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On the Luo-Yin results concerning Gevrey regularity
and analyticity for Camassa-Holm-type systems

LEI ZHANG AND BIN LIU

Abstract. Luo and Yin established a generalized Ovsyannikov theorem in [1].
However, Lemma 3.7 on which Theorem 3.1 is crucially based is incorrect. In this
note, we present a sufficient condition to Lemma 3.7 to ensure that Theorem 3.1
remains true. The cost is that the life-span of solutions will be smaller.
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In [1], Luo and Yin established a generalized Ovsyannikov theorem (see [1, The-
orem 3.1]). However, Lemma 3.7 on which Theorem 3.1 is crucially based is in-
correct. More precisely, the integral

R t
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ku(⌧ )k�(⌧ )

(�(⌧ )��)� d⌧ on the right hand side of (3.6)
in [1] is not well-defined, and hence the proof is incorrect. Fortunately, we find a
new condition (see (1.1) below) which ensures that u(⌧ ) 2 X�(⌧ ), and so the proof
of Lemma 3.7 remains true.

[1, Lemma 3.7] can be revised as follows.
Lemma 3.7 (revised). Let � � 1. For every a > 0, u 2 Ea , 0 < � < 1, and
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Proof. We first verify that the norm ku(⌧ )k�(⌧ ) is well-defined, for all 0  ⌧  t <

D�
a(1��)�

2�+1 . Indeed, it follows from (1.1) that
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.

So we can use [1, Lemma 3.6 ] and obtain
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By using condition (1.1), we have
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◆
. (1.4)

Combing (1.3) and (1.4) leads to

(1� �(⌧ ))� >
⌧

a
�
2� � 1

�
.

From the definition of the norm k · k�(⌧ ), we find that u(t) 2 X�(⌧ ). The rest of the
proof is the same as [1, Lemma 3.7], and we omit the details here.

Even though the condition (1.1) keeps Lemma 3.7 to be valid, the life-span of
the solutions will be smaller. For completeness, we give the sketch of proof for
Theorem 3.1 by modifying the arguments in [1].

Theorem 3.1 (revised). Let {X�}0<�<1 be a scale of decreasing Banach spaces,
namely, for any �0 < � we have k · k�0  k · k� . Consider the Cauchy problem

8
<

:

du
dt

= F(t, u(t))

u|t=0 = u0.
(1.5)

Let T , R > 0, � 1. For given u0 2 X1, assume that F satisfies the following
conditions:

(1) If for 0 < �0 < � < 1 the function tu(t) is holomorphic in |t | < T and
continuous on |t | < T with values in Xs and

sup
|t |<T

ku(t)k� < R

then t ! F(t, u(t)) is a holomorphic function on |t | < T with values in X�;
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(2) For any 0 < �0 < � < 1 and any u, v 2 B(u0, R) ⇢ X� , there exists a positive
constant L depending on u0 and R such that
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|t |<T

kF(t, u) � F(t, v)k� 
L

(� � �0)�
ku � vk�;

(3) For any 0 < � < 1, there exists a positive constant M depending on u0 and R
such that
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M

(1� �)�
.

Then there exist a T0 2 (0, T ) and a unique solution u(t) to the Cauchy prob-
lem (1.5), which for every � 2 (0, 1) is holomorphic in |t | < D�
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2�+1 with
values in X� . Indeed,
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Proof of Theorem 3.1. By following the same method in [1], we just give the sketch
of proof. For any a > 0 and u(t) 2 B(u0, R) 2 Ea , we define

G(u(t)) , u0 +
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0
F(⌧, u(⌧ ))d⌧, 0  t < D�

a(1� �)�

2�+1 ,

where D� is defined in the revised Lemma 3.7.
Step 1: Similarly to [1], we have
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which implies that

kG(u(t)) � u0kEa  a22�+3LR +
aM
2�+1 D� .

By choosing a  2�+1R
2�+122�+3LR+MD�

, the G maps Ea into itself.

Step 2: Similarly to [1], we have kG(u(t)) � G(v(t))kEa  1
2ku � vkEa for any

a  1
22�+4L . So G is a contraction map on B(u0, R) ✓ Ea .

Step 3: By choosing

a  T0 = min

(
1

22�+4L
,

2�+1R
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)

,

the map G has a unique fixed point in B(u0, R) 2 Ea . Moreover, the unique
solution is holomorphic in |t | < D�

T0(1��)�

2�+1 .



1744 LEI ZHANG AND BIN LIU

Remark. Notice that the lower bound of life-span D�
T0(1��)�

2�+1 is smaller than that
obtained in [1, Theorem 3.1], which is caused by the additional condition (1.1).
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