \leq T_0 = \min \left\{ \frac{1}{2^{2\sigma+4}L}, \frac{2^{\sigma+1}R}{2^{\sigma+1}2^{2\sigma+3}LR + MD_\sigma} \right\},$$

the map G has a unique fixed point in $\overline{B(u_0, R)} \in E_a$. Moreover, the unique solution is holomorphic in $|t| < D_\sigma \frac{T_0(1-\delta)^\sigma}{2^{\sigma+1}}$. \square

Remark. Notice that the lower bound of life-span $D_\sigma \frac{T_0(1-\delta)^\sigma}{2^{\sigma+1}}$ is smaller than that obtained in [1, Theorem 3.1], which is caused by the additional condition (1.1).

References

- [1] W. LUO and Z. YIN, *Gevrey regularity and analyticity for Camassa-Holm type systems*, Ann. Sc. Norm. Super. Pisa Cl. Sci. **18** (2018), 1061–1079.

School of Mathematics and Statistics
Hubei Key Laboratory of Engineering Modeling
and Scientific Computing
Huazhong University of Science and Technology
Wuhan 430074
Hubei, P.R. China
lei_zhang@hust.edu.cn
binliu@mail.hust.edu.cn