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On the theory of the Kolmogorov operator
in the spaces L p and C1
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Abstract. We establish the basic results concerning the problem of constructing
operator realizations of the formal differential expression r · a · r � b · r with
measurable matrix a and vector field b having critical-order singularities as the
generators of Markov semigroups in L p and C1.
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1. Introduction

Let Ld be the Lebesgue measure on Rd , d � 3. Let � be an open set in Rd . Our
object of study is the formal differential operator

(�r ·a ·r +b ·r)u(x) = �
dX

i,k=1
@xi
�
aik(x)@xk u(x)

�
+

dX

i=1
bi (x)@xi u(x), x 2 �.

Under rather general assumptions on the matrix a,

a = a⇤ : � ! Rd ⌦ Rd , a 2
⇥
L1loc(�,Ld)

⇤d⇥d
,

� I  a(x) for some constant � > 0 and Ld a.e. x 2 �, (H1)

we will construct by means of the theory of quadratic forms in Hilbert spaces three
operator realizations AD, AiD, AN of�r ·a ·r in L2 = L2(�,Ld). Each of these
realizations is the (minus) generator of a symmetric Markov semigroup and inherits
some basic properties of the classical Dirichlet and Neumann extensions of �1.
Let A denote one of these operators and let {e�t Ar , t � 0}1r<1 be the collection
of consistent (e�t Ap � L p \ Lq = e�t Aq � L p \ Lq , 1  p, q < 1, A2 ⌘ A) C0
semigroups on the scale [1,1[ of Lr spaces.

For any Ld measurable b : � ! Rd we define in Lr the maximal operator
Br � b · r of domain { f 2 Lr \ W 1,1

loc (�) | b · r f 2 Lr }.
1. Assuming that

ba :=
p
b · a�1 · b 2 Ld + L1, (Cd )

we will prove, essentially using specific properties of the symmetric Markov semi-
group e�t A and the structure of Br , that Br is Ar bounded (with relative bound
zero) in Lr for all r 2]1, 2d

d+2 ].

The interval ]1, 2d
d+2 ] cannot be enlarged to [1, 2d

d+2 ] under the assumption
(Cd).

By means of the standard tools of the perturbation theory for linear opera-
tors one concludes that the algebraic sum Ap + Bp of domain D(Ap) \ D(Bp),
p 2]1, 2d

d+2 ] is the (minus) generator of a quasi bounded C0 semigroup in L
p, say

3p ⌘ 3p(a, b). Moreover, essentially using specific properties of the symmetric
Markov semigroup e�t A, we will prove that T tp := e�t3p is a Markov semigroup
(i.e., positivity preserving, quasi contraction, L1 contraction C0 semigroup), so the
whole family {T tr }1<r<1 is well defined. Let�3r denote the generator of T tr . Then

1) 3r � Ar + Br , 1 < r < 1 and 3r = Ar + Br only for r 2]1, 2d
d+2 ].

2) In place of A one can substitute the form-sum A+̇V provided that V f (x) =

V (x) f (x), V is Ld measurable, 0  V and D(A
1
2 ) \ D(V

1
2 ) is dense in L2. The

simplest sufficient condition is V 2 L1loc, see, however, the example in [33].
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2. In order to treat more singular b’s we introduce the class F�(A) of form-
bounded vector fields. We say that b : � ! Rd belongs to F�(A), and write
b 2 F�(A) if and only if b is Ld measurable, b2a 2 L1loc and there are constants
� > 0, 0  � < 1 such that

kba(�+ A)�
1
2 k2!2 

p
�.

Under the following assumptions on (a, b) :

a 2 (H1), b 2 F�(A), � < 4, and b2a 2 L1 + L1 (⇤)

we will construct an operator realization3r (a, b) of�r ·a ·r+b·r in Lr for every
r 2 Ic := [ 2

2�
p
�
,1[ such that �3r (a, b) is the generator of a Markov semigroup.

This semigroup is holomorphic for r 2 I oc :=] 2
2�

p
�
,1[. For every r 2 I oc ,

e�t3r (a,b) := s-Lr - lim
n"1

e�t3r (a,bn), (⇤⇤)

where bn := 1nb, 1n denotes the characteristic function of the set {x 2 � | ba(x) 
n};

ke�t3r (a,b)kr!q  cet!r t�( 1r � 1
q ) d2 , !r =

��

2(r � 1)
, r < q  1, r 2 Ic;

The interval Ic is called the interval of contraction solvability.
Note that any b satisfying the assumption (Cd) belongs also to F0(A) :=T

�>0 F�(A). In particular, for each n = 1, 2, . . . , bn satisfies (Cd) and belongs
to F�(A). Again, in place of A one can substitute A+̇V provided that V is Ld
measurable, 0  V and D(A

1
2 ) \ D(V

1
2 ) is dense in L2.

For 0 < � < 1, (⇤⇤) can be viewed as a (fundamental) property of the semi-
group e�t3r (a,b), however, for 1  � < 4, (⇤⇤) becomes the principal means of
construction of e�t3r (a,b).

Next, we will prove that for more regular matrices the constraint b2a 2 L1+L1

in (⇤) is superfluous. This is true in particular for any a 2 (Hu), the class of
uniformly elliptic matrices (i.e., a 2 (H1) and a(x)  ⇠ I for some constant ⇠ and
Ld a.e. x 2 �).

Moreover, it will be shown that if

(a, b) = (a 2 (Hu), b 2 F�(A), � < 4),

then, e�t3p(a,b) � Lr \ L p, p 2 I oc , extends to a bounded holomorphic semigroup
in Lr for each r 2 Im � Ic, where Im :=] 2

2� d�2
d

p
�
,1[. 1

1 The maximal interval of quasi bounded solvability for A � V , with 0  V  �A + c(�), 0 <

� < 1, is Îm :=]r(�), r 0(�)[, r 0(�) := 2
1�

p
1��

d
d�2 . This was proved in 1995 by Yu.A. Semënov,

based on ideas set forth in [31]. The fact that the semigroup associated with the Schrödinger
operator �1� V , V 2 L

d
2 ,1, can be extended to a C0 semigroup on Lr (Rd ) for every r 2 Îm

was first observed in [17].
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We will present examples of (a, b) which show that Ic, Im are maximal, as
well as examples of (a, b) = (a 2 (Hu), b 2 F�(A), � > 4) which show that the
constraint � < 4 has direct bearing on the subject matter.

The class F�(A) contains vector fields b having critical-order singularities:
the basic properties of 3r (a, b) (including the smoothness of D(3r (a, b))) ex-
hibit quantitative dependence on the value of � (note that b 2 F�(A) if and only
if cb 2 Fc2�(A), c > 0, so � effectively plays the role of a “coupling constant” for
b · r). See examples in Sections 4 and 5.

Now consider the following assumption on (a, b) :

a 2 (H1) and b 2 F�(A), � < 1

(removing in (⇤) the constraint b2a 2 L1 + L1 but restricting the range of �).
Using old ideas of J.-L. Lions and E.Hille we will construct in L2 a Markov

semigroup e�t3(a,b), which possesses some important properties:

e�t3r (a,b) = s-Lr - lim
n"1

e�t3r (a,bn), (2  r < 1)

whenever {bn} ⇢ F�(A) and bn ! b Ld a.e.

ke�t3r (a,b)kr!q  cet!r t�( 1r � 1
q ) d2 , !r =

��

2(r � 1)
, 2  r < q  1.

3 � A + B, D(3) ⇢ D(A
1
2 ), the resolvent set of �3 containsO := {⇣ | Re ⇣ >

�}.

(⇣ +3)�1 = (⇣ + A)�
1
2 (1+ T⇣ )�1(⇣ + A)�

1
2 , kT⇣k2!2 

p
� (⇣ 2 O).

Under more restrictive assumption on (a, b),

a 2 (Hu) and b 2 F�(A), � < 1,

the results obtained above by different techniques are unified. In particular, the
interval [2,1[ extends to Ic and Im .

It is useful (in some cases necessary) to have the convergence

e�t3r (a,b) = s-Lr - lim
n"1

e�t3r (an,bn),

where a, an 2 (H1), b 2 F�(A), bn 2 F�(An), � < 4, an, bn bounded and smooth,
and an ! a, bn ! b Ld a.e.

We prove this convergence, although under the additional constraints a 2 (Hu)
and � < 1. To make this result unconditionalwe need to address the following prob-
lem: Given (a, b) = (a 2 (Hu), b 2 F�(A)), to construct (an, bn) with the claimed
properties. In the simplest case � = Rd , a = an = I we solve the problem
by simply putting bn = En(b1�n ), where �n = B(0, n) and En f = e"n1 f or
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En f := �"n ⇤ f, �"n is the K. Friedrichs mollifier, with evident modifications for
� ⇢ Rd . (� =

S
n �n, �n b �n+1, �n are open and bounded).

We also mention the following result. Set ri u(x) := @xi u(x), (ra)k =
Pd

i=1(ri aik) and b := (ra), so formally �r · a · r + b · r = �a · r2 (⌘
�
Pd

i,k aikrirk). Set an = Ena, bn := (ran). Fix � < 1. Then b 2 F�(A) )
bn 2 F�(An) provided that the matrix a 2 (Hu) is diagonal and |b| 2 L2 + L1.

3. LetC1 = C1(Rd) denote the space of all continuous functions vanishing at
infinity endowed with the sup-norm. Our next concern is: to find a subclass of (Hu)
and constraints on � which allow to construct in C1 a C0 semigroup associated
with �r · a · r + b · r whenever b 2 F�(A).

As the first step we consider the case

(a, b) = (I, b 2 F� ⌘ F�(�1)) with
p
� < 1 ^

2
d � 2

, d � 3.

The constraint on � allows to establish the following fundamental fact [18]:

(⇣ +3q)
�1Lq ⇢ W 1,q j , ⇣ 2 ⇢(�3q), j =

d
d � 2

, (?)

whenever q 2
⇤
2_ (d � 2), 2p

�

⇥
(⇢ I oc ). In particular, e�t3r Lr ⇢ C0,1�

d
q j for any

r 2
i

2
2�

p
�
, q
i
.

Note that (?) is a “trivial” fact only for (d, q) = (3, 2). Indeed, (b 2 F�, � <
1) implies that 32 = �1+ b · r, D(32) = W 2,2 ⇢ W 1,2 j . Thus, if d = 3, then
(⇣ + 32)

�1L2 ⇢ W 1,6 ⇢ C0,
1
2 . However, already for d = 4, (⇣ + 32)

�1L2 ⇢
W 1,p, p = d, not p > d.

We emphasize that the assumption b 2 F� does not guarantee W 2,r estimates
on (⇣ + 3r )

�1Lr for r large enough to conclude that, for any t > 0, e�t3r Lr ⇢
C0,↵.

We will also discuss the analogue of (?) for (a, b 2 F�(A)), a(x) = I +
c|x |�2x ⌦ x , c > �1.

Armed with (?) we will prove that

s-C1- lim
n"1

e�t3C1 (bn), bn = En(b1B(0,n))

exists uniformly in t 2 [0, 1], and hence determines a C0 semigroup e�t3C1 (a
Feller semigroup), whose generator is an appropriate realization of 1 � b · r on
C1. (This result has been established in [18] under the additional assumption |b| 2
L2 + L1.) We emphasize that in general there is no direct connection between
3C1 and the algebraic sum �1+ b · r even for b 2 [L1]d � [C]d . In particular,
C1
c 6⇢ D(3C1). The same remark applies to 3r , r > 2, whenever |b| 2 Lq � Lr ,

q < r .
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4. Next, consider the case (� = Rd )

(a, b) = (I, b 2 F
1
2
� ) with � < 1, d � 3.

By definition, b 2 F1/2� if and only if |b| 2 L1loc and there exists 0  � = �� and

k|b|
1
2 (��1)�

1
4 k2!2 

p
�.

Recalling the definition of the Kato class Kd+1
� : k|b|(� � 1)�

1
2 k1!1  �, it is a

simple matter to conclude that Kd+1
� ⇢ F1/2� while

T
�>0K

d+1
� �

S
�<1 F� 6= ?.

Taking into account that by interpolation, F�2 ⇢ F1/2� , it is clear that F�2 $ F1/2� .
To deal with such general class of vector fields we will again use ideas of

E. Hille and J.-L. Lions (alternatively, ideas of E. Hille and H.F. Trotter) to con-
struct the generator �3 ⌘ �3(b) (an operator realization of 1 � b · r) of a
quasi bounded holomorphic semigroup in L2. This operator has some remarkable
properties. Namely, ⇢(�3) � O := {⇣ | Re ⇣ > �}, and, for every ⇣ 2 O,

(⇣ +3)�1 =J 3⇣ (1+ H⇤
⇣ S⇣ ))

�1 J⇣
=J 4⇣ � J 3⇣ H

⇤
⇣ (1+ S⇣ H⇤

⇣ )�1S⇣ J⇣ ;

kH⇤
⇣ S⇣k �, k(⇣ +3)�1k2!2  |⇣ |�1(1� �)�1;

ke�t3r kr!q c et�t�
d
2 ( 1r � 1

q )
, 2  r < q  1;

where J⇣ := (⇣ �1)�
1
4 , H⇣ := |b|

1
2 J⇣̄ , S := b

1
2 · r J 3⇣ , b

1
2 := |b|�

1
2 b.

(In particular, D(3) ⇢ W 3
2 ,2, the Bessel potential space. In this regard,

we note that the Kato-Lions-Lax-Milgram-Nelson Theorem applied to the opera-
tor �1+ b · r requires b 2 F� , � < 1, a more restrictive assumption, while giving
a weaker regularity result: D(3) ⇢ W 1,2).

As in the case b 2 F� , it is reasonable to expect that there exists a quantitative
dependence between the value of � and smoothness of the solutions to the equation
(⇣ +3r )u = f, ⇣ 2 ⇢(�3r ), f 2 Lr . Such a dependence does exist. Set

md := ⇡
1
2 (2e)�

1
2 d

d
2 (d � 1)�

d�1
2 , d :=

d
d � 1

, r⌥ :=
2

1±
p
1� md�

.

It will be established that if b 2 F1/2� and md� < 1, then (e�t3r (b), r 2 [2,1[) ex-
tends by continuity to a quasi bounded C0 semigroup in Lr for all r 2]r�,1[.
For every r 2 Is :=]r�, r+[, the semigroup is holomorphic, the resolvent set
⇢(�3r (b)) contains the half-plane O := {⇣ 2 C | Re ⇣ > d��}, and the re-
solvent admits the representation

(⇣ +3r (b))�1 = (⇣ �1)�1 � Qr (1+ Tr )�1Gr , ⇣ 2 O, (??)

where Qr ,Gr , Tr are bounded linear operators on Lr ; D(3r (b))⇢W 1+ 1
q ,r

(q>r).
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In particular, for md� < 4 d�2
(d�1)2 , there exists r 2 Is, r > d � 1, such that

(⇣ +3r (b))�1Lr ⇢ C0,� , � < 1� d�1
r .

The results above yield the following: Let b 2 F1/2� for some � such thatmd� <

4 d�2
(d�1)2 . Let {bn} be any sequence of bounded smooth vector fields, such that bn !

b strongly in L1loc, and, for a given " > 0 and some �1 2]�, �+ "], {bn} ⇢ F1/2�1 with
� 6= �(n). Then

s-C1- lim
n"1

e�t3C1 (bn) (? ? ?)

exists uniformly in t 2 [0, 1], and hence determines a C0 semigroup e�t3C1 (b).
The results (??), (? ? ?) can be obtained via direct investigation in Lr of the

operator-valued function 2r (⇣, b) defined by the right hand side of (??) without
appealing to L2 theory (but again appealing to the ideas of E. Hille and H. F. Trotter)
[12].

There is an extensive literature on regularity of solutions to elliptic and para-
bolic equations having unbounded coefficients that are smooth outside of a discrete
set, see, in particular, [1, 3, 7, 23–27, 30] and references therein. In this work we
adhere to the principle that the regularity properties of solutions should depend on
the integral characteristics of the coefficients (here, on the relative bound �). Thus,
as a by-product, we allow coefficients to be discontinuous (unbounded), e.g., on a
dense set.

In the next parts of this work we will extend our regularity results in the spaces
L p and C1 to the operator A + b · r, and with time-dependent coefficients a, b.

ACKNOWLEDGEMENTS. We are grateful to the anonymous referee for a number of
valuable comments that helped us to improve the paper.

2. Markov generators associated with �r · a · r

Throughout the paper we denote by B(X,Y ) the space of bounded linear operators
between complex Banach spaces X ! Y , endowed with the operator norm k ·
kX!Y ; B(X) := B(X, X). Set k · kp!q := k · kL p!Lq .

1. Let X be a set and µ a measure on X. Fix p 2 [1,1[.A C0 semigroup T t , t � 0,
of quasi contractions on L p = L p(X, µ) (i.e. kT t f kp  e!ptk f kp, f 2 L p) is
called Markov if, for each t > 0,

T t L p+ ⇢ L p+, (i)

( f 2 L p, | f |  1) ) |T t f |  1. (ii)

With each Markov semigroup T t we associate a collection {T tr }pr<1 of consistent
quasi contraction C0 semigroups on the scale [p,1[ of Lr spaces as follows.
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Since kT tkp!p  e!pt and kT t f k1  k f k1 ( f 2 L p \ L1), by the Riesz
Interpolation Theorem, kT t f kr  e

p
r !ptk f kr ( f 2 L p \ L1) for all r 2 [p,1].

Since L p \ L1 is a dense subspace of Lr for each r 2 [p,1[, T t � L p \ L1 :
Lr ! Lr extends by continuity to a semigroup in Lr :

T tr := (T t � L p \ L1)closLr!Lr .

Next, by Hölder’s inequality:

k(T tr � 1) f kr  2k f k1�
p
r

1 k(T t � 1) f k
p
r
p ( f 2 L p \ L1),

and hence we see that T tr is strongly continuous.
Set T tp := T t . Then T tr and T tq , r, q 2 [p,1[ are consistent:

T tr � Lr \ Lq = T tq � Lr \ Lq .

Let �Ar denote the generator of T tr and A := Ap. Then

Ar � D(Ar ) \ D(Aq) = Aq � D(Ar ) \ D(Aq) (p  r, q < 1).

because E := (1+ A)�1[L1 \ L1] is a core of Ar for all r 2 [p,1[.

Definition. Let A � 0 be a self-adjoint operator in L2(X, µ). The semigroup
T t = e�t A, t � 0, is called symmetric Markov if, for all t > 0,

T t L2+ ⇢ L2+, and ( f 2 L2, | f |  1) ) |T t f |  1.

With each symmetric Markov semigroup T t we associate the collection {T tr }1r1
of contraction semigroups defined by

T tr := (T t � L1 \ L1)closLr!Lr (r 2 [1,1[),

T t1 := (T t1 )
⇤.

It is easily seen that the semigroup T tr is strongly continuous for each r 2]1,1[. (It
is also known that T t1 is strongly continuous as well, see, e.g. [22, Proposition 1.8].)
We have Ar � D(Ar ) \ D(Aq) = Aq � D(Ar ) \ D(Aq) (1  r, q < 1).

2. Let � be an open set in Rd , d � 3,

a = a⇤ : � ! Rd ⌦ Rd , a 2
⇥
L1loc(�,Ld)

⇤d⇥d
,

� I  a(x) for some constant � > 0 and Ld a.e. x 2 �. (H1)

One can define at least three realizations of the differential expression �r · a · r
in L2 = L2(�,Ld) as (minus) symmetric Markov generators: AD, AiD, AN , the
Dirichlet, intermediate Dirichlet, and generalized Neumann [32]:
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Let T denote a collection of all closed, symmetric non-negative quadratic
forms in L2. Define the pre-Dirichlet form " by setting

"[u, v] := hru · a · rv̄i, D(") = C1c (�) ⇥ C1c (�),

where
h f i :=

Z

�
f dLd , h f, gi := h f ḡi,

and

ru · a · rv(x) :=
dX

i,k=1
aik(x)@xi u(x)@xkv(x).

Let

TM := {⌧ 2 T | ⌧ $ T, e�sT , s > 0, is a symmetric Markov semigroup}

(⌧ $ T denotes the one to one correspondence (Appendix A)).
Let

TM(") := {⌧ 2 TM | ⌧ � "}.

It is said that ⌧ 2 TM is local if ⌧ [ f, g] = 0 whenever ( f, g) 2 D(⌧ ), f, g � 0, and
f ^ g = 0.

Consider the following extensions of ":

⌧D := "clos (the closure of "),

⌧i D � ⌧D, D(⌧i D) := {u 2 W 1,2
0 (�) | hru · a · rūi < 1},

⌧N � ⌧i D, D(⌧N ) := {u 2 W 1,2(�) | hru · a · rūi < 1}.

Lemma 2.1. ⌧D, ⌧i D, ⌧N 2 TM("), and are local.

Proof. Define

an(·) := � I + (a(·) � � I )
✓
I +

1
n
a(·)

◆�1
, n = 1, 2, . . .

Clearly, � I  an(·)  (n + � )I and an(·)  an+1(·)  a(·) Ld a.e.
Let E = W 1,2

0 (�) or W 1,2(�). Define

⌧ n[u, v] := hru · an · rv̄i, D(⌧ n) = E,

"n[u, v] := hru · an · rv̄i, D("n) = D(").

It is well known that ⌧ n 2 TM("n), and are local (by verifying the Beurling-Deny
conditions, using properties of Sobolev’s spaces, such as “C1(�) \ W 1,2(�) is
dense in W 1,2(�)”, and Fukushima’s test function f✏ = ✏�(✏�1 f ), � is a C1
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function from R to [0,1[, �(0) = 0, |�0(x)|  1 and �(x) = |x | � 1 if |x | � 2;
otherwise, see [8, Sect. 1.4] or [5, Theorems 1.3.5, 1.3.9]).

Define ⌧ by

⌧ [u, v] := lim
n
⌧ n[u, v],

D(⌧ ) := {u 2 E | sup
n

hru · an · rūi < 1}

= {u 2 E | hru · a · rūi < 1}.

By the Monotone Convergence Theorem for a non-decreasing sequence of closed
symmetric non-negative quadratic forms (Appendix A), ⌧ 2 T and, obviously,
⌧ 2 TM(") and is local. Since ⌧ � ", " is closable. Thus ⌧D is well defined. Now
it is clear that ⌧D belongs to TM(") and is local.

Remarks. 1. The operators AD, AiD, AN associated with ⌧D, ⌧i , ⌧N , respec-
tively, possess some nice properties. C1

c (�) is a form core for AD. If A2(a) stands
for AiD or AN , then e�s Ap(a) = s- limn e�s Ap(a

n), p 2]1,1[. At least e�s AD and
e�s AiD have nice embedding properties (L p ! Lq).

2. ⌧D is the maximal element of TM(") endowed with the semi-order ⌧1 �
⌧2 , D(⌧1) � D(⌧2), ⌧1[u]  ⌧2[u], u 2 D(⌧2).

3. b · r is Ar bounded

Let � be an open set in Rd , d � 3, and L p = L p(�,Ld). Let a : � ! Rd ⌦ Rd

be a symmetric Ld measurable strictly positive (a 2 (H1)) matrix. Let b : � ! Cd

be Ld measurable and define Br = Br (b) to be the maximal operator of b · r in
Lr , 1  r < 1, of domain

D(Br ) := {h 2 Lr | |rh| 2 L1loc and b · rh 2 Lr }.

Throughout this section A ⌘ A(a) denotes AD , AiD , AN . In case of AN we also
assume that @� 2 C0,1.

Definition. We say that b · r is Ar bounded if kBr (�+ Ar )�1kr!r < 1 for some
� > 0.
1. Set j := d

d�2 and j
0 = d

2 .

Proposition 3.1. Assume that b2a := b · a�1 · b̄  W + C Ld a.e. for a function
W 2 L j 0 and a non-negative constant C . Then, for every r 2]1, 2d

d+2 ], the operator
Br is Ar bounded and the inequality

kBr (�+ Ar )�1kr!r  4
✓

C
(r � 1)�

◆1/2
+ 4c(r, j)kWk1/2j 0 (� > 0)
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holds with the constant c(r, j) ! 1 as r ! 1. If b2a 2 L1, then the assertion
above is valid for all 1 < r  2. Moreover, for a given ⌘ > 0, we can choose W1,
C1 and then � > 0 such that b2a  W1 + C1 and

4
✓

C1
(r � 1)�

◆1/2
+ 4c(r, j)kW1k

1/2
j 0 < ⌘.

Proof. Set u = (�+ Ar )�1h, h 2 L1 \ L1
+ . Let 1 < p  2. Since u 2 D(Ap) )

u p := u
p
2 2 D(A1/2) (Appendix E, Theorem E.1), we conclude that ru p 2 L2.

(We use that D(A
1
2 ) ⇢ E where E = W 1,2

0 if A = AD or AiD, and E = W 1,2 if
A = AN .) Since 2 � p and u 2 L1,

ru = ru2/pp = (2/p)u
2�p
p

p ru p = (2/p)u
2�p
2 ru p.

Now, |b ·ru|2  b2aru · a ·rū = (2/p)2b2au2�pru p · a ·rū p, and so by Hölder’s
inequality,

kb · ruk2r  (2/p)2kb2au
2�pk r

2�r

⌦
A1/2u p, A1/2u p

↵

 (p � 1)�1kb2au
2�pk r

2�r

⌦
Apu, u p�1

↵
.

If b2a  C, then (take p = r) kb · ruk2r  C
r�1kuk

2�r
r

⌦
Aru, ur�1

↵
, and since

kukr  ��1khkr and hAru, ur�1i (= h(� + Ar )u, ur�1i � �hur i  hh, ur�1i) 
khkrkukr�1r ,

kb · rukr 

s
C

(r � 1)�
khkr . (•)

If b2a  W , then the same argument (with r < p  2, (p� 1)�1 � r 0(r�1 � j 0�1))
yields

kb · ruk2r  (p � 1)�1khkrkuk
p�1
r 0(p�1)kWu2�pk r

2�r
.

Therefore, by Hölder’s inequality and the embedding (�+Ar )�1 : Lr ! Lq , r�1�
q�1  j 0�1, kb · rukr  c(r, j)kWk1/2j 0 khkr , h 2 L1 \ L1

+ . It remains to pass
in this inequality and in (•) to an arbitrary h 2 Lr+. Using the facts that the weak
gradient is closed in Lr , and L1 \ L1 is dense in Lr , we have k1{|b|n}b · rukr 

c(r, j)kWk1/2j 0 khkr for all h 2 Lr+. The use of Fatou’s Lemma now completes the
proof.

Remarks. 1. The implication h 2 D(Ar ) ) rh 2
⇥
Lr
⇤d for r 2]1, 2] follows

now, e.g., from a priori estimate kr(1 + A)�1hkr  C(r)khkr , h 2 L1 \ L1,
which in turn is a simple corollary of (•). We also mention that, in general, even the
condition b2a 2 L1 allows b to be unbounded.
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2. Let us recall a simple corollary of the Hille Perturbation Theorem (see, e.g., [11,
Chapter IX, Section 2.2]):

Let e�t A be a symmetric Markov semigroup, K a linear operator in Lr for
some r 2]1,1[. If for some � > 0 kK (�+Ar )�1kr!r < 1

2 , then�3r := �Ar�K
of domain D(Ar ) is the generator of a quasi bounded holomorphic semigroup
on Lr .

Thus, Proposition 3.1 implies that the (minus) algebraic sum Ar + Br is the
generator of a holomorphic semigroup in Lr for every r 2

i
1, 2d

d+2

i
.

Sometimes one can employ the Miyadera Perturbation Theorem [29] (see
also [35]):

Theorem 3.2. Let e�t A be a symmetric Markov semigroup, K a linear operator in
Lr for some r 2 [1,1[. If for some � > 0 kK (� + Ar )�1kr!r < 1, and there
exist s > 0 and � < 1 such that

Z s

0
kKe�t A f kr dt  �k f kr , f 2 D(Ar ),

then �3r := �Ar � K of domain D(Ar ) is the generator of a quasi bounded C0
semigroup on Lr .

3. Even in the case a = I , the assumptionW 2 L j 0 cannot be weakened toW 2 L p
for some p < j 0. Also, this assumption does not guarantee that B1 is A1 bounded.
Of course, if a = I and |b| 2 Ld , then Br is Ar bounded for each r 2]1, d[.

If a 2 (Hu) and |b| 2 Ld (� = Rd ), then Br is Ar bounded for each r 2
]1, 2+ "], where 0 < " < d � 2 depends on the ellipticity constants (�, ⇠). Indeed,
for every r 2

⇥ 2d
d+2 , 2+ "

⇤

kBr (µ + Ar )�1 f kr  kbkdkr(µ + A)�1 f ks, s :=
dr
d � r

, ( f 2 Cc)

where kr(µ + A)�1 f ks  kr(µ + A)�1(1 � 1)
1
2 ks!sk(1 � 1)�

1
2 f ks . By

the N.Meyers Embedding Theorem, kr(µ + A)�1(1 � 1)
1
2 ks!s < 1 provided

that ⇠/� is sufficiently close to 1 (Appendix G), and, clearly, k(1 � 1)�
1
2 f ks 

CSk f kr , which now yields the required.

2. Now we specify the results of the previous subsection to b : � ! Rd . Denote
T tr = e�t (�+3r (b)), where 3r (b) = Ar + Br of domain D(3r (b)) = D(Ar ). Since
b is real valued, T tr Re Lr ⇢ Re Lr . We claim that T tr is a positivity preserving
L1 contraction semigroup. We prove this here only for ba 2 L1 by verifying the
criteria of R. Phillips and G. Stampacchia for T t2 (Appendix B).

Let b2a  C , C < 4�. Set 0 = � + 32(b). It is seen that, for f 2 D(A),

Re h0 f, f i � 0, (Indeed, by the quadratic inequality, Re h0 f, f i � �k f k22 � 1
4 hb ·

a�1 · b, k f k2i �
�
�� C

4
�
k f k22 � 0 where at the last step we used b2a  C). Thus,
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T t2 is a contraction. For any f 2 Re L2 define f+ = f _ 0. If f = Re f 2 D(A),
then

h0 f, f+i = �h f 2+i + hA f, f+i + hb · r f, f+i.

Taking into account that A is local and f+ 2 D(A
1
2 ) ⇢ W 1,2

0 , we obtain

hA f, f+i = hr f · a · r f+i = hr f+ · a · r f+i,

|hb · r f, f+i|  hb · a�1 · bf 2+i
1
2 hr f+ · a · r f+i

1
2


C
4

h f 2+i + hr f+ · a · r f+i.

Thus h0 f, f+i � 0 for all f = Re f 2 D(A) = D(0).

Next, let f 2 D(A). Then f^ := (1 ^ | f |)sgn f and f � f^ are from D(A
1
2 )

(e.g., by the Beurling-Deny Theorem, see [22, Section 1])

r( f � f^) = 1| f |>1
⇥�
1�

1
| f |

�
r f +

f
| f |2

r| f |
⇤
and Re f̄r f = | f |r| f |.

Setting  = 1| f |>1(| f | � 1) we have

Re h0 f, f � f^i = �h| f |, i + hr · a · r i + hb · r , i

�
�
��

C
4
�
h| f |, i � 0.

Thus Re h0 f, f � f^i � 0 for all f 2 D(A) = D(0).

Corollary 3.3. T t2 is a Markov semigroup.

Now let r 2]1, 2[. By the construction of 3r and 32, T tr f = T t2 f whenever f 2
Lr \ L2. Therefore, for each r 2]1, 2[, the semigroup T tr preserves positivity and
is L1 contraction.

4. b · r is A form-bounded

Throughout this section we are assuming that � is an open subset of Rd , d � 3,
a : � ! Rd ⌦Rd , a symmetric Ld measurable strictly positive (a 2 (H1)) matrix.

By A we denote one of the operators AD, AiD, AN . In the results concerning
(L p, Lq) estimates for AN we also assume that @� 2 C0,1.
Definition. We say that a b : Rd ! Rd belongs to F�(A), the class of A form-
bounded vector fields, and write b 2 F�(A), if ba :=

p
b · a�1 · b 2 L2loc and there

exists a constant 0  � = �� < 1 such that

kba(�+ A)�1/2k2!2 
p
�.

(Equivalently, b2a  �A + c(�) in the sense of quadratic forms for some constant
c(�) (= ��).)
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Write F� ⌘ F�(�1). (Clearly, b 2 F� 2� ) b 2 F�(A).)
Example 4.1. 1. The inclusion |b| 2 Ld + L1 ) b 2 F0 :=

T
�>0 F� follows

easily from the Sobolev Embedding Theorem.
2. For |b| 2 Ld,1 (the weak Ld space), one has, using [17, Proposition 2.5,

2.6, Corollary 2.9]:

b 2 F�1, with
p
�1 = k|b|(��1)�

1
2 k2!2

 kbkd,1�
� 1
d

d k|x |�1(��1)�
1
2 k2!2

 kbkd,1�
� 1
d

d 2�10
�d�2
4
�

0
�d+2
4
� = kbkd,1�

� 1
d

d
2

d � 2
.

where �d = ⇡
d
20(d2 + 1) is the volume of the unit ball in Rd .

3. By Hardy’s inequality, b(x) :=
p
� d�2
2 |x |�2x 2 F� , � > 0. (And, of course,

b 62 F�2 if �2 < �.)
4. For every " > 0 one can find b 2 F� such that |b| 62 L2+"loc , e.g., consider

b2(x) = C
1B(0,1+a) � 1B(0,1�a)

�
�|x | � 1

�
��1�� ln

�
�|x | � 1

�
��c

, c > 1, 0 < a < 1.

5. Let Ws denote the class of vector fields b such that |b|2 is in the class of
Chang-Wilson-Wolff (s > 1):

(

v 2 Lsloc : kvkWs := sup
Q

1
|Q|

Z

Q
|v(x)| l(Q)2'

�
|v(x)| l(Q)2

�
dx < 1

)

,

where |Q| and l(Q) are the volume and the side length of a cube Q, respectively,
' : [0,1[! [1,1[ is an increasing function such that

R1
1

dx
x'(x) < 1. By [2], if

b 2Ws , then b 2 F� , � = �
�
kb2kWs

�
< 1.

The classWs contains, in particular, the vector fields b with |b|2 in the Campa-
nato-Morrey class (s > 1)

(

v 2 Lsloc :

✓
1

|Q|

Z

Q
|v(x)|sdx

◆ 1
s

 csl(Q)�2 for all cubes Q

)

(write b 2 Cs). (For the complete diagram of the spaces of vector fields b : Rd !
Rd considered in this paper in connection with the operator �1 + b · r see Sec-
tion 5.)
Remark. If K is a positivity preserving linear operator on L p or C1 (e.g., a
Markov semigroup or the resolvent of its generator), then

|K f | 6 K | f |, ( f 2 L p or C1, respectively).

This well known fact will be extensively used below. (For a proof, if needed, see
[22, Proposition 1.5].)
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If b 2 F�(A), 0 < � < 1, then the Hille-Lions theory (Section 4.3) yields
the following: In L2, there exists an operator realization 3 ⌘ 3(b) of the formal
differential operator A + b · r such that D(3) ⇢ D(A

1
2 ), ⇢(�3) � O := {⇣ 2

C | Re ⇣ > �o = ��
2(1+

p
1��) }. If ⇣ 2 O, then

R⇣ = R
1
2
a,⇣ (1+ T )�1R

1
2
a,⇣ , (i0)

where R⇣ ⌘ R⇣ (b) := (⇣ +3)�1, Ra,⇣ := (⇣ + A)�1, T := R
1
2
a,⇣b · rR

1
2
a,⇣ .

e�t3(bn) s
! e�t3 as n " 1, (i i0)

(1+ A)
1
2
�
R⇣ (bn) � R⇣ (b)

� s
! 0 as n " 1, (i i i0)

where bn := 1nb, 1n is the indicator of {x 2 � | ba(x)  n}.
Remark.

e�t (�o+3) is a Markov semigroup. (i)
For all 2  r < q  1 and t > 0,

ke�t3r kr!q  c e
2
r �ot t�

d
2 ( 1r � 1

q )
. (i i)

Indeed, (i) follows from (i i0) and the results of Section 3.2. Also, slightly modify-
ing the arguments from Section 3.2, it is not difficult to verify directly that �o+3(b)
obeys the conditions of R. Phillips and G. Stampacchia. In turn, (i0) + (i) entails
(i i) by modifying the arguments from the proof of Theorem 5.2 below.

Now, we develop the semigroup theory of �r · a · r + b · r in the Lr ⌘
Lr (�,Ld) spaces in the case 0 < � < 4.

Theorem 4.2. Assume that b 2 F�(A) for some 0 < � < 4. If 1  � < 4 also
assume that ba 2 L2+ L1. Set r� := 2

2�
p
�
. Then r · a · r � b · r has an operator

realization �3r (b) in Lr for any r 2 Ic := [r�,1[ as the generator of a positivity
preserving, L1 contraction, quasi contraction C0 semigroup on Lr . In full:

Let 1n denote the indicator of {x 2 � | ba(x)  n} and set bn := 1nb. Then

e�t3r (b) := s-Lr - lim
n!1

e�t3r (bn) (r 2 I oc :=]r�,1[); (⇤)

e�t3r� (b) :=


e�t3r (b) � L1 \ Lr

�clos

Lr�!Lr�
(r 2 I oc ); (⇤⇤)

ke�t3r (b)kr!r  et!r , !r =
��

2(r � 1)
. (r 2 Ic);

There is a constant c = c(�, d) such that the (Lr , Lq) estimate

ke�t3r (b)kr!q  c et!r t�
d
2 ( 1r � 1

q ) (⇤ ⇤ ⇤)

is valid for all r�  r < q  1, t > 0.
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For each r 2 I oc , e�t3r (b) is a holomorphic semigroup of quasi contractions
on the sector

| arg t | 
⇡

2
� ✓r , 0 < ✓r <

⇡

2
, tan ✓r  K(2� r 0

p
�)�1, (⇤ ⇤ ⇤ ⇤)

where K = |r�2|p
r�1 + r 0

p
� if r  2r� and K = r�2+r

p
�p

r�1 if r > 2r�.

Remarks. 1. The additional assumption ba 2 L2 + L1 in case 1  � < 4, for
a general a 2 (H1), seems to be close to optimal. For more regular a’s no such
assumption is needed. See Theorem 4.3 below and the remark after.

2. The interval Ic = [ 2
2�

p
�
,1[ is called the interval of contraction solvability.

The interval Im :=] 2
2� d�2

d
p
�
,1[ is called the interval of bounded solvability.

We will show below (Theorem 4.4) that if the matrix a is uniformly elliptic, then,
for any r 2 Im � Ic, one can still define e�t3r as a quasi bounded holomorphic
semigroup. We also note that Im 3 d, whilst Ic 3 d whenever

p
�  2d�1

d .

3. The example of 3r (b) � L = �1 + b · r, b(x) = c|x |�2x, c =
d�2
2

p
� (� < 4) in Rd , d � 3, shows that both intervals Ic, Im are maximal.

(Indeed, it is not difficult to see, appealing to Hardy’s inequality, that 3r (b) ceases
to be quasi accretive for any r 62 Ic. For the proof of the maximality of Im , see
remark after the proof of Theorem 4.4.) Any c < d � 2 is admissible according to
Theorem 4.2. In turn, c = d � 2 (, � = 4) makes Ic = ?, while c = d makes
Im = ? even formally (c = d ) � = 4

� d
d�2

�2
> 4). Note, however, that as

c " d � 2 the interval Im # ]d2 ,1[.
In � = B(0, 1) := {x 2 Rd | |x | < 1} consider the Dirichlet problem

Lu = 0, u = 0 on @�. (D)

Obviously, u1 = 0, u2 = |x |↵ � 1, ↵ = c � (d � 2), are solutions of (D);
u2 2 Lr for all 0 < r < d

�↵ = 2
2�

p
�

d
d�2 ⌘ r� j. In particular, u2 2 Lr for all

r� < r < r� j, and satisfies the maximum principle. If u2 would be a solution to
3rv = 0 (equivalently, e�t3r v = v) for some r 2 I oc , then u2 should belong to
L1. Thus u2 /2 D(3r ), r 2 Ic.

If � > 4, then ↵ > 0, and so the problem (D) has two bounded weak solutions.
By the way, now u2 does not satisfy the maximum principle. See also example in
Section 4.4.

Thus, the assumption � > 4 (even for a = I ) destroys the uniqueness of (ac-
cordingly defined) weak solutions.

We refer to [6] where the critical case � = 4 in dimension d = 3 is studied.
See also [26] concerning the case � > 4. In [6] it is demonstrated that already for
� = 4 the properties of the constructed semigroup are drastically different from the
properties of et1 and e�t3r , 3r � �1+ b · r, with b 2 F�(�1), � < 4.



THEORY OF KOLMOGOROV OPERATOR IN SPACES L p AND C1 1589

Proof. 1. First of all, let us prove that for all r 2 Ic, n � 1, t � 0,

ke�t3r (bn)kr!r  e!r t . (?)

Set u ⌘ un := e�t3r (bn)|h| = e�t32r (bn)|h|, h 2 L1\L1.By the results of Section
3.2, u 2 D(A) \ L1

+ . If r � 2, then by Theorem E.1 (Appendix E), u, u
r
2 , ur 2

D(A
1
2 ), and since D(A

1
2 ) ⇢ E (E = W 1,2

0 if A = AD or AiD, and E = W 1,2 if
A = AN ), ru

r
2 = r

2u
r
2�1ru because r � 2 and u 2 L1; if 1 < r  2, then

ur�1ru = 1
r ru

r = 2
r u

r
2ru

r
2 because u 2 D(Ar ) and ur�1, u

r
2 2 L1.

Noticing that 3r (bn)u = Aru + bn · ru if 1 < r  2, and 3r (bn)u =

32(bn)u = Au + bn · ru, Au 2 L2, ur�1 2 L2, hAu, ur�1i � 4
rr 0 kA

1
2 u

r
2 k22 if

r � 2, we have

�
⌦ d
dt
u, ur�1

↵
=
⌦
3r (bn)u, ur�1

↵
=
⌦
Aru, ur�1

↵
+
⌦
bn · ru, ur�1

↵
, 1 < r  2,

�
⌦ d
dt
u, ur�1

↵
=
⌦
3r (bn)u, ur�1

↵
=
⌦
Au, ur�1

↵
+
⌦
bn · ru, ur�1

↵
, r � 2.

Therefore,

�
d
dt

kukrr �
4
r 0

⌦
A
1
2 u

r
2 , A

1
2 u

r
2
↵
+ 2

⌦
u
r
2 bn · ru

r
2
↵
.

Using the conditions r 2 Ic, b 2 F�(A) and completing the quadratic estimate

2|
⌦
u
r
2 bn · ru

r
2
↵
|  "kbau

r
2 k22 + "�1kA

1
2 u

r
2 k22

 ("� + "�1)kA
1
2 u

r
2 k22 + "c(�)kukrr ,

we obtain (choosing " = r 0

2 and taking into account that
p
�  2

r 0 for r 2 Ic)

2|
⌦
u
r
2 bn · ru

r
2
↵
| 

4
r 0

kA
1
2 u

r
2 k22 +

c(�)r 0

2
kukrr .

Thus d
dt kuk

r
r  c(�)r 0

2 kukrr . The desired bound (?) follows.
Since the mapping Ic 3 p ! k f kp, f 2 L1 \ L1 is continuous, (?) yields

the bound
ke�t3r (bn)hk1  khk1 (h 2 L1 \ L1).

Next, if � < 1, then un
s

! u, and hence un ! u strongly in Lr , r 2 I oc .
2. To justify (⇤) when 1  � < 4, we use the direct method: setting g =

um � un, we will prove that, for each r 2 I oc , kgkr ! 0 as n,m " 1 uniformly
on t 2 [0, 1]. Obviously, the latter combined with (?) will yield (⇤).

Since� d
dt g = Ag+ bm · rg+ (bm � bn) · ru, u ⌘ un, we have, multiplying

both sides of the equation by g|g|r�2, integrating over �, using the assumptions
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b 2 F�(A), b2a = V1 + V1, V1 2 L1, and r > r�,

d
dt

kgkrr 
c(�)
p
�

kgkrr + rh|1n � 1m |ba
p

ru · a · ru|g|r�1i


c(�)
p
�

kgkrr + rh|1n � 1m |V1i
1
2 kgkr�11 hAu, ui

1
2 . (•)

To get a suitable bound on kgkr we need the following estimate:

Z T

0
e�ct hAu, uidt  khk22 + TkV1k1khk21 ( c := kV1k1).

Evidently,� d
dt kuk

2
2 = 2hAu, ui+2hubn ·rui � hAu, ui�hb2au2i. Setting  (t) =

e�ctkuk22, and using the bound kuk1  khk1,we have e�ct hAu, ui  � d
dt (t)+

e�ctkV1k1khk21, and so
R T
0 e�ct hAu, uidt   (0)+ 1�e�cT

c kV1k1khk21  khk22+
TkV1k1khk21. The required estimate is proved.

Now, using this estimate, the bound kgk1  2khk1 and the equality g|t=0 =
0 one can easily integrate (•), obtaining supt2[0,T ] kg(t)k2rr  Ck(1n � 1m)V1k1,
where the constant C depends on T, r, �, khk2, khk1, kV1k1, kV1k1 only. The
latter makes kgkr ! 0 as n,m " 1 uniformly in t 2 [0, T ]. Thus the
s-Lr - limn e�t3r (bn) defines a C0 semigroup. We have proved (⇤). Now it should
be clear that

ke�t3r (b) f kr�  et!r� k f kr� (r 2 I oc , f 2 L1 \ L1) (?0)

and e�t3r� (b) defined by (⇤⇤) is indeed a semigroup. The fact that it is strongly
continuous follows from (?0) and k f � e�t3r (b) f kr ! 0 as t # 0 for any r 2 I oc
and any f 2 L1 \ L1 by employing Fatou’s Lemma.

3. A proof of (⇤ ⇤ ⇤) presented below is based on the embedding property of
A
1
2 and (?), the Lr quasi contraction property of e�t3r (bn). In view of (⇤), it suffices

to treat the case 3(bn).We have for u := e�t3(bn) f, f 2 L1+ \ L1, r = 2r�,

�
d
dt

kukrr �

✓
4
r 0

� 2
p
�

◆
kA

1
2 u

r
2 k22 �

c(�)
p
�

kukrr .

Note that 2r 0 >
p
�. Using the Nash inequality kA

1
2 hk22 � CNkhk2+

4
d

2 khk� 4
d

1 and
(?0), we have setting w := kukrr ,

d
dt

w� 2
d � �c2w� 2

d + c1e�c3tk f k
� 2r

d
r� ,

where c1 = CN
2
d
� 4
r 0 � 2

p
�
�
, c2 = 2

d
c(�)p
�
, c3 = 2

d!r�2r�.
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Integrating this inequality yields

ke�t3r� (bn)kr�!2r�  c
� d
4r�

1 e!r� t t�
d
2 ( 1r�

� 1
2r�

)
, t > 0. (??)

By duality, ke�t3
⇤
r� (bn)k(2r�)0!r 0

�
 the right-hand side of (??), and

ke�t3
⇤
r� (bn)k1!r 0

�
= ke�t3r� (bn)kr�!1  C1(d, r�)e!r� t t

� d
2
1
r�

by the Extrapolation Theorem (Appendix F). Interpolating the latter, we arrive at
the desired estimate.

4. Proof of (⇤ ⇤ ⇤ ⇤). Set z := 2�
p
�.We need to prove that

|Im h3r (b)u, u|u|r�2i|  K(2�
p
�r 0)�1Re h(z +3r (b))u, u|u|r�2i,

u 2 D(3r (b)), r 2 I oc . (•)

a) First we prove (•) for b = bn and u = un 2 D(3r (bn)), where bn := b1n, 1n is
the indicator of {x 2 � | ba(x)  n}. Note that D(Ar ) \ L1 is a core of 3r (bn)
for r 2 {r  2} \ I oc , and D(A) \ L1 is a core of 3(bn) for r 2 {r � 2} \ I oc .

Thus, we will take un from these cores. Then 3r (bn)un = Ãun + bn · run, where
Ãv = Arv if v 2 D(Ar ) \ L1 and Ãv = Av if v 2 D(A) \ L1.

Using the assumption bn 2 F�(A), inequality kA
1
2 |u|

r
2 k2  kA

1
2 u|u|

r
2�1k2,

equality X ⌘ hru · a · rū, |u|r�2i = Re h Ãu, u|u|r�2i � 4(r�2)
r2 kA

1
2 |u|

r
2 k22, and

completing quadratic estimates we obtain

|Re hbn · ru, u|u|r�2i| = |hbn · r|u|, |u|r�1i| 
2
r
kba|u|

r
2 k2kA

1
2 |u|

r
2 k2


2
p
�

r
kA

1
2 |u|

r
2 k22 +

�
p
�

r
kukrr ;

|Im hbn · ru, u|u|r�2i|  |hbn · ru, u|u|r�2i|  kba|u|
r
2 k2X

1
2


1
4"
Re h Ãu, u|u|r�2i +

✓
�" �

r � 2
r2"

◆
kA

1
2 |u|

r
2 k22

+ ��"kukrr , (" > 0);
RHS ⌘ Re h

�
z +3r (bn)

�
u, u|u|r�2i

�Re h Ãu, u|u|r�2i�
2
p
�

r
kA

1
2 |u|

r
2 k22 +

✓
z �

�
p
�

r

◆
kukrr ;

RHS � (1�
r 0

p
�

2
)Re h Ãu, u|u|r�2i+

✓
z �

�
p
�

r

◆
kukrr ; (?)
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LHS⌘ |Im h3r (bn)u, u|u|r�2i|




|r�2|
2
p
r�1

+
1
4"

�
Re h Ãu, u|u|r�2i+

⇣
�"�

r�2
r2"

⌘
kA

1
2 |u|

r
2 k22 + ��"kukrr ;

(??)

LHS 


|r � 2|
2
p
r � 1

+
1
4"

�
RHS

+

⇢
|r � 2|
2
p
r � 1

+
1
4"

�
2
p
�

r
+ �" �

r � 2
r2"

�
kA

1
2 |u|

r
2 k22

�

⇢
|r � 2|
2
p
r � 1

+
1
4"

�
(z �

�
p
�

r
) � ��"

�
kukrr (? ? ?)

Note that r  2r� makes 1
4"
2
p
�

r + �" � r�2
r2" > 0 for any " > 0. Thus, setting

" = 1
r
p
�
and z = 2�

p
�, we obtain from (? ? ?) and (?)

LHS 


|r � 2|
2
p
r � 1

+
1
4"

�
RHS

+

⇢
|r � 2|
2
p
r � 1

+
1
4"

�
2
p
�

r
+ �" �

r � 2
r2"

�
rr 0

4
Re h Ãu, u|u|r�2i

�

⇢
|r � 2|
2
p
r � 1

+
1
4"

�
(z �

�
p
�

r
) � ��"

�
kukrr




|r � 2|
2
p
r � 1

+
1
4"

�
RHS

+

⇢
|r � 2|
2
p
r � 1

+
1
4"

�
r 0

p
�

2
+
�
�" �

r � 2
r2"

�rr 0

4

�
(1�

r 0
p
�

2
��1RHS

=

✓
|r � 2|
2
p
r � 1

+
1

4(r � 1)
�1
"

+ �r2"
�
◆
2(2� r 0

p
�)�1RHS

=


|r � 2|
p
r � 1

+ r 0
p
�

�
(2� r 0

p
�)�1RHS.

If r > 2r�, then setting " =
p
r�1
r
p
�
and z = 2�

p
� we obtain from (??) and (?)

LHS 


r � 2
2
p
r � 1

+
1
4"

�
Re h Ãu, u|u|r�2i + �"kA

1
2 |u|

r
2 k22 + ��"kukrr




r � 2
2
p
r � 1

+
1
4"

+ �"
rr 0

4

�
Re h Ãu, u|u|r�2i + ��"kukrr


r � 2+ r

p
�

p
r � 1

(2� r 0
p
�)�1RHS,

i.e., we have established (•) for bn and un .
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b) By a), the semigroups e�t3r (bn) are holomorphic and uniformly bounded on
the sector S =: {| arg t |  ⇡

2 � ✓r }. By (⇤), un := e�t3r (bn) f ! u := e�t3r (b) f ,
f 2 Lr , pointwise on the positive semi-axis. Therefore, by the Privalov-Vitali
Convergence Theorem u is holomorphic in S and u(z) = s-Lr - lim -un(z), z 2 S.
It follows that u0(z) = s-Lr - lim -u0

n(z), z 2 S, and so 3r (bn)un ! 3r (b)u in Lr .
Moreover, passing to a subsequence if needed, we have gn := |un|r�2un ! g :=
|u|r�2u Ld a.e. and kgnkr 0 = kunkr�1r ! kgkr 0 = kukr�1r . Thus, gn ! g in
Lr 0 . It follows that in (•) we can pass to the limit n ! 1. This ends the proof
of (⇤ ⇤ ⇤⇤).

4.1. Uniformly elliptic case I

We say that a matrix a is uniformly elliptic and write a 2 (Hu) if a 2 (H1) and
there is a constant ⇠ < 1 such that a(x)  ⇠ I for Ld a.e x 2 �.

In the uniformly elliptic case and 1  � < 4 the assumption ba 2 L2 + L1 is
superfluous:

Theorem 4.3. Let a 2 (Hu), A = AD or AN , and b : � ! Rd , b 2 F�(A) for
some 1  � < 4. Then the limit

e�t3r (b) := s-Lr - lim
n
e�t3r (bn), r > r� :=

2
2�

p
�

exists uniformly in t 2 [0, T ] for each T < 1, and determines a positivity preserv-
ing, L1 contraction, quasi contraction C0 semigroup on Lr .

Proof. 1. Let k > 2. Fix o 2 �. Define

⌘(t) :=

8
<

:

0, if t < k
� t
k � 1

�k if k  t  2k and ⇣(x) = ⌘( |x�o|
R ) R > 0.

1, if 2k < t

Note that |r⇣ |  R�11r⇣ ⇣ 1�
1
k .

By un we denote the solution to
� d
dt +3r (bn)

�
un = 0, un(0) = f 2 L1\L2+.

Set v := ⇣un. Clearly,
⌧
⇣

✓
d
dt

+ A + bn · r

◆
un, vr�1

�
= 0.

Set [F,G]� := FG � GF and hAv, vr�1i := hrv · a · rvr�1i. Since the matrix
is uniformly elliptic, hA

1
2�, A

1
2 i = hr� · a · r ̄i for all �, 2 D(A

1
2 ) = E,

where E = W 1,2
0 for A = AD and E = W 1,2 for A = AN . Also un 2 D(A) \

L1
+ , D(A) ⇢ D(A

1
2 ) = E . Thus v 2 E as well as v

r
2 and ⇣vr�1 since r � 2.
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Therefore hAun, ⇣vr�1i = hrun · a · r(⇣vr�1)i. Now it is easy to justify the
following equation and equality.
⌧✓

d
dt

+ A + bn · r

◆
v, vr�1

�
=
⌦
[A, ⇣ ]�un + unbn · r⇣, vr�1

↵
(?)

h[A, ⇣ ]�un, vr�1i =
2
r 0

⌦
rv

r
2 · aunv

r
2�1 · r⇣

↵
� hr⇣ · avr�1 · runi

=
2
r 0

⌧
rv

r
2 ·

a
⇣

· r⇣, v
r
2

�
�
2
r

⌧
r⇣ ·

a
⇣

· rv
r
2 , v

r
2

�

+

⌧
r⇣ ·

a
⇣ 2

· r⇣, vr
�
.

By the quadratic estimates

D
unbn · r⇣, vr�1

E
=

⌧
bn ·

r⇣

⇣
, vr

�


µ

p
�

r
kA

1
2 v

r
2 k22 +

r
p
�

4µ

⌧
r⇣ ·

a
⇣ 2

· r⇣, vr
�

+
µc(�)
r
p
�

kvkrr (µ > 0),

2(r � 2)
r

⌧
rv

r
2 ·

a
⇣

· r⇣, v
r
2

�


µ
p
�

r
kA

1
2 v

r
2 k22 +

(r � 2)2

rµ
p
�

⌧
r⇣ ·

a
⇣ 2

· r⇣, vr
�
,

we get from (?)

d
dt

kvkrr + 2
✓
2
r 0

� (1+ µ)
p
�

◆
kA

1
2 v

r
2 k22



✓
(r � 2)2

µ
p
�

+
r2

p
�

4µ
+ r

◆
⌦
r⇣ ·

a
⇣ 2

· r⇣, vr
↵
+
r + µ
p
�
c(�)kvkrr .

Recalling that 2r 0 >
p
�, we can find µ > 0 such that 2r 0 � (1+ µ)

p
� � 0. Thus

d
dt

kvkrr 

✓
4(r � 2)2 + r2�

4µ
p
�

+ r
◆
⌦
r⇣ ·

a
⇣ 2

· r⇣, vr
↵
+
r + µ
p
�
c(�)kvkrr (??)

Next,
⌦
r⇣ · a

⇣ 2
·r⇣, vr

↵
 ⇠ R�2k1r⇣ ⇣�2✓vrk1,where ✓ = k�1 and 1r⇣ denotes the

indicator of the support of |r⇣ |. Since kunk1  k f k1, k1r⇣k r
2✓

 c(d, ✓)R
2✓d
r ,

and

k1r⇣ ⇣�2✓vrk1  k1r⇣u2✓n k r
2✓

kvkr�2✓r  k1r⇣k r
2✓

kunk2✓1kvkr�2✓r ,
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we obtain, using the Young inequality, the crucial estimate (on which the whole
proof rests)

⌦
r⇣ ·

a
⇣ 2

· r⇣, vr
↵

2✓
r

[⇠c(d)]
r
2✓ Rd� r

✓ k f kr1 +
r � 2✓
r

kvkrr .

Fix ✓ by 0 < ✓ < r
d+2r . Now from (??) we obtain the inequality

d
dt

kvkrr  N (r, d, �)kvkrr + M(r, d, �)R�� k f kr1, � =
r
✓

� d > 0, (? ? ?)

from which we conclude that, for given T, f 2 L2 \ L1
+ , " > 0, there exists R

such that
sup

t2[0,T ],n
k⇣un(t)kr  ".

2. Let k be as above. Define

⌘(t) :=

8
<

:

1 if t < 2k
�
1� 1

k (t � 2k)
�k if 2k  t  3k and ⇣(x) = ⌘( |x�o|

R ) R > 0.
0 if 3k < t

Note that |r⇣ |  R�11r⇣ ⇣ 1�
1
k .

Set g := un � um and v := ⇣g. Let hAv, v|v|r�2i := hrv · a · r(v|v|r�2)i.
Clearly

⌧
⇣

✓
d
dt

+ A + bn · r

◆
g + ⇣(bn � bm) · rum, v|v|r�2

�
= 0,

⌧✓
d
dt

+ A + bn · r

◆
v, v|v|r�2

�

=

⌧
[A, ⇣ ]�g + vbn ·

r⇣

⇣
, v|v|r�2

�
+ h⇣(bm � bn) · rum, v|v|r�2i,

h[A, ⇣ ]�g, v|v|r�2i

=
2(r � 2)

r
hr|v|

r
2 ·

a
⇣

· r⇣, |v|
r
2 i + hr⇣ ·

a
⇣ 2

· r⇣, |v|r i,

d
dt

kvkrr



✓
4(r � 2)2 + r2�

4µ
p
�

+ r
◆
⌦
r⇣ ·

a
⇣ 2

· r⇣, vr
↵
+
r + µ
p
�
c(�)kvkrr

+ rh⇣(bm � bn) · rum, v|v|r�2i with the same µ as in (??),

h⇣(bm � bn) · rum, v|v|r�2i

 h⇣(bm � bn) · a�1 · (bm � bn)i
1
2 hrum · a⇣ · rumi

1
2 (2k f k1)r�1.
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In order to estimate
R T
0 hrum(t) · a⇣ · rum(t)idt note that h ddt um + Aum + bm ·

rum, ⇣umi = 0, or

1
2
d
dt

h⇣u2mi + hrum · a⇣ · rumi + hrum · aum · r⇣ i + hbm · rum, ⇣umi = 0,

and so

d
dt

h⇣u2mi+hrum · a⇣ · rumi 2
✓⌧

r⇣ ·
a
⇣

· r⇣

�
+ h⇣b · a�1 · bi

◆
k f k21,

Z T

0
hrum(t) · a⇣ · rum(t)idt k f k22+2T

✓⌧
r⇣ ·

a
⇣

· r⇣

�
+h⇣b · a�1 · bi

◆
k f k21

⌘ k f k22 + T L(R)k f k21.

Now it should be clear that the above is sufficient for concluding that the following
inequality analogous to (? ? ?) holds for all n,m and t 2 [0, T ],

e�Ntk⇣gkrr  tMR�� k f kr1

+
p
t(2k f k1)r�1

�
k f k22 + t L(R)k f k21

� 1
2

·
⌦
⇣(bn�bm) · a�1 · (bn � bm)i

1
2 .

3. It follows from Step 1 and Step 2 that, for each 0 < T < 1, r > r�, f 2
L2+ \ L1 and ✏ > 0, we can find R < 1 and M < 1 such that

sup
t2[0,T ], n,m�1

k(1� 1B(o,2kR))(un(t) � um(t))kr < ✏;

sup
t2[0,T ],n,m�M

k1B(o,2kR)(un(t) � um(t))kr < ✏.

The proof of Theorem 4.3 is completed.

Remark. Let a 2 (H1). Set A := AiD or AN . Fix any compact K in �. The proof
of Theorem 4.3 shows that the matrix a(x) admits the (|x |{, { < 2)-growth at
infinity while on K being just from [L1]d⇥d . Indeed, for instance, let A = AiD. By
the definition of AiD,  2 D(A

1
2 ) if and only if  2 W 1,2

0 and hr ·a ·r ̄i < 1.
It is a simple matter to check that

hr(⇣v|v|r�2) · a · r(⇣v|v|r�2)i < 1,

and hence to conclude that

hAg, ⇣v|v|r�2i = hrg · a · r(⇣v|v|r�2)i.

If A = AD one has to modify ⇣ to C1c function and use the fact that C1c is a core

of A
1
2
D.
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4.2. The maximal interval of bounded L p solvability for �r · a · r + b · r

Theorem 4.4. Let a 2 (Hu). Assume that b 2 F�(A) for some 0 < � < 4.
(a) e�t3r (b), r 2 Ic, extends to a positivity preserving, L1 contraction, quasi

bounded holomorphic semigroup on Lr for every r 2 Im � Ic, Im :=] 2
2� d�2

d
p
�
,1[.

(b) For every r 2 Im and q > r there are constants ci = ci (�, r, q), i = 1, 2,
such that

ke�t3r (b)kr!q  c1 etc2 t
� d
2 ( 1r � 1

q )
, t > 0.

Proof. Proof of (b). Suppose that (a) has been proved. Then (b) for r 2 Im � Ic
and q 2 Ic follows from (a) by Theorem 4.2(⇤ ⇤ ⇤) and the Extrapolation Theorem
(Appendix F). By interpolation, we obtain (b) for all q > r and r 2 Im .

Proof of (a). Let� = Rd . Set bn := �"n ⇤ (b1n), where �"n is the K. Friedrichs
mollifier, 1n is the indicator of {x 2 � | |x |  n, |b(x)|  n}.

For any �̃ > � we can select a sequence "n # 0 such that bn 2 F�̃(A) with the
same � = �� . (Indeed, we have for f 2 L2

k|bn|(�+ A)�
1
2 f k22 6 k|1nb|(�+ A)�

1
2 f k22 + k|bn � 1nb|(�+ A)�

1
2 f k22

6 �k f k22 + k|bn � 1nb|(�+ A)�
1
2 f k22.

In turn, by Hölder’s inequality,

k|bn�1nb|(�+A)�
1
2 f k226 kbn�1nbk2dk(�+A)�

1
2 f k22d

d�1
6Cdkbn�1nbk2dk f k22,

where Cd > 0 is the constant in the uniform Sobolev inequality. Since 1nb 2 L1

and has compact support (and hence �"n ⇤1nb ! 1nb in L2d as " # 0), for every �̃ >

�,we can select "n , n = 1, 2, . . . sufficiently small so that kbn�1nbk2d < �̃��
Cd , and

hence k|bn �1nb|(�+ A)�
1
2 f k22 < (�̃� �)k f k22. Therefore, k|bn|(�+ A)�

1
2 f k22 <

�̃k f k22, as needed.)
Since our assumptions on � involve strict inequalities only, we may assume

that bn 2 F�(A) for all n with the same � = �� .
First, we prove that

k(z+3⇤
q(bn))

�1kq j!q j c|z � z0|�1, Re z> z0, n=1, 2, . . . , j =
d

d�2
, (•)

where 3⇤
q(bn) is the adjoint of 3r (bn), q = r

r�1 2]1, 2p
�
[, for some c, z0 > 0

independent of n.
For 1 < p  2, let Bp,n := �r · bn = �bn · r � div bn , D(Bp,n) := D(Ap).

Then the operator3⇤
p = Ap + Bp,n of domain D(Ap) is the (minus) generator of a

quasi bounded holomorphic semigroup on L p.
Set u ⌘ un := (z +3⇤

p)
�1h, h 2 L1 \ L1, Re z > ��

2(r�1) . By consistency,

u = (z +3⇤)�1h, so u 2 D(A
1
2 ), and, clearly, kuk1 < 1 for every n.
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a) 0 < � < 1. Fix any 2  q < 2p
�
close to 2p

�
. Then

h(z +3⇤)u, u|u|q�2i = h(z + A � r · bn)u, u|u|q�2i,

�hr · (bnu), u|u|q�2i = hbn · urū, |u|q�2i + (q � 2)hbn · r|u|, |u|q�1i,

and so

zkukqq+hAu, u|u|q�2i+hbn·urū, |u|q�2i+(q�2)hbn·r|u|, |u|q�1i=hh, u|u|q�2i.

Taking the real and imaginary parts of this identity, we have

Re zkukqq + Re hAu, u|u|q�2i + (q � 1)hbn · r|u|, |u|q�1i  |hh, u|u|q�2i|

↵
�
|Im z|kukqq � |Im hAu, u|u|q�2i| � |hbn · urū, |u|q�2i|

�
 ↵|hh, u|u|q�2i|

(0 < ↵ < 1).

Adding these inequalities and using the inequality |Im hAu, u|u|q�2i|  q�2
2
p
q�1Re ·

hAu, u|u|q�2i, we obtain

↵|z|kukqq +

✓
1� ↵

q � 2
2
p
q � 1

◆
Re hAu, u|u|q�2i

 ↵|hbn · urū, |u|q�2i| + (q � 1)|hbn · r|u|, |u|q�1i| + (1+ ↵)khkqkuk
q�1
q .

Recalling that |hbn · urū, |u|q�2i|2  hb2a, |u|qiX, where

X ⌘ hru · a · rū, |u|q�2i = Re hAu, u|u|q�2i �
4(q � 2)

q2
kA

1
2 |u|

q
2 k22,

(see the proof of Theorem 4.2, Steps 1, 4) and performing quadratic estimates, we
conclude that, for a sufficiently small ↵, there exist z0 = z0(↵) > 0 and a constant
C↵ < 1 such that

|z � z0|kuk
q
q + kA

1
2 |u|

q
2 k22  C↵khkqkuk

q�1
q , Re z > z0.

The latter, Young’s inequality (|z� z0|
1
q0 kukq�1

q kukq j 
|z�z0|kuk

q
q

q 0 +
kukqq j
q ) and the

Sobolev Embedding Theorem yield

kukq j 6 c(q, d)|z � z0|
� 1
q0 khkq , Re z > z0. (?)

b) Let 1  � < 4, so the interval
i
1, 2p

�

h
does not contain 2. Fix any 1 <

q < 2p
�
close to 2p

�
. Following the arguments above, but using Theorem E.1(i),(ii)

(Appendix E) in place of Theorem E.1(iv),(v), we obtain (?) in the case.
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We are in position to complete the proof of Theorem 4.4 for � = Rd . Fix
1 < q < 2p

�
close to 2p

�
. Set R⇤

n(z) := (z +3⇤
q(bn))�1. Our goal is to prove that

kR⇤
n(z)kq j!q j  c|z� z0|�1, Re z > z0. Given l = (l1, . . . ld) 2 Zd , define a cube

Ql := {x 2 Rd | |lm |z � z0|�
1
2 � xm |  (4|z � z0|)�

1
2 , m = 1, . . . , d}.

Given k 2 Zd , subdivide Rd into Qk +
P

i2Zd�{k} Qi . Fix k.
1) Let i 2 Zd be such that |k � i |  ↵ :=

p
d
2 (1+ 1

� ) ,
1
2d < � < 1

d . Then

k1k R⇤
n(z)1ikq j!q j  c1|z � z0|�1, c1 = c1(q, d),

where 1i denotes the indicator function of Qi . [Indeed, by Hölder’s inequality,

k1k R⇤
n(z)1i hkq j  kR⇤

n(z)kq!q jk1ik
1
q j 0

1 khkq j , j 0 = d
2 , so (?) and k1ik1 = cd |z�

z0|�
d
2 yield the required.]

2) Let i 2 Zd be such that |k � i | > ↵. Then (⇠ the ellipticity constant)

k1k R⇤
n(z)1ikq j!q j  c2|k � i |�

1
� |z � z0|�1, c2 = c2(q, d, � , ⇠).

(The proof of the inequality, which we call the separating property, is given below.)

1) and 2) combined yield

|hR⇤
n(z)h, gi|

X

i,k2Zd

�
�h1k R⇤

n(z)1i h, 1kgi
�
�  sup

l2Zd

⌧ X

i2Zd
|1l R⇤

n(z)1i h|,
X

k2Zd
1k |g|

�
;

kR⇤
n(z)kq j!q j  c̃1|z � z0|�1 + c̃2|z � z0|�1 sup

k2Zd

X

i2Zd ;|k�i |�↵
|k � i |�

1
�

 c̃1|z � z0|�1 + c̃2|z � z0|�1 sup
k2Zd

Z 1

↵
td�1� 1

� dt

 c3|z � z0|�1,

which yields (•) in the case � = Rd .
By duality, (•) yields (r := q 0 2 I oc , s := (q j)0 2 Im)

k(z +3r (bn))�1ks!s  c|z � z0|�1, Re z > z0, n = 1, 2, . . .

In view of Theorem 4.3, for every f 2 Lr \ Ls

k(z +3r (b))�1 f ks  c|z � z0|�1k f ks, Re z > z0. (••)

By (••), ke�t3r (b) f ks  Mk f ks , t 2 [0, 1], for M < 1. The strong continuity of
e�t3r (b) in Lr , r 2 I oc , and the following elementary result:
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Let Sk : L p1 \ L p2 ! L p1 \ L p2, 1  p1 < p2  1, k = 0, 1, 2, . . . ,
be such that kSk f kpi  Mk f kpi , i = 1, 2, for all f 2 L p1 \ L p2, k
and some M < 1. If kSk f � S0 f kp0 ! 0 for some p0 2]p1, p2[, then
kSk f � S0 f kp ! 0 for every p 2]p1, p2[,

yield e�t3r (b) f ! f strongly in Ls1 as t # 0, for all s < s1  r (and ultimately
for all s1 2 Im � I oc ), which gives assertion (a) of the theorem.

Now we come to the proof of the inequality from 2). Let i 2 Zd � {k} be such
that |k � i | > ↵. Define functions ⇣i (x) by

⇣i (x) := ⌘

✓��|z � z0|�
1
2 k � x

�
�

|k � i |
|z � z0|

1
2

✓
1+

1
�

◆◆
,

where

⌘(s) =

8
<

:

1, s  1�
1� s�1

m
�m

, 1 < s < m + 1
0, m + 1  s (m = 1

� ).

We list the following properties of ⇣i : ⇣i � Qk = 1k, ⇣i � Qi = 0. Define

0i (x) := r⇣i (x) ·
a(x)
⇣i (x)2

· r⇣i (x), e(x) =
k|z � z0|�

1
2 � x

|k|z � z0|�
1
2 � x |

.

Using the inequalities �@s⌘(s)  ⌘(s)1�� and e · a · e  ⇠, we have

0i 

✓
1+

1
�

◆2
⇠ |k � i |�2|z � z0|⇣

�2�
i . (�)

Lemma 4.5. Define vi := R⇤
n(z)1i f, u := ⇣ivi , f 2 L1 \ L1. Then

|z � z0|kuk
q
q + kukqq j  c(q)h0i |u|qi. (i)

|z � z0|�2� /qkukq�2�
q kuk2�q j  c(q, � )⇠ |k � i |�2h|vi |2� |u|q�2� i. (ii)

kukq j  c(q, � )⇠
1
2� |k � i |�

1
� |z � z0|�1k f kq j . (iii)

Due to ⇣i � Qk = 1k, (i i i) implies 2).

Proof of Lemma. (i i) follows from (i), Young’s inequality and (�). In turn, (i i i) fol-
lows from (i i) by applying Hölder’s inequality to h|vi |2� |u|q�2� i, so that kukq j 
c(q, � )⇠

1
2� |k � i |�

1
� |z � z0|

1
� kvikq , then applying kR⇤

n(z)kq!q  C|z � z0|�1

to kvikq : kvikq  c|z � z0|�1k1i f kq , and finally k1i f kq  k1ikq j 0k f kq j by
Hölder’s inequality.
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We are left to prove (i).We have (z+ Aq �r ·bn)vi = 1i f (if q � 2, we write
A ⌘ A2 in place of Aq ) and, since ⇣i � Qi = 0, h(z+Aq+r ·bn)vi , ⇣i u|u|q�2i = 0.
One can easily check that g 2 D(A

1
2 ) ) ⇣i g 2 D(A

1
2 ). Since vi 2 D(A), both u

and u|u|q�2 belong to D(A
1
2 ) (Appendix E, Theorem E.1). Thus

zkukrr + hAqu, u|u|q�2i � hr · bnvi , ⇣i u|u|q�2i = h[Aq , ⇣i ]�vi , u|u|q�2i,

where

h[Aq , ⇣i ]�vi , u|u|q�2i :=
⌦
r⇣i · avi · r

�
ū|u|q�2�↵� hr⇣i · a · rvi , u|u|q�2i

=

⌧
r⇣i ·

au
⇣i

· r(ū|u|q�2)

�
�

⌧
r⇣i ·

a
⇣i

· ru, u|u|q�2
�

+

*

r⇣i ·
a
⇣ 2i

· r⇣i , |u|q
+

.

The rest of the proof resembles what we already did. Taking the real and imaginary
parts of the last equation and performing quadratic estimates we arrive at (i).

The same proof works for an arbitrary open � ⇢ Rd with ⇣i � � in place
of ⇣i .

Remark. The example of 3r � �1 + b · r with b(x) := c|x |�2x 2 F�(�1) in
Rd , c = d�2

2
p
�, � < 4, can be used to show that the interval of bounded solvability

Im =] 2
2� d�2

d
p
�
,1[ can not be enlarged, i.e., the constructed C0 semigroup e�t3r

can not be extended to a quasi bounded C0 semigroup on Ls for s 62 Im . Indeed, by
duality it suffices to show that e�t3

⇤
q , q 2]1, 2p

�

d
d�2 [, can not be extended to a quasi

bounded C0 semigroup on L p for any p � 2p
�

d
d�2 . Set u(x) := |x |�c exp(�|x |2),

x 2 Rd . Then u 2 D(3⇤
q) for any q 2]1, d

c+2 [. Clearly, ]1, d
c+2 [⇢]1, 2p

�
[, the

interval of contractive solvability for e�t3
⇤
q . Now, suppose that e�t3

⇤
q admits ex-

tension to a semigroup of bounded linear operators L p ! L p. Then, using the
analogue of Theorem 4.2(⇤ ⇤ ⇤) for the semigroup e�t3

⇤
q and then applying the Ex-

trapolation Theorem (Appendix F), we obtain that e�t3
⇤
q 2 B(Lq , L p), t > 0, and

ke�t3
⇤
q (b)kq!p  c1etc2 t

� d
2 ( 1q � 1

p ). Next, it is seen that (� + 3⇤
q)u = f , � > c2,

f :=
⇥
�+ 2(d � c)

⇤
|x |�ce�|x |2 � 4|x |�c+2e�|x |2 2 Lq , and so (�+3⇤

q)
�1 f = u.

The latter means, in view of ke�t3
⇤
q (b)kq!p  c1 etc2 t

� d
2 ( 1q � 1

p ), that u 2 L p,
which is clearly impossible.
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4.3. Uniformly elliptic case II. The Hille-Lions approach

Let a 2 (Hu), b 2 F�(A), 0 < � < 4, and let 3r (a, b) be the operator defined in
Theorem 4.3. It is useful (in some cases necessary) to have the convergence

e�t3r (a,b) = s-Lr - lim
n
e�t3r (an,bn),

where an and bn have smooth and bounded entries.

Theorem 4.6. Fix � < 1. Let a, an 2 (Hu), b, bn : � ! Rd , n = 1, 2, . . .
Assume that

b 2 F�(A(a)), bn 2 F�(A(an)) with fixed � = �� for all n = 1, 2, . . . (i)

an ! a strongly in [L2loc]
d⇥d , bn ! b strongly in [L2loc]

d . (i i)

Then s-Lr - limn"1 e�t3r (an,bn) = e�t3r (a,b) whenever r 2 I oc =]r�,1[ (recall
r� = 2

2�
p
�
).

Proof. 1. SetH=L2(�,Ld), H+ =
�
(D(A

1
2 ), k f k2+ =�k f k22+kA

1
2 f k22

�
, H� =

H⇤
+. By hg, f i, g 2 H+, f 2 H� denote the pairing between (H+,H�) which

coincides with hg, f iH for f 2 H. Then H+ ⇢ H ⇢ H� is the standard triple of
Hilbert spaces w.r.t. h, iH. By Â denote the extension by continuity of A ⌘ A(a)
to the operator from H+ to H�. Then Â 2 B(H+,H�) and |h f, (⇣ + Â) f i| �
k f k2+, f 2 H+, Re ⇣ > �. Thus ⇣ + Â is a bijection. Clearly (⇣ + Â)�1 � H =
(⇣ + A)�1.

Consider B̂ ⌘ b · r : H+ ! H�. By b 2 F�(A), B̂ 2 B(H+,H�) and

|h f, (⇣ + Â + B̂) f i| � (1�
p
�)h f, (µ + Â) f i, µ =

|2⇣ � �
p
�|

2(1�
p
�)

> 0

whenever Re ⇣ > �
p
�
2 .

Thus, for 3̂ ⌘ 3̂(a, b) := Â + B̂ and every ⇣ 2 Oo := {z | Re z > �
p
�
2 },

⇣ + 3̂ is a bijection.
InH define the operators

H = ba(⇣̄ + A)�
1
2 , S =

b
ba

· r(⇣ + A)�
1
2 and H⇤S.

Clearly, due to b 2 F�(A), for each ⇣ with Re ⇣ � �,

kH⇤k2!2 = kHk2!2 
p
�.
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Since (Ld a.e.) |S f | 
q

b
ba · a�1 · b

ba

q
r(⇣ + A)�

1
2 f · a · r(⇣ + A)�

1
2 f̄ , and so

kS f k2  k f k2, f 2 L2, we conclude that kH⇤Sk2!2 
p
�.

Set R̂⇣ ⌘ R̂⇣ (a, b) := (⇣ + 3̂)�1, F̂⇣ ⌘ F̂⇣ (a) := (⇣ + Â)�1, F⇣ := (⇣ + A)�1,

P⇣ ⌘ P⇣ (a, b) := H⇤S.

Clearly, for all ⇣, ⌘ 2 O := {z | Re z > �},

R̂⇣ � R̂⌘ = (⌘ � ⇣ )R̂⇣ R̂⌘; (p1)

R̂⇣ = F̂⇣ � F̂⇣ B̂ R̂⇣ = F̂⇣ � F̂⇣ B̂ F̂⇣ + F̂⇣ B̂ F̂⇣ B̂ F̂⇣ � . . . ;

F̂⇣ B̂ F̂⇣ � H = F
1
2
⇣ P⇣ F

1
2
⇣ , kP⇣k2!2 

p
�;

F̂⇣ B̂ F̂⇣ B̂ F̂⇣ � H = F
1
2
⇣ H

⇤ SH⇤ SF
1
2
⇣ .

Therefore,

R⇣ := R̂⇣ � H = F
1
2
⇣ (1+ P⇣ )�1F

1
2
⇣ ; (p2)

R⇣ = F⇣ � F
1
2
⇣ H

⇤(1+ SH⇤)�1SF
1
2
⇣ ; (p0

2)

kR⇣k2!2  |⇣ |�1(1�
p
�)�1. (p3)

Now, we employ Hille’s theory of pseudo-resolvents. By (p1), R⇣ is a pseudo-
resolvent on O. By (p2), the common null set of {R⇣ | ⇣ 2 O} is {0}. Also, from
(p0
2) it follows that ⌫R⌫

s
! 1 as ⌫ " 1. (Indeed, since k⌫R⌫k2!2 is bounded in

⌫, it suffices to prove ⌫R⌫ f ! f for f 2 D(A
1
2 ). In view of (p0

2), we only have

to prove that ⌫M⌫ f ⌘ ⌫F
1
2
⌫ H⇤

⌫ (1 + S⌫H⇤
⌫ )�1S⌫F

1
2
⌫ f ! 0. Since kS⌫F

1
2
⌫ f k2 

kF⌫(� + A)
1
2 f k2  ⌫�1k(� + A)

1
2 f k2, it is seen that kM⌫ f k2  ⌫� 3

2 k(� +

A)
1
2 f k2.) Therefore, the range of R⇣ is dense in H, and R⇣ is the resolvent of a

densely defined closed operator 3 ⌘ 3(a, b) (Appendix D, Theorem D.1).
Finally, by (p3), �3 is the generator of a quasi bounded holomorphic semi-

group.
Remarks. 1. The above construction of 3(a, b) works for a 2 (H1), A =
AD, AN or AiD. The use of (p2) leads to the convergence (1 + A)

1
2
�
R⇣ (bn) �

R⇣ (b)
� s

! 0 claimed in Section 4 almost immediately.
2. If a 2 (Hu), A = AD, then H+ = W 1,2

0 (�), H� = W�1,2(�). If
a 2 (Hu), A = AN , thenH± = W±1,2(�).

2. In view of (p3) it suffices to prove the convergence R⇣ (an, bn)
s

! R⇣ (a, b)
for ⇣ = ��. For brevity, set Fn = F�(an), F = F�(a).
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Note that Fns !F if and only if h(Fn�F) f,Fn f i!0 and h(F�Fn) f,F f i!
0 ( f 2 H). In turn,

|h(Fn � F) f,Fn f i| = |hrF f · (an � a) · rF2n f̄ i|  krF2n f̄ k2k(a� an) · rF f k2,

krF2n f k2  �� 1
2�� 3

2 k f k2

and an ! a strongly in L2loc. Thus Fn
s

! F.
Next, employing the formula

F
1
2
� (a) = ⇡�1

Z 1

0
t�

1
2 Ft+�(a)dt,

it is seen that
Z 1

T
t�

1
2 k
�
Ft+�(a) � Ft+�(an)

�
f k2dt  2T� 1

2 k f k22

and

lim
n

Z T

0
t�

1
2 k
�
Ft+�(a) � Ft+�(an)

�
f k2dt = 0.

Thus F
1
2
n

s
! F

1
2 and, since r is a closed operator in H, rF

1
2
n

s
! rF

1
2 . In turn,

the latter and the fact that bn ! b strongly in L2loc yield H
⇤
n Sn

s
! H⇤S.

�
Indeed,

s-L2-H⇤
n Sn = s-L2-F

1
2
n bn ·rF

1
2 . Therefore, it suffices to establish the convergence

kF
1
2
n bn ·rF

1
2 f �H⇤ b

ba ·rF
1
2 f k2 ! 0, or kF

1
2
n (bn ·')�H⇤( b

ba ·')k2 ! 0, only

for all ' 2 [C1
c ]d . For such ', we have F

1
2
n (bn · ') � H⇤( b

ba · ') = F
1
2
n (bn · ') �

F
1
2 (b · ')

s
! 0.

�
Now the convergence R⇣ (an, bn)

s
! R⇣ (a, b) easily follows. The

theorem is proved for r = 2, and hence for all r 2 I oc .

4.4. Non-divergence form operators

The following theorem is a by-product of Theorem 4.2 and Theorem 4.6.

Theorem 4.7. Set b := (ra), (ra)k =
Pd

i=1(ri aik), and b2a = b · a�1 · b.

(i) If a 2 (H1), b 2 F�(A) for some � < 4 and also b2a 2 L1 + L1 if 1  � < 4,
then a · r2 has an operator realization �3r (a, b) in Lr for every r 2 I oc as the
generator of the positivity preserving, Lr quasi contraction, L1 contraction C0
semigroup e�t3r (a,b) = s-Lr - limn e�t3r (a,bn).

(ii) If a, an 2 (Hu), n = 1, 2, . . . , (ra) 2 F�(A), (ran) 2 F�(An) (An ⌘ A(an))
for some � < 1 and all n, and if

an ! a strongly in [L2loc]
d⇥d , (ran) ! (ra) strongly in [L2loc]

d ,
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then, for every r 2 I oc ,

e�t3r (a,b) = s-Lr - lim
n
e�t3r (an,bn), b = (ra), bn = (ran).

(iii) If � = Rd , a 2 (Hu), b := (ra) 2 F�1 ⌘ F�1(�1) with �1 = � 2�, � < 1,
and |b| 2 L2 + L1, then, for every r 2 I oc ,

e�t3r (a,b) = s-Lr - lim
n
e�t3r (an,bn), an := e

1
n a, bn := (ran).

(iv) If � = Rd , a is a uniformly elliptic diagonal matrix, b := (ra) 2 F�(A) with
� < 1, |b| 2 L2 + L1, then, for each r 2 I oc ,

e�t3r (a,b) = s-Lr - lim
n
e�t3r (an,bn), an := e

1
n a, bn := (ran).

Proof. The claimed convergence in (i) (respectively, (ii)) is a direct consequence of
Theorem 4.2 (Theorem 4.6).

The important thing in (iii) is the fact that bn 2 F�(An), 0 < � < 1, uniformly
in n, and so 3r (an, bn) are well defined for r 2 I oc .

1. Set En f := e
1
n f. Alternatively, we may set En f := �n ⇤ f, �n denotes the K.

Friedrichs mollifier. Note the following elementary pointwise inequalities (below
b · b = |b|2 =: b2)

(rEna)2  En(ra)2.

|En( f g)|2  (En| f |2)En|g|2, f, g 2 L2 + L1.

Clearly, b = (ra) 2 F�1 ) b 2 F�(A) with c(�) = c1(�1)
� . Thus we only need to

show that bn 2 F�1 in order to conclude that bn 2 F�(An). Set | f |" := | f |+ "e�x2 .
We have for f 2 W 1,2,

k(rEna) f k22 = k(Enra)2| f |2k1 = lim
"#0

k(Enra)2| f |2"k1,

k
�
En(ra)2

�
| f |2"k1 = k(ra)

q
En| f |2"k

2
2

 �1kr
q
En| f |2"k

2
2 + c1(�1)kEn| f |2"k1

= �1

�
�
�
�
En(| f |"r| f |")p

En(| f |2")

�
�
�
�

2

2
+ c1(�1)kEn| f |2"k1

 �1kEn(r| f |")2k1 + c1(�1)kEn| f |2"k1
 �1kr| f |"k22 + c1(�1)k| f |"k22.
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Since

lim
"#0

�
�1kr| f |"k22 + c1(�1)k| f |"k22

�
= �1kr| f |k22 + c1(�1)k f k22

 �1kr f k22 + c1(�1)k f k22,

we have proved that bn 2 F�1 .
2. Now we claim that under assumptions on a in (iv)

b 2 F�(A) ) Enb 2 F�(An).

Only for simplicity we treat the special case: a = 2 I , with b = (ra) = 2r 2
F�(A). Since b2a = 4(r)2, the assumption b 2 F�(A) means that

4h(r)2| f |2i  �kr f k22 + c(�)k f k22 f 2 D(A
1
2 ).

Set an := Ena. Then (ran) = 2En(r), (ran) ·a�1
n ·(ran) = 4|En(r)|2

En2
. Note

that
|En(r)|2  (En2)En|r|2,

and so

h(ran) · a�1
n · (ran), | f |2i  4hEn|r|2, | f |2i = 4h|r|2, En| f |2i.

But 4h|r|2, En| f |2"i  �kr
p
En| f |2"k22 + c(�)k

p
En| f |2"k22 = �

⌦ 2|rEn | f |2" |2
4En | f |2"

i +

c(�)hEn| f |2"i and
|rEn | f |2" |2

4En | f |2"
= |En(| f |"r| f |")|2

En | f |2"
 En|r| f |"|2. Thus,

4h(r)2, En| f |2i�h2En|r| f ||2i+c(�)h| f |2i = �h(En2)|r| f ||2i+c(�)h| f |2i

and

h(ran) · a�1
n · (ran), | f |2i  �kA

1
2
n | f |k22 + c(�)k f k22  �kA

1
2
n f k22 + c(�)k f k22.

In other words Enb 2 F�(An) as required.
3. By Theorem 4.6, steps 1 and 2 entail the claimed convergences in (iii), (iv).

Remarks. 1. If an , ran in (ii) are smooth (e.g., in the assumptions of (iii) or (iv)),
then by the Krylov-Safonov a priori Hölder continuity of (�+3(an, bn))�1 f, f 2
C1 [20, Section 4.2], for every r � d, there exists a constant 0 < ↵ < 1 such that

(�+3r )
�1Lr \ L1 ⇢ C0,↵1 , � > !r .

2. Let {"n} be a sequence such that "n # 0 as n " 1. The proof of (iii) yields the
following.
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For any b : Rd ! Rd , |b| 2 L2loc define bn ⌘ Enb := �"n ⇤ (b1B(0,n)) and
choose {"n} such that bn ! b strongly in [L2loc]

d as n " 1. Fix � < 1. Then

b 2 F� )
�
bn 2 F�, bn ! b strongly in [L2loc]

d , and hence e�t3(bn) s
! e�t3(b)�.

3. The same arguments used in step 2 yield the following:
If a 2 (H1), ail = 2i �il , |i | + |rii | 2 L2 + L1, i, l = 1, 2, . . . , d, then

b 2 F�(A) ) bn 2 F�(An) (b = (ra), bn = e
1
n b).

Example. In Rd , d � 3 consider the matrix

a(x) = I +c|x |�2x⌦ x, aik(x) = �ik +c|x |�2xi xk with c =
d � 1
1� ↵

�1, ↵ < 1.

Thus a(x) is strictly positive, (ra) = (d�1)c|x |�2x, a�1 = I� c
c+1 |x |

�2x⌦x and
b2a = [(d�1)c]2

c+1 |x |�2. The following Hardy type inequality (with the best possible
constant) will be proved below:

(c + 1)
(d � 2)2

4
k|x |�1hk22  hrh · a · rh̄i (h 2 W 1,2(Rd)). (?)

(?) implies that b 2 F�(A) with � = 4
�
1+ ↵

d�2
�2 and c(�) = 0. In particular, � < 4

if and only if ↵ 2]�2(d�2), 0[ or equivalently c 2]� 1
2+ 1

d�2
, 0[ [ ]0, d�2[.Armed

with (?) and Theorem 4.2, one can reconsider the conclusions in [21, Chapter I,
Section 3, Example 4].

Consider the following problem in L p(Rd ,Ld), p > 0, d � 3:

a · r2u = 0, u(x) � {|x | � 1} = 0.

If ↵ 6= 0, then the problem has two solutions u1 = 0 and u2 = |x |↵ � 1. If � < 4,
then ↵ < 0 and the unbounded solution to 3pu = 0, p > 2

2�
p
�
, is inadmissible

according to Theorem 4.2. (3p � �r · a · r + (ra) · r only formally equals to
�a · r2). If ↵ > 0 (so that � > 4), then the problem has two (bounded) solutions.
Conclusion. The condition � < 4 of Theorem 4.2 can not be substantially strength-
ened.

Proof of (?). Let c > 0. Since h�, x · r�i = �d
2 h�,�i, � 2 C1

c , we have

h�,�r · (a � 1) · r�i = c
�
kx · r(|x |�1�)k22 � (d � 1)k|x |�1�k22

�
.

Next, the following inequality (with the sharp constant) is valid:

kx · r f k2 �
d
2
k f k2, ( f 2 D(D)), (H)

where D � C1
c =

p
�1
2 (x · r + r · x).
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Indeed, since the operator D = (D � C1
c )closL2!L2 is self-adjoint, k(D �

�)�1k  1
|Im�| for Re � = 0. Therefore

kx ·r f k2 = k
1
2
(x ·r+r·x�d) f k2 = k(D�

p
�1

d
2
) f k2 �

d
2
k f k2, ( f 2 C1

c )

and (H) is proved. But then

h�,�r · (a � 1) · r�i � c
(d � 2)2

4
k|x |�1�k22 (� 2 C1

c ).

(?) follows now from the equality h�,�r · a · r�i = h�,�r · (a � 1) · r�i +

h�,�1�i and Hardy’s inequality h�,�1�i � (d�2)2
4 k|x |�1�k22.

Finally, the obvious inequality (1 + c)h�,�1�i � h�,�r · a · r�i clearly
shows that the constant in (?) is sharp.

If �1 < c  0, (?) is a trivial consequence of Hardy’s inequality.

Remark. The Krylov-Safonov a priori estimates yield the uniqueness of a “good”
solution to �a · r2 = f in Ld provided that a 2 (Hu) is continuous outside of a
“sufficiently small” set [3].

The assumption (ra) 2 F�(A) does not guarantee W 2,r estimates on (⇣ +
3r (a,ra))�1Lr for some r > (d�2)_2. The same is true even for (ra) 2 F0(A).
(See also Remark 5 in the next section.)

4.5. W1,s-estimates on solutions to (µ � 1 + b · r)u = f , b 2 F�

Let d � 3, L p = L p(Rd ,Ld), b : Rd ! Rd , b 2 F�, 0 < � < 4. Define
bn ⌘ Enb := �"n ⇤ (b1B(0,n)), n = 1, 2, . . .

Set 3p(bn) := �1+ bn · r, D(3p(bn)) = W 2,p(Rd), 1 < p < 1. Clearly,
�3p(bn) is the generator of a holomorphic semigroup in L p. According to Theo-
rem 4.2 and the fact bn 2 F� (see Remark 2 after the proof of Theorem 4.7), for
each p 2 Ic = [ 2

2�
p
�
,1[,

ke�t3p(bn)kp!p  e!pt , !p =
c(�)

2(p � 1)
,

and by Theorem 4.3, for each p 2 I oc , s-L p- limn e�t3p(bn) exists and determines
the C0 semigroup e�t3p ; 3p ⌘ 3p(b) is an operator realization of �1+ b · r in
L p.

Theorem 4.8. Let d � 3. Fix any � 2
⇤
0, 1 ^

� 2
d�2

�2⇥
. Assume that b 2 F�. Let

q 2 [2, 2p
�

⇥
. Set u = (µ + 3q(b))�1 f, where f 2 Lq , µ > !q . Then there
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exist constants �0 = �0(�, q) and Kl = Kl(�, q), l = 1, 2, such that, for all
µ > �0 _ !q ,

krukq  K1
�
µ � �0

�� 1
2 k f kq;

krukq j  K2
�
µ � �0

� 1
q � 1

2 k f kq , j =
d

d � 2
.

In particular, (µ + 3q(b))�1 : Lq ! C0,1�
d
q j whenever d � 4, q 2

⇤
d � 2, 2p

�

⇥

and µ > !q . For d = 3, (µ +3q(b))�1 : Lq ! C0,1�
d
q j whenever q 2

⇥
2, 2p

�

⇥
,

µ > !q .

Proof. 1. Let q 2
⇤ 2
2�

p
�
,1

⇥
. Clearly bn · r � W 2,q is a Miyadera perturbation of

�1 : kbn ·r (�n�1)�1kq!q < 1, �n � mn,d for some constant mn,d . Therefore,
by the resolvent identity, (µ + 3q(bn))�1Lq ⇢ W 2,q , µ > !q . Moreover, it is
easily seen that (�n + 3q(bn))�1W 1,q ⇢ W 3,q , and so, by the resolvent identity,
(µ +3q(bn))�1W 1,q ⇢ W 3,q , µ > !q .

2. Let q 2 [2, 2p
�
[. Set un = (µ + 3q(bn))�1 f, 0  f 2 C1

c . We will use
the following notations

w := run, wi := ri un, wik := riwk, 1un = r · w ⌘
dX

i=1
wi i ;

� := �r · (w|w|q�2) ⌘ �
dX

i=1
ri (wi |w|q�2).

We have
h(µ �1)un,�i = �hbn · run,�i + h f,�i.

Since

h�1un,�i =
⌦
�1w,w|w|q�2↵ =

dX

i,k=1

⌦
wik, wik |w|q�2+(q�2)|w|q�3wkri |w|

↵

and

�=�|w|q�21un�(q�2)|w|q�3w·r|w|=:�1+�2, �1=�|w|q�2(µun+b·w� f ),

we arrive at

µh|w|qi + Iq + (q � 2)Jq =
⌦
bn · w � f, |w|q�2(µun + bn · w � f )

+ (q � 2)|w|q�3w · r|w|
↵
,

(?)

where

Iq =
dX

i=1

⌦
|rwi |

2, |w|q�2↵, Jq =
⌦
|r|w||2, |w|q�2↵.
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Now we bound the terms from the right-hand side of (?) by Jq , Bq := h|bn ·
w|2|w|q�2i,
kwkq�2

q , k f k2q and
� µ

µ�!q

�2
k f k2q as follows:

1) hbn · w, |w|q�2µuni  µ
µ�!q

B
1
2
q kwk

q�2
2

q k f kq . ( 2
2�

p
�

< q ) kunkq  (µ �

!q)
�1k f kq ).

2) hbn · w, |w|q�2bn · wi = Bq .

3) |hbn · w, |w|q�2(� f )i|  B
1
2
q kwk

q�2
2

q k f kq .

4) (q � 2)hbn · w, |w|q�3w · r|w|i  (q � 2)B
1
2
q J

1
2
q .

5) h� f, |w|q�2µuni  0.

6) h� f, |w|q�2bn · wi  B
1
2
q kwk

q�2
2

q k f kq .
7) h f, |w|q�2 f i  kwkq�2

q k f k2q .

8) (q � 2)h� f, |w|q�3w · r|w|i  (q � 2)J
1
2
q kwk

q�2
2

q k f kq .

(Belowwe will get rid of the terms arising in the right-hand side of 1), 3), 5)-8) using
Young’s inequality, at expense of increasing the coefficients K1, K2 of k f kq .)

By means of 1)-8) we have (", "0 > 0)

right-hand side of (?) (q � 2)"Jq + (q � 2)
✓
"0 Jq +

1
4"0

Bq
◆

+ (1+ 3")Bq +

✓
1+

q
4"

+
1
4"

µ2

(µ � !q)2

◆
kwkq�2

q k f k2q .

By bn 2 F�,

Bq  kbn|w|
q
2 k22  �kr|w|

q
2 k22 + c(�)kwkqq =

�q2

4
Jq + c(�)kwkqq .

Setting "0 = q
p
�
4 we have

right-hand side of (?) 


(q � 2)

q
p
�

2
+
�q2

4
+ (q � 2)" + 3"

�q2

4

�
Jq

+

✓
1+ 3" +

q � 2
q
p
�

◆
c(�)kwkqq

+

✓
1+

q
4"

+
1
4"

µ2

(µ � !q)2

◆
kwkq�2

q k f k2q .
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Thus

µkwkqq + Iq +

"

(q � 2)

 

1�
q
p
�

2

!

�
�q2

4

#

Jq �

"

(q � 2)" + 3"
�q2

4

#

Jq



✓
1+ 3" +

q � 2
q
p
�

◆
c(�)kwkqq +

✓
1+

q
4"

+
1
4"

µ2

(µ � !q)2

◆
kwkq�2

q k f k2q .

Since Iq � Jq and q � 1� (q � 2)q
p
�
2 � �q2

4 > 0 due to2 q 2
⇥
2, 2p

�

⇥
we conclude

that, for suitable ", there are C1 = C1(", �, q) > 0 and C2 = C2(", �, q,!q) < 1
such that

(µ � !̃")kwkqq + C1 Jq  C2kwkq�2
q k f k2q ,

where !̃" =
�
1+ 3" + q�2

q
p
�

�
c(�).

The latter, the Sobolev and the Young inequalities combined imply that

krunkq j  K2
�
µ � �0

� 1
q � 1

2 k f kq whenever µ > �0 := !̃0 > !q .

It is also seen that krunkq  C
1
2
2 (µ � �0)

� 1
2 k f kq . Since un ! u strongly in Lq+

and hence in Lq j+ , and since (C1
c )+ is dense in L

q j
+ , we have u 2 W 1,q j , and the

inequality krukq j  K2
�
µ � �0

� 1
q � 1

2 k f kq holds for all f 2 Lq+.

We have established the assertions of the theorem for all f 2 Lq+, and hence
for all f 2 Lq (with Kl ! 4Kl , l = 1, 2).

Remarks. 1. There is an obvious analogue of Theorem 4.8 for � ⇢ Rd with the
additional assumption @� 2 C0,1 in case of 1 = 1N .

2. Only for d = 3 and q = 2 the result of Theorem 4.8 is “trivial”. Namely, the
assumption b 2 F�, � < 1, implies that b ·r is Rellich’s perturbation of�1 in L2,
and so�32(b) = 1� b ·r of domain W 2,2. (Indeed, define T = b ·r(µ�1)�1,
µ � �, and note that

kTk2!2  k|b|(µ �1)�
1
2 k2!2kr(µ �1)�

1
2 k2!2 

p
�.

Thus, by Theorem 4.6, the Neumann series for (µ +32(b))�1 = (µ �1)�1(1 +
T )�1.)

Hence, for Re ⇣ � �, (⇣ +32(b))�1 : L2 ! W 1,2 j , 2 j = 6 = 2d. However,
already for d = 4, W 2,2 ⇢ W 1,2 j , 2 j = d but not crucial 2 j > d.

2 Set  (q) = q � 1 � (q � 2)q
p
�
2 � q2 �4 , 2  q < 2p

�
. Note that  (2) = 1 � � > 0

and  (2/
p
�) = 0. Also  increases on [2, 2p

�

1+
p
�

2+
p
�
] and decreases on [ 2p

�

1+
p
�

2+
p
�
, 2p

�
[, and so

 > 0 on [2, 2p
�
[.
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3. Under the same assumptions on � as in Theorem 4.8, a stronger regularity
of the elements of D(3q(b)) has been recently established in [14, Theorem 1].
Namely, if b 2 F� , � < 1, then for every q 2

⇥
2, 2p

�
[ the formal differential

expression 1 � b · r has an operator realization �3q(b) on Lq as the generator
of a positivity preserving, L1 contraction, quasi contraction C0 semigroup such
that D(3q) ⇢ W1+ 2

s ,q , s > q. In particular, by the Sobolev Embedding Theorem,
if � < 1 ^

� 2
d�2

�2, then there exists q > d � 2 such that D
�
3q(b)

�
⇢ C0,� ,

� < 1� d�2
q .

4. Let |b| 2 Ld + L1, d � 3. Then, by the Sobolev Embedding Theorem, for
any q 2]d2 , d[, there exists a constant �d,b > 0 such that

(µ +3q(b))�1 : Lq ! W 2,q ⇢ C0,2�
d
q for all µ > �d,b.

In particular,

(µ +3q(b))�1 : Lq \ Ld ! C0,↵ for any ↵ < 1.

By Theorem 4.8, the last embedding also holds for b 2 F0 =
T
�>0 F�.

5. In fact, for b 2 [Ld,1]d (( F� with � = cdkbkd,1, see Example 4.1 above),
one has the following characterization ofW 2,q smoothness of u = (µ+3q(b))�1 f ,
f 2 Lq , 1 < q < d. Using that

|r(�1)�1(x, y)|m⇤
d(�1)�

1
2 (x, y), x, y2Rd with m⇤

d :=
d � 2
2

p
⇡
0
�d�2
2
�

0
�d�1
2
� ,

we have

kb · r(⇣ �1)�1kq!q

 kb · r(�1)�1kq!qk1(⇣ �1)�1kq!q  2m⇤
dk|b|(�1)�

1
2 kq!q , Re ⇣ > 0.

Let �d = ⇡
d
20(d2 + 1) denote the volume of the unit ball in Rd . Then

k|b|(�1)�
1
2 kq!q (we apply [17, Proposition 2.5])

 kbkd,1�
� 1
d

d k|x |�1(�1)�
1
2 kq!q (we apply [17, Lemma 2.7])

= kbkd,1�
� 1
d

d Rd,q , Rd,q :=
1
2
0
� d
2q � 1

2
�
0
�d
2 � d

2q
�

0
�d+1
2 � d

2q
�
0
� d
2q
� .

We conclude that if kbkd,1 < 1
2 (m

⇤
d�

� 1
d

d Rd,q)
�1, then b · r is Rellich’s pertur-

bation of �1, and so 3q(b) = �1 + b · r, D(3q(b)) = W 2,q , generates a
holomorphic semigroup in Lq . (Note that q = d is unavailable for b 2 [Ld,1]d .)
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6. Let d � 3 and b(x) = c|x |�2x, |c| < 1. Clearly, b 2 F� with � = 4c2
(d�2)2

satisfies the assumptions of Theorem 4.8 if d � 4. For d = 3 however |c| has to be
strictly less than 12 .

For this vector field, the proof of Theorem 4.8 can be modified to take advan-
tage of the fact that div b exists and is a form-bounded potential:

Corollary 4.9. Let � = Rd , d � 3. Let b(x) := �c|x |�2x, c = d�2
2

p
�, � < 1.

Then

1) The interval of contraction solvability for 3q(b) � �1+ b · r is ]1,1[.
2) d � 4. Let u = (µ +3q(b))�1 f , µ > 0, f 2 Lq . Then, for any � < 1, there

exist q > d � 2 and constants Kl = Kl(�, q), l = 1, 2, such that

krukq  K1µ� 1
2 k f kq;

krukq j  K2µ
1
q � 1

2 k f kq .

3) d = 3. Then the assertion of 2) holds for any q � 2 and
p
� < 2

q .

In particular, both in 2) and 3), (µ +3q(b))�1 : Lq ! C0,1�
d
q j .

Remark. We need q � 2 due to our choice of the test function � in the proof
below.

Proof. Set |x |2" := |x |2 + ", " > 0, b"(x) := �c|x |�2" x , u ⌘ u" = (µ +
3q(b"))�1 f , w := ru. We follow the proof of Theorem 4.8. We have

µh|w|qi + Iq + (q � 2)Jq = ch|x |�2" x · w,�i + h f,�i,

where � := �r · (w|w|q�2). Integrating by parts, we have

h|x |�2" x · w,�i = Z + h|x |�2" x · r|w|, |w|q�1i,

where
Z := h|x |�2" |w|qi � 2h|x |�4" (x · w)2|w|q�2i,

and so
h|x |�2" x · w,�i  h|x |�2" |w|qi + h|x |�2" x · r|w|, |w|q�1i,

we obtain the inequality

µh|w|qi + Iq + (q � 2)Jq  ch|x |�2" |w|qi + ch|x |�2" x · r|w|, |w|q�1i + h f,�i.

Noticing that

h|x |�2" x · r|w|, |w|q�1i = �
d � 2
q

h|x |�2" |w|qi �
2"
q

h|x |�4" |w|qi,
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Iq � Jq and

h|x |�2" |w|qi = h|x |�2|w|qi � "h|x |�2" |x |�2|w|qi,

we have
µh|w|qi + (q � 1)Jq

 c
✓
1�

d � 2
q

◆
h|x |�2|w|qi � c

✓
1�

d � 2
q

◆
"h|x |�2" |x |�2|w|qi + h f,�i

✓
here we are using Hardy’s inequality h|x |�2|w|qi 

q2

(d � 2)2
Jq
◆

 c
✓
1�

d � 2
q

◆
q2

(d � 2)2
Jq � c

✓
1�

d � 2
q

◆
"h|x |�2" |x |�2|w|qi + h f,�i.

Therefore, for q > d � 2 if d � 4, and q � 2 if d = 3,

µh|w|qi +


q � 1� c

q(q � d + 2)
(d � 2)2

�
Jq  h f,�i.

Now, arguing as in the proof of Theorem 4.8 (see estimates 5)-8) there), we bound
h f,�i as follows:

h f,�i  "Jq + C(")kwkq�2
q k f k2q , 0 < C(") < 1,

where " > 0 is to be chosen sufficiently small.
Finally, applying the Sobolev and the Young inequalities as in the last step

of the proof of Theorem 4.8, we obtain the required estimates on kukW 1,q ,
kukW 1,q j

Corollary 4.10. Let � = Rd , d � 5. Let b(x) := c|x |�2x , c = d�2
2

p
�,

p
� <

d�3
d�2 . There exist q > 2_ (d � 2) and constants Kl = Kl(�, q), l = 1, 2, such that
u = (µ +3q(b))�1 f , µ > 0, f 2 Lq , satisfies

krukq  K1µ� 1
2 k f kq;

krukq j  K2µ
1
q � 1

2 k f kq .

In particular, (µ + 3q(b))�1 : Lq ! C0,1�
d
q j . (For dimensions d = 3, 4, see

Theorem 4.8.)

Proof. Modifying the proof of Theorem 4.8, we have

µh|w|qi + Iq + (q � 2)Jq = �ch|x |�2" x · w,�i + h f,�i,

Integrating by parts, we have h|x |�2" x ·w,�i = Z+h|x |�2" x ·r|w|, |w|q�1i,where,
recall, Z = h|x |�2" |w|qi � 2h|x |�4" (x · w)2|w|q�2i, and h|x |�2" x · r|w|, |w|q�1i =
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�d�2
q h|x |�2" |w|qi � 2"

q h|x |�4" |w|qi. Clearly,

h|x |�4" (x · w)2|w|q�2i  h|x |�4" |x |4|x |�2|w|qi

= h|x |�2|w|qi � 2"h|x |�2" |x |�2|w|qi + "2h|x |�4" |x |�2|w|qi,

"h|x |�4" |x |�2|w|qi  h|x |�2" |x |�2|w|qi.

Therefore,

µh|w|qi + Iq + (q � 2)Jq

 c
q + d � 2

q
h|x |�2|w|qi � c"

q + d � 2
q

h|x |�2" |x |�2|w|qi + h f,�i

 c
q(q + d � 2)

(d � 2)2
Jq + h f,�i,

and so
µh|w|qi +


q � 1� c

q(q + d � 2)
(d � 2)2

�
Jq  h f,�i.

It is seen that if
p
� < d�3

d�2 then q � 1� c q(q+d�2)
(d�2)2 > 0 for some q > d � 2. The

rest of the proof repeats the end of the proof of Corollary 4.9.

Remark. Consider the formal differential operator L = �1 + b · r, b(x) :=
d�2
2

p
�|x |�2x . If � > 4, then the Dirichlet problem for L in {|x | < 1} has two

distinct bounded weak solutions, moreover, one of these solutions does not satisfy
the maximum principle; see Remark 3 after Theorem 4.2. In view of Corollary
4.10, this observation can not be used to justify discarding b(x) = d�2

2
p
�|x |�2x

regardless of the value of � (and thus the whole class F� � [Ld + L1]d ) as an
argument for the “optimality” of the assumption b 2 [Ld + L1]d (a recurring
theme in the literature).

In [26, Theorems 3.23, 3.24], the authors take full advantage of the specifics of
the operator �1+ c|x |�2x · r with c 2 R and construct its realization generating
a positivity preserving holomorphic semigroup in L p if:

(a) c = d�2
2

p
�, 0 < � < 4, p 2

i
2

2� d�2
d

p
�
,1

h
;

(b) c = d�2
2

p
�, 4  � < 1, p 2

i
d
2 ,1

h
;

(c) c = �d�2
2

p
�, 0 < � < 1, p 2]1,1[.

They also explicitly describe the domain of the generator. In cases (a), (c) the
authors obtain W 1,p(Rd) and W 2,p(Rd) characterization of any u in the domain of
the generator:

In the assumptions of (a), |ru| 2 L p if p 2

�
2

2� 2
d � d�2

d
p
�
, d

, and rirku 2

L p, i, k = 1, . . . , d, if p 2

�
2

2� d�2
d

p
�
, d2


;
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In the assumptions of (c), |ru| 2 L p if p 2

�
2

2� 2
d + d�2

d
p
�
, d

, and rirku 2

L p, i, k = 1, . . . , d, if p 2

�
2

2+ d�2
d

p
�
, d2


.

This, however, does not allow to conclude that |ru| 2 Lr for some r > d, as
in Corollaries 4.9 and 4.10, and hence that u 2 C0,� for some � > 0. See also
Remark 3 after the proof of Theorem 4.8.

We generalize and detailize Corollary 4.10 as follows:

Corollary 4.11. Let � = Rd , d � 3. Assume that b 2 F� , � < 4, b2 2 L1 + L1,
and G ⌘ G(b),Gik := rkbi , satisfies the inequality

|hGh, hi| 6 �1h|r|h||2i + c1(�1)h|h|2i, h 2 C1
0 (Rd , Rd) (?)

for some 0 < �1  1�
p
�
2 , 0  c1(�1) < 1. Let u = (µ +3q(b))�1 f , f 2 Lq ,

µ > !q , q 2]2 _ q�, q+[, where

q⌥ :=
2�

p
� ⌥

q
(2�

p
�)2 � 4�1

�1
.

There exist constants �0 = �0(�, q) and Kl = Kl(�, q), l = 1, 2, such that, for all
µ > �0 _ !q ,

krukq  K1
�
µ � �0

�� 1
2 k f kq;

krukq j  K2
�
µ � �0

� 1
q � 1

2 k f kq .

In particular, if 2 �
p
� +

q
(2�

p
�)2 � 4�1 > (2 _ d � 2)�1 then there exists

q 2]2 _ d � 2, q+[ such that (µ +3q(b))�1 : Lq ! C0,1�
d
q j .

Proof. Set bn := Enb, where En := e
1
n . Then bn 2 F� (see the arguments in

Section 3.4) and EnG(b) satisfies (?) with the same �1 for all n. Indeed,

|h[EnG(b)]h, hi|  |hG(b)h̃, h̃i|, h̃i :=
�
Enh2i

� 1
2 ,

and by (?),

|hG(b)h̃, h̃i|  �1
�
�
�
�r
�
En|h|2

� 1
2
�
�2
�
�
1 + c1(�1)kEn|h|2k1.

Noticing that

⌦��r
�
En(|h|2)

� 1
2
�
�2↵ =

�
�
�
�
En(|h|r|h|)
p
En|h|2

�
�
�
�

2

2
 kEn|r|h||2k1

= kr|h|k22, and kEn|h|2k1 = khk22,

we obtain that EnG(b) satisfies (?)



THEORY OF KOLMOGOROV OPERATOR IN SPACES L p AND C1 1617

Now, we have

µh|w|qi + Iq + (q � 2)Jq + hbn · w,�i = h f,�i.

Integrating by parts, we obtain

hbn · w,�i = h[EnG(b)]w,w|w|q�2i + hbn · r|w|, |w|q�1i.

Thus,

|hbn · w,�i|  �1h
�
�r|w|

q
2
�
�2i + ↵hb2n, |w|qi +

1
4↵

Jq
✓
↵ =

1
q
p
�

◆




q2

4
�1 +

q2

4
�↵ +

1
4↵

�
Jq + ↵(c1(�1) + c(�))kwkqq

=


q2

4
�1 +

q
2
p
�

�
Jq +

c1(�1) + c(�)
q
p
�

kwkqq .

Applying Iq � Jq , we obtain

✓
µ �

c1(�1) + c(�)
q
p
�

◆
h|w|qi +

✓
q � 1�

q2

4
�1 �

q
2
p
�

◆
Jq  h f,�i.

(It is seen that if q 2]2 _ q�, q+[, then q � 1� q2
4 �1 � q

2
p
� > 0.) The rest of the

proof repeats the end of the proof of Corollary 4.9.

Remarks. 1. The requirement b2 2 L1 + L1 is not essential: one can get rid of it
by defining bn as bn := e"n1⇣nb, where ⇣n(x) = ⌘n(|x |),

⌘n(t) :=

8
<

:

1 if t < n
2� t

n if n  t  2n
0 if 2n < t,

and " # 0 are chosen sufficiently small. (Albeit this works for �1 < 1 �
p
�
2 . The

latter does not affect the result since the interval ]q�, q+[ is open.)
2. It is easy to modify the proof above to work on an arbitrary open set� ⇢ Rd .
3. For the vector field b(x) = c|x |�2x , c > 0, one has h · Gh = c

�
|x |�2|h|2 �

2(x · h)2|x |�4
�
, and so |hGh, hi|  ch|x |�2|h|2i. Thus, for this vector field the

conditions of Corollary 4.11 are satisfied with �1 = 4
(d�2)2 c, � = 4

(d�2)2 c
2. In

particular, one recovers the assertion of Corollary 4.10.

In [15, 16] we extend Theorem 4.8 to the operators �r · a · r + b · r and
�a · r2 + b · r. Here we only mention the following:
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Theorem ([15]). Let � = Rd , d � 3, c > �1, a(x) = I + c|x |�2x ⌦ x . Let
b 2 F�(�1), or b 2 F�(A), where A = AD.

(i) [Divergence form operator] If
p
� 2]0, 1^ 2

d�2 [ and |c| is sufficiently small,
or

c 2

�
�

1
2+ 2

d�3
, 2(d � 3)(d � 1)


(d � 4), c 2

⇤
�1/9, 1/4

⇥
(d = 3)

and � is sufficiently small, then, for q > d�2 sufficiently close to d�2 the operator
realization 3q(a, b) of �r · a · r + b · r is well defined, and there exist constants
�0 = �0(c, �, q) and Kl = Kl(c, �, q), l = 1, 2, such that u = (µ+3q(a, b))�1 f
(µ 2 ⇢(�3q), f 2 Lq) satisfies the inequalities

krukq  K1(µ � �0)
� 1
2 k f kq ,

krukq j  K2(µ � �0)
1
q � 1

2 k f kq , j = d
d�2 .

(⇤)

In particular, (µ +3q(a, b))�1 : Lq ! C0,1�
d
q j , for all µ > �0 _ !q .

(ii) [Non-divergence form operator] If
p
� 2]0, 1 ^ 2

d�2 [ and |c| is sufficiently
small, or

c 2

�
�

1

1+ 1
4

(d�4)2
(d�3)(2d�5)

,
d � 3
2


(d � 4), c 2] � 1, 1/3[ (d = 3)

and � is sufficiently small, then, for all q > d � 2 sufficiently close to d � 2 the
operator realization 3q(a, (ra) + b) of �a · r2 + b · r in Lq is well defined, and
(⇤) holds for u =

�
µ +3q(a, (ra) + b)

��1
(µ 2 ⇢(�3q), f 2 Lq).

4.6. Lr -strong Feller semigroup on C1 corresponding to �1 + b · r, b 2 F�

Armed with Theorem 4.3 and Theorem 4.8, we establish

Theorem 4.12. Let d � 3, b : Rd ! Rd , b 2 F� , � 2
⇤
0, 1 ^ 4

(d�2)2
⇥
. Then:

(i) The limit

e�t3C1 (b) := s-C1- limn e�t3C1 (bn) (t � 0)

exists and determines a positivity preserving contraction C0 semigroup on C1.
Here {bn} is defined in Section 4.5, 3C1(bn) := �1 + bn · r, D(3C1(bn)) =
(1�1)�1C1,

(ii) [The Lr -strong Feller property ]
�
(µ +3C1(b))�1 � Lr \ C1

�clos
Lr!C1

2

B(Lr ,C0,1�
d
r j ) whenever r 2

⇤ 2
2�

p
�

_ (d � 2), 2p
�

⇥
and µ > !q .

(iii) The integral kernel of e�t3C1 (b) determines the transition probability
function of a Hunt process.
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Proof. We will need the following auxiliary results. Set

g := um � un, un = (µ +3r (bn))�1 f, f 2 L1 \ L1, µ >
c(�)
�

.

Lemma 4.13. There are positive constants C = C(d), k = k(�) such that

kgkr j 
�
C�krunk2q j

� 1
r
�
r2k
� 1
r kgk1�

2
r

x 0(r�2),

where q 2
⇤ 2
2�

p
�
_ (d � 2), 2p

�

⇥
, 2x = q j, j = d

d�2 , x
0 := x

x�1 and x
0(r � 2) >

2
2�

p
�
.

Proof. Note that g satisfies the equation

(µ +3q(bm))g = F, F = (bn � bm) · run.

Let  = g|g|r�2, v = g|g|
r�2
2 . Taking the scalar product of the equation by  , we

have

µkvk22 +
4
rr 0

krvk22 = �
2
r
hv, bm · rvi + h(bn � bm) · run, v|v|1�

2
r i.

By the quadratic estimates,

|hv, bm · rvi|  "kbmvk22 + (4")�1krvk22
 ("� + (4")�1)krvk22 + "c(�)kvk22

=
p
�krvk22 + (2

p
�)�1c(�)kvk22 (" = (2

p
�)�1),

|h(bn � bm) · run, v|v|1�
2
r i|  h(|bn| + |bm |)|v|, |v|1�

2
r |run|i

 ⌘�krvk22 + ⌘c(�)kvk22

+ ⌘�1k|v|1�
2
r |run|k22 (⌘ > 0),

we obtain the inequality

µ �

✓
1
r
1

p
�

+ ⌘

◆
c(�)

�
kvk22 +

✓
4
rr 0

�
2
r
p
�� ⌘�

◆
krvk22  ⌘�1k|v|1�

2
r |runk22.

Since r > 2
2�

p
�

, 2
r 0 �

p
� > 0, we choose k > 1 so large that 4

rr 0 � 2
r
p
� =

2
r
� 2
r 0 �

p
�
�

> 2r�k . Fix ⌘ by ⌘� = 4
rr 0 � 2

r
p
� � r�k (� r�k). Thus


µ �

c(�)
�

✓
4
rr 0

�
1
r
p
� � r�k

◆�
kvk22 + r�kkrvk22  �rkk|v|1�

2
r |run|k22.
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Our choice ofµ (µ > c(�)
� ) ensures that the expression contained in square brackets

is strictly positive. Thus

krvk22  �r2kkrunk22xkvk
2(1� 2

r )

2x 0(1� 2
r )

.

Finally, applying the uniform Sobolev inequality cdkvk22 j  krvk22, we end the
proof of Lemma 4.13.

Lemma 4.14. In the notation of Lemma 4.13, for any r0 > 2
2�

p
�

kgk1  Bkgk�r0, µ � 1+ �0 _
c(�)
�

,

where � =
�
1� x 0

j
��
1� x 0

j + 2x 0

r0

��1
> 0, and B = B(d, �, K2) < 1 is a constant

(K2 is the constant in Theorem 4.8).

Proof. Let D := C� supn krunk2q j . By Theorem 4.8, D < 1. We iterate the in-
equality

kgkr j  D
1
r (r

1
r )2kkgk1�

2
r

x 0(r�2) (?)

as follows. Successively setting x 0(r1 � 2) = r0, x 0(r2 � 2) = jr1, x 0(r3 � 2) =
jr2, . . . so that rn = (t � 1)�1

�
tn( r0x 0 + 2) � tn�1 r0x 0 � 2

�
, where t = j

x 0 > 1, we
get from (?)

kgkrn j  D↵n0nkgk
�n
r0 ,

where

↵n=
1
r1

✓
1�

2
r2

◆✓
1�

2
r3

◆
. . .

✓
1�

2
rn

◆
+
1
r2

✓
1�

2
r3

◆✓
1�

2
r4

◆
. . .

✓
1�

2
rn

◆

+ · · · +
1

rn�1

✓
1�

2
rn

◆
+
1
rn

;

�n =

✓
1�

2
r1

◆✓
1�

2
r2

◆
. . .

✓
1�

2
rn

◆
;

0n =


rr

�1
n
n r

r�1
n�1(1�2r

�1
n )

n�1 r
r�1
n�2(1�2r

�1
n�1)(1�2r

�1
n )

n�2 . . . rr
�1
1 (1�2r�1

2 )...(1�2r�1
n )

1

�2k
.

Since ↵n = tn � r�1
n (t � 1)�1 and �n = r0tn�1(x 0rn)�1,

↵n  ↵ ⌘

✓
r0
x 0

+ 2�
r0
j

◆�1
,

and
inf
n
�n > � =

�
1�

x 0

j
��
1�

x 0

j
+
2x 0

r0

��1
> 0, sup

n
�n < 1.
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Note that kgkr0 ! 0 as n,m " 1 since r0 2 I oc , and so kgk�nr0  kgk�r0 for all large
enough n,m.

Finally, since

0
1
2k
n = rr

�1
n
n r tr

�1
n

n�1 r
t2r�1

n
n�2 . . . r t

n�1r�1
n

1 and btn  rn  atn,

where a = r1(t � 1)�1, b = r1t�1, we have

0
1
2k
n  (atn)(bt

n)�1(atn�1)(bt
n�1)�1 . . . (at)(bt)

�1

=


at

n�t�n(t�1)�1 t
Pn

i=1 i t�i
� 1
b




a(t�1)�1bt (t�1)

2
� 1
b
.

The proof of Lemma 4.14 is completed.

Remark. The fact that � > 0 is the main concern of the iterative procedure.

Lemma 4.15. Let Un := (µ + 3r0(bn))�1F, µ > c(�)
� , F := bn · r(µ �

1)�1 f, f 2 C1c . There are constants 0 < �̃  1, B̃ and B̂ independent of n
such that

kUnk1  B̃kUnk
�̃
r0,

kµUnk1  B̂kµUnk
�̃
r0

whenever r0 > 2
2�

p
�
.

Proof. Proceeding exactly as in the proof of Lemma 4.13, we obtain the inequalities

kUnkr j  (C�kr(µ �1)�1 f k2q j )
1
r (r2k)

1
r kUnk

1� 2
r

x 0(r�2),

kµUnkr j  (C�kr f k2q j )
1
r (r2k)

1
r kµUnk

1� 2
r

x 0(r�2);

their iteration provides the required result.

Lemma 4.16. In the notation of Lemma 4.15, we have

kµUnkr 

✓
8
r

✓
2
r 0

�
p
�

◆◆� 1
2
✓

µ �
c(�)
�

◆� 1
2
kr f kr

whenever r > 2
2�

p
�
.
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Proof. Proceeding again as in Lemma 4.13, we obtain the inequality (⌘ > 0)

µ�

✓
1
r
1

p
�

+⌘

◆
c(�)

�
kvk22+

✓
4
rr 0

�
2
r
p
��⌘�

◆
krvk22  (4⌘)�1k|v|1�

2
r | fµ|k22,

where v := Un|U |
r�2
2

n and fµ := r(µ �1)�1 f. Setting here ⌘� = 4
rr 0 � 2

r
p
� and

noticing that

µ �

✓
1
r
1

p
�

+ ⌘

◆
c(�) = µ �

c(�)
�

✓
4
rr 0

�

p
�

r

◆
� µ �

c(�)
�

we have 8
r

✓
2
r 0

�
p
�

◆✓
µ �

c(�)
�

◆
kvk22  �kvk

2(1� 2
r )

2 k fµk2r .

It remains to note that k fµkr  µ�1kr f kr .

Lemma 4.17. s-C1- limµ"1 µ(µ +3C1(bn))�1 = 1 uniformly in n.

Proof. We only need to show that

lim
µ"1

sup
n

kµ
⇥
(µ +3r (bn))�1 � (µ �1)�1

⇤
f k1 = 0 for all f 2 C1c .

Indeed, since �
⇥
(µ + 3r (bn))�1 � (µ � 1)�1

⇤
f = (µ + 3r (bn))�1bn · r(µ �

1)�1 f = Un, we obtain by Lemma 4.15 and Lemma 4.16 that

kµUnk1  B̂kµUnk
�̃
r0  Ḃ

✓
µ �

c(�)
�

◆� �̃
2
kr f k�̃r0,

which yields the required.

We are in position to complete the proof of Theorem 4.12. (i) follows from
Lemmas 4.14, 4.17 and Theorem 4.3 by applying the Trotter Approximation Theo-
rem (Appendix C). (ii) is Theorem 4.8. The proof of (iii) is standard.

The proof of Theorem 4.12 is completed.

Remarks. 1. Theorem 4.12 is valid for any {bn} ⇢ C1 \ F�, bn
s

! b Ld a.e.
2. For a parabolic variant of the above iteration procedure see [13].

5. b · r is �1 weakly form-bounded

Let L p = L p(Rd ,Ld), p 2 [1,1], be the standard (complex) Lebesgue spaces.
Consider the following classes of vector fields:
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Definition. (1) A b : Rd ! Rd belongs to the Kato class Kd+1
� (write b 2 Kd+1

� )
if |b| 2 L1loc and there exists � = �� > 0 such that

kb(��1)�
1
2 k1!1  �.

(2) A b : Rd ! Rd belongs to F1/2� ⌘ F1/2� (�1), the class of weakly form
bounded vector fields (write b 2 F1/2� ) if |b| 2 L1loc and there exists � = �� > 0
such that

k|b|
1
2 (��1)�

1
4 k2!2 

p
�.

Example 5.1. 1. The inclusion |b| 2 L p + L1 (p > d) ) b 2 Kd+1
0 :=

T
�>0K

d+1
� follows from Hölder’s inequality.

2. We have:
b(x) := e1|x1|<1|x1|

s�1,
1
2

< s < 1,

where e = (1, . . . , 1) 2 Rd , x = (x1, . . . , xd), is in Kd+1
0 � F�2 for any �2 > 0.

In turn, b(x) :=
p
� d�2
2 |x |�2x 2 F� �Kd+1

�1
for any �, �1 > 0.

Thus, Kd+1
0 � F� 6= ?, and F�1 �Kd+1

� 6= ? for any �, �1 > 0.
3. An example of a b 2 Kd+1

� �Kd+1
0 , � > 0, can be obtained as follows.

Fix e 2 Rd , |e| = 1. Let zn := (2�n, 0, . . . , 0) 2 Rd , n � 1. Set

b(x) := eF(x), F(x) :=
1X

n=1
8n1B(zn,8�n)(x), x 2 Rd ,

where B(zn, 8�n) is the open ball of radius 8�n centered at zn and 1B(zn,8�n) is its
indicator.

Then b 2 Kd+1
� �Kd+1

0 for appropriate � > 0.
4. The class F1/2� is the largest:

Kd+1
� $ F1/2� , F�1 $ F1/2� for � =

p
�1,

✓
b 2 F�1 and f 2 K

d+1
�2

◆
=)

✓
b + f 2 F1/2� ,

p
� = 4p�1 +

p
�2

◆ (5.1)

Indeed, for b 2 Kd+1
� , k|b|(��1)�

1
2 k1!1  �. By duality, k(��1)�

1
2 |b|k1  �,

and so by interpolation, k|b|
1
2 (� � 1)�

1
2 |b|

1
2 k2!2  �. Therefore, b 2 F1/2� . The

second inclusion F�1 $ F1/2� , � =
p
�1 is the consequence of the Heinz inequality

[9]. The last assertion now follows from

b 2 F1/2p
�1

, f 2 F1/2�2 ) b + f 2 F1/2� ,

where we have used (|b| + |f|) 12  |b|
1
2 + |f| 12 .

5. For the examples of vector fields in the class F� see Example 4.1 in the
beginning of Section 4.
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Remarks. 1. The classes F� ,Kd+1
� cover singularities of b of critical order (i.e., sen-

sitive to multiplication by a constant3 ) at isolated points or along hypersurfaces,
respectively, as follows from Example 4.1(3) and Example 5.1(2,3). The classes
Kd+1
0 , F0 and, thus, [Ld + L1]d , do not contain vector fields having critical-order

singularities.
2. The Kato class Kd+1

� , with � > 0 sufficiently small (yet allowed to be non-
zero), is recognized as the class ‘responsible’ for the Gaussian upper and lower
bounds on the fundamental solution of @t �1+ b · r. The latter allow to construct
an associated Feller semigroup (in Cb). The class F� , � < 4, is recognized as the
class ‘responsible’ for dissipativity of 1 � b · r in L p, p > 2/(2 �

p
�), needed

to run the iterative procedure of Section 4.6 (taking p ! 1, assuming additionally
� < min{1, (2/(d � 2))2}), which produces an associated Feller semigroup in C1.
We emphasize that, in general, the Gaussian bounds are not valid if b 2 [Ld ]d ,
while b 2 Kd+1

0 , in general, destroys the L p-dissipativity.

[Lp + L∞]d (p > d)

[Ld + L∞]d[Ld + L∞]d

F0F0

Fδ2

[Ld + L∞]d [Ld,∞ + L∞]d

[Lp + L∞]d (p > d)

Kd+1
0Kd+1
0

Kd+1
δ Fδ2

F1/2

δ

Kd+1
δ

F1/2

δ

[Ld,∞ + L∞]d

CsCs

WsWsFδ2
∗

Figure 5.1. General classes of vector fields b : Rd ! Rd studied in literature in
connection with operator �1 + b · r. Here ! stands for strict inclusion of vector
spaces, and ⇤

! reads: if b 2Ws (s > 1), then b 2 F�2 with � = �(kb2kWs ) < 1.

5.1. A variant of the Hille-Lions approach. L2-theory

Let W↵,p = W↵,p(Rd ,Ld), ↵ > 0, be the Bessel potential space endowed with
norm kukp,↵ := kgkp, u = (1 � 1)�

↵
2 g, g 2 L p, and W�↵,p0 , p0 = p

p�1 ,
the anti-dual of W↵,p. For a comprehensive account of Bessel potential spaces
see [37, Section 2.6].

3 For instance, the uniqueness of weak solution to the Cauchy problem for @t �1+ b ·r can fail
if b 2 F� is replaced with cb (2 Fc2�) for a sufficiently large constant c. [18, Example 5].
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Theorem 5.2. Let d � 3, b : Rd ! Rd . Assume that b 2 F1/2� , � < 1. Then
there is an operator realization �3 of1� b · r in L2 generating a quasi bounded
holomorphic semigroup e�t3. We have:

(i) The resolvent set ⇢(�3) contains the half-plane O := {⇣ 2 C | Re ⇣ � � =
��}. The resolvent admits the representation

(⇣ +3)�1 = (⇣ �1)�
3
4 (1+ H⇤S)�1(⇣ �1)�

1
4 ,

where H := |b|
1
2 (⇣̄ � 1)�

1
4 , b

1
2 := |b|�

1
2 b, S := b

1
2 · r(⇣ � 1)�

3
4 , and

kH⇤Sk2!2  �;
(ii) (⇣ +3)�1 = (⇣ �1)�1 � (⇣ �1)�

3
4 H⇤(1+ SH⇤)�1S(⇣ �1)�

1
4 ;

(iii) k(⇣ +3)�1k2!2  (1� �)�1|⇣ |�1 (⇣ 2 O);

(iv) 3 is related to �1+ b · r as follows. If f 2 D(3), then

h3 f, gi = hr f,rgi + hb
1
2 · r f, |b|

1
2 gi, (g 2 W 1,2);

(v) If f 2 D(3), then b · r f 2 L1loc, D(3) ⇢ W2,1
loc , and

h3 f,�i = h f,�1�i + hb · r f,�i (� 2 C1
c ).

Proof. 1. Set H0 := L2. Define A := � � 1 of domain D(A) = W 2,2, H↵ :=
�
D(A↵), h f, giH↵ = hA↵ f, A↵gi

�
(↵ � 0) and J� := (� �1)�

1
4 , the 14 power of

Bessel’s potential. Clearly, H↵ = W2↵,2 and H� 1
4

= W� 1
2 ,2. Consider the chain

of Hilbert spaces

H1 ⇢ H 3
4

⇢ H 2
4

⇢ H 1
4

⇢ H0 ⇢ H� 1
4
.

Then J� : Hl ! Hl+ 1
4
, l = �1

4 , 0,
1
4 ,

2
4 ,

3
4 are bijections,

H 3
4

⇢ H 1
4

⇢ H� 1
4

is the standard triple of Hilbert spaces (so thatH⇤
� 1
4
=H 3

4
with respect to h f, giH 1

4
).

By h f, gi 1
4
, f 2 H� 1

4
, g 2 H 3

4
we denote the pairing betweenH� 1

4
andH 3

4
.

Then
h f, gi 1

4
= h f, giH 1

4
whenever f 2 H 1

4
.

By Â we denote the extension of A�� to a bounded map fromH 3
4
intoH� 1

4
. Then

|h(⇣ + Â) f, f i 1
4
| � k f k2H 3

4
( f 2 H 3

4
, Re ⇣ � �),
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and so ⇣ + Â is a bijection; k⇣ + ÂkH 3
4
!H

� 14
� 1. Clearly

D(A) = { f 2 H 3
4

| Â f 2 H0} and A�1 = (�+ Â)�1 � H0 = J 4� .

The operator B̂ := b · r : H 3
4

! H� 1
4
is bounded. Indeed, since b 2 F1/2� ,

b
1
2 · r : H 3

4
!H0, |b|

1
2 : H0!H� 1

4
, B̂2B(H 3

4
,H� 1

4
) with kB̂kH 3

4
!H

� 14
�.

Thus |h(⇣ + Â + B̂) f, f i 1
4
| � (1 � �)k f k2H 3

4

, and so ⇣ + 3̂ := ⇣ + Â + B̂ is a

bijection.
Set R̂⇣ := (⇣ + 3̂)�1 and F̂⇣ := (⇣ + Â)�1(= J 4⇣ ). Clearly,

R̂⇣ = R̂⌘ + (⌘ � ⇣ )R̂⇣ R̂⌘, ⇣, ⌘ 2 O; (p1)

R̂⇣ = F̂⇣ � F̂⇣ B̂ R̂⇣ = F̂⇣ � F̂⇣ B̂ F̂⇣ + F̂⇣ B̂ F̂⇣ B̂ F̂⇣ � . . . ;

F̂⇣ B̂ F̂⇣ = J 3⇣ J⇣ B̂ J
3
⇣ J⇣ ;

F̂⇣ B̂ F̂⇣ � H0 = J 3⇣ J⇣ |b|
1
2 b

1
2 · r J 3⇣ J⇣ � H0 = J 3⇣ H

⇤SJ⇣ ;

R⇣ := R̂⇣ � H0 = J 3⇣ (1+ H⇤S)�1 J⇣ . (p2)

Since |J⇣ g|  J�|g|, and hence

kH⇤S f kH0  kHkH0!H0k|b|
1
2 J�|r J 2⇣ f |kH0

 �kr J 2⇣ f |kH0  �k f kH0, f 2 H0,

it follows from (p2) that

kR⇣kH0!H0  (1� �)�1|⇣ |�1. (p3)

We conclude from (p1) that R⇣ is a pseudo-resolvent, and from (p2) that its null-
set is {0}. Therefore, R⇣ is the resolvent of some closed operator 3 in H0, and
3 = R�1

⇣ � ⇣ (Appendix D, Theorem D.1). It is also seen that D(3) := R̂�H0,
3 f := 3̂ f, f 2 D(3).

Next, let us show that3 is a densely defined operator. Indeed, by the construc-
tion, H0 is a dense subspace of H� 1

4
, and hence R̂�H0 is a dense subspace of H 3

4
and ofH0 forH 3

4
is a dense subspace ofH0. Thus D(3) is dense inH0.

Taking into account (p3), we conclude that �3 is the generator of a quasi
bounded holomorphic semigroup. Thus (i) and (iii) are established. (ii) is an easy
consequence of (i).
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2. In order to justify (iv) and (v), define P⇣ (b) := �J⇣ B̂ J 3⇣ � L2 = �H⇤S
(Re ⇣ � �). Let {bn} be given by

bn := 1nb, n = 1, 2, . . . , (5.2)

where 1n is the indicator of {x 2 Rd | |b(x)|  n}. Then bn 2 F1/2� , and so3(bn) is
well defined. Since for every f 2 L2

kP⇣ (b) f � P⇣ (bn) f k2  kH⇤k2!2k(1� 1n)|b|
1
2 |r J

3
4
⇣ f |k2


p
�k(1� 1n)Kk2, K = |b|

1
2 |r J

3
4
⇣ f | 2 L2,

it is seen that

s-L2- lim
n

(⇣ +3(bn))�1 = s-L2- lim
n
J 3⇣ (1+ P⇣ (bn))�1 J⇣

= J 3⇣ (1+ P⇣ (b))�1 J⇣ = (⇣ +3(b))�1.
(5.3)

Let f 2 L2, g 2 W 1,2, � 2 C1
c .Clearly, b

1
2 ·r(⇣+3(b))�1 f 2 L2, |b|

1
2 2 L2loc,

and

h3(bn)(⇣ +3(bn))�1 f, gi ! h3(b)(⇣ +3(b))�1 f, gi;

h3(bn)(⇣ +3(bn))�1 f, gi = hr(⇣ +3(bn))�1 f,rgi

+ hb
1
2
n · r(⇣ +3(bn))�1 f, |b|

1
2
n gi

! hr(⇣ +3(b))�1 f,rgi

+ hb
1
2 · r(⇣ +3(b))�1 f, |b|

1
2 gi;

h3(bn)(⇣ +3(bn))�1 f,�i = h(⇣ +3(bn))�1 f,�1�i

+ hb
1
2
n · r(⇣ +3(bn))�1 f, |b|

1
2
n �i

! h(⇣ +3(b))�1 f,�1�i

+ hb
1
2 · r(⇣ +3(b))�1 f, |b|

1
2�i

= h(⇣ +3(b))�1 f,�1�i

+ hb · r(⇣ +3(b))�1 f,�i.

Thus hu,1�i = h�3u+b ·ru,�i whenever u 2 D(3). This means that D(3) ⇢
W2,1
loc .
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5.2. The Hille-Trotter approach. L2-theory

We give an alternative proof of Theorem 5.2.
Let {bn} be given by (5.2) in Section 5.1. Since bn 2 F1/2� , we have kbn ·

r(⌘ �1)�1k2!2 < 1 whenever ⌘ > n2. Therefore, by the Miyadera Perturbation
Theorem, �3̃(bn) := 1� bn · r of domain W 2,2 generates a C0 semigroup in L2.

We can construct 3(b) by showing first that the resolvent set of �3̃(bn) con-
tains O = {⇣ | Re ⇣ � �}, and that there is a constant c such that, for all
n = 1, 2, . . . ,

k(⇣ + 3̃(bn))�1k2!2  c|⇣ |�1, ⇣ 2 O.

We accomplish this as follows. Define

2(⇣, bn) := J 3⇣ (1+ P⇣ (bn))�1 J⇣ , ⇣ 2 O,

where P⇣ (bn) := J⇣ |b|
1
2
n b

1
2 · r J

3
4
⇣ 2 B(L2). We prove consecutively that the

operator-valued function 2(⇣, bn) possesses the following properties:

2(⌘, bn) f = (⌘ + 3̃(bn))�1 f, f 2 L2, whenever ⌘ > n2 _ �; (p1)

k2(⇣, bn)k2!2  c|⇣ |�1 for some constant c and all n = 1, 2, . . . ; (p2)
2(⇣, bn) �2(⌘, bn) = (⌘ � ⇣ )2(⇣, bn)2(⌘, bn), ⌘ 2 O. (p3)

Note that (p1) follows from the definitions of2(⇣, bn), 3̃(bn), and from the obvi-
ous equality

2(⌘, bn) f = J 4⌘ f � J 4⌘ bn · r J 4⌘ f + J 4⌘ bn · r J 4⌘ bn · r J 4⌘ f + . . .

= (⌘ + 3̃(bn))�1 f, f 2 L2,

while (p2) follows from the definition of 2(⇣, bn). (p3) says that 2(⇣, bn) is a
pseudo-resolvent. But then the range of 2(⇣, bn) equals to the range of 2(⌘, bn)
for all ⌘ 2 O, and hence is dense in L2 by (p1). Thus the properties (p1), (p3)
mean that

2(⇣, bn) = (⇣ + 3̃(bn))�1, (⇧)

and hence O ⇢ ⇢(�3̃(bn)) and the semigroup e�t3̃(bn) is holomorphic (due to
(p2)).

Finally, on the basis of the Trotter Approximation Theorem, by proving that
µ2(µ, bn)

s
! 1 asµ " 1 uniformly in n, we conclude, using2(⇣, bn)

s
! 2(⇣, b)

(see (5.3)), that 2(⇣, b) is indeed the resolvent of an operator �3(b), which gen-
erates a holomorphic (k2(⇣, b)k2!2  c|⇣ |�1) semigroup.

The proof that µ2(µ, bn)
s

! 1 as µ " 1 uniformly in n is carried out as

follows. Set Hn = |b|
1
2
n Jµ and Sn = b

1
2
n · r J 3µ. Since s-L2- limµ"1 µJ 4µ = 1 and

supn k2(µ, bn)k2!2  cµ�1,

lim
µ"1

µ sup
n

kJ 3µH
⇤
n (1+ SnH⇤

n )�1Sn Jµ f k2 = 0 ( f 2 C1
c )
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needs only to be proved (see assertion (ii) of the theorem). Noticing that

kSn Jµ f k2 = kb
1
2
n · r J 4µ f k2 

p
�µ� 3

4 kr f k2 and

kH⇤
n (1+ SnH⇤

n )�1k2!2 
p
�(1� �)�1,

we obtain

kJ 3µH
⇤
n (1+ SnH⇤

n )�1Sn Jµ f k2  �(1� �)�1µ� 3
2 kr f k2.

The desired convergence follows.
It remains to prove (p3).

Proof of (p3). Set F⇣ := (⇣ �1)�1 and define

Nk
⇣ := (�1)k F⇣bn · rF⇣ . . . bn · rF⇣ , 1  k := # bn’s, N0⇣ := F⇣ .

Obviously,

2(⇣, bn) =
1X

k=0
Nk
⇣ ( absolutely convergent series in L

2),

2(⇣, bn)2(⌘, bn) =
1X

l=0

lX

i=0
Ni
⇣ N

l�i
⌘ , ⇣, ⌘ 2 O. (?)

Set # = “number of”. Define

I kl,m(⇣, ⌘) := F⇣bn · rF⇣ . . . bn · rF⇣ F⌘bn · rF⌘ . . . bn · rF⌘,
l := # ⇣ ’s, m := # ⌘’s, k := # bn’s.

Substituting the identity F⇣ F⌘ = (⌘ � ⇣ )�1
�
F⇣ � F⌘

�
inside the product

Nk
⇣ N

m
⌘ = (�1)k+mF⇣bn · rF⇣ . . . bn · rF⇣ F⌘bn · rF⌘ . . . bn · rF⌘,

we obtain Nk
⇣ N

m
⌘ = (⌘ � ⇣ )�1(�1)k+m


I k+mk+1,m � I k+mk,m+1

�
. Therefore,

(⌘ � ⇣ )
lX

i=0
Ni
⇣ N

l�i
⌘ =(�1)l


I l1,l � I l0,l+1 + I l2,l�1 � I l1,l + · · · + I ll+1,0 � I ll.1

�

=(�1)l
�
I ll+1,0 � I l0,l+1

�
.

Substituting the last identity in the right-hand side of (?) we obtain

(⌘ � ⇣ )2(⇣, bn)2(⌘, bn) =
1X

l=0
(�1)l

�
I ll+1,0 � I l0,l+1

�
= 2(⇣, bn) �2(⌘, bn).

The proof of (p3) is completed.
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It follows from (⇧) that

�3(bn) = �3̃(bn) (= 1� bn · r, D(�3(bn)) = W 2,2).

The latter and (5.3) yield

Corollary 5.3. In the assumptions of Theorem 5.2 we have

(⇣ +3(bn))�1
s

! (⇣ +3(b))�1 (⇣ 2 O).

5.3. (L p ! Lq) estimates

Theorem 5.4. Let d � 3, b : Rd ! Rd , b 2 F1/2� , � < 1. Let 3(b) be the
operator realization of �1 + b · r in L2 constructed in Theorem 5.2. Let {bn} be
given by (5.2) in Section 5.1. There is a family {e�t3r (b), t � 0}2r<1 of consistent,
positivity preserving, L1 contractionC0 semigroups such that e�t3r (b) � Lr\L2 =
e�t3(b) � Lr \ L2;

s-Lr - lim
n
e�t3r (bn) = e�t3r (b) (uniformly on every compact interval of t); (i)

ke�t3r f kq  cr et!r t
� d
2

�
1
r � 1

q

�
k f kr , cr = cr (�, c2), !r =

2��
r

( f 2 Lr , 2  r < q  1).

(ii)

Proof. Since bn 2 F
1
2
� , 3(bn) is well defined. On the other hand kbn · r(⌘ �

1)�1k2!2 < 1 whenever ⌘ > n2. Therefore, by the Miyadera Perturbation Theo-
rem, �3̃(bn) := 1� bn · r of domain W 2,2 generates the C0 semigroup e�t3̃(bn)

in L2, which preserves positivity and is L1 contraction, and so is e�t3(bn) since,
for ⌘ > n2_� and f 2 L2, (⌘+3(bn))�1 f = (⌘+ 3̃(bn))�1 f. The convergence
(⇣ +3(bn))�1

s
! (⇣ +3(b))�1 yields (i) for r = 2, and hence for all r > 2.

Proof of (ii) Our strategy is as follows: 1) We prove that, for some r 2]2,1[,

ke�t3k2!r  CT t�
d
2

�
1
2�

1
r

�
(0 < t < T < 1). (?)

2) Using the extrapolation between (ke�t3 f k1  k f k1, f 2 L2 \ L1) and (?),
we conclude that

ke�t3k2!1  C̃T t�
d
4

(see Appendix F). Then (ii) follows from the Riesz Interpolation Theorem.
Since 2) is straightforward, we need only to prove (?). Without loss of gen-

erality we may suppose that � � 1. Set 00 = � � 1 and 0 = � + 3. Due
to |(⌘ + 00)

�� f |  0
��
0 | f | and k(⌘ + 00)

��k2!2  (1 + |⌘|)�� (0 < � <
1, Re ⌘ � 0), we have, using Theorem 5.2(i),

k(⌘ + 0)�1k2!2  (1� �)�1k(⌘ + 00)
� 3
4 k2!2k(⌘ + 00)

� 1
4 k2!2

 (1� �)�1(1+ |⌘|)�1.
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Also, for any r 2]2,1[ and µ � 0, k(µ + 0r )
�1kr!r  cr (1+ µ)�1.

Let 0��
r and 0�r :=

�
0

��
r
��1 be the fractional powers of 0r . Below we will

need the following well known results:

0��
r =

sin⇡�
⇡

1
1� �

Z 1

0
µ1��(µ + 0r )

�2dµ;

k0�(µ + 0)�1k2!2  c (1+ µ)�1+�;

k0�e�t0k2!2  c(�)t��

(see e.g., [19, Chapter 4]).
Fix � = 1

4 , r = 2d
d�1 . Let Ft = 02�e�t0 f, f 2 L2 \ Lr .We have

ke�t0r f kr = k0�2�
r Ftkr 

2
⇡

Z 1

0
µ1�2�k(µ + 0r )

�2Ftkr dµ.

By the embedding (µ + 00)
��L2 ⇢ Lr ,

k(µ + 0r )
�2Ftkr  c(d)k(µ + 00)

� 1
2 (1+ Pµ(b))�1(µ + 00)

� 1
4 (µ + 0)�1Ftk2,

and hence k(µ + 0r )
�2Ftkr  c(d)(1� �)�1µ�3�k(µ + 0)�1Ftk2.

Thus

ke�t0r f kr  C
Z 1

0
µ��k(µ + 0)�1Ftk2 dµ

 C1
✓Z 1

t

0
µ��(1+ µ)2��1dµ k f k2 +

Z 1

1
t

µ���1dµ k02�e�t0 f k2
◆

 C2
✓Z 1

t

0
µ� 3

4 dµ +
Z 1

1
t

µ� 5
4 dµ t�2�

◆
k f k2 = 4C2 t��k f k2,

which ends the proof of (?).

5.4. Lr -theory and W1+ 1
q ,r -estimates on solutions to (µ � 1 + b · r)u = f ,

b 2 F1/2
�

As in the case of b 2 F� , it is reasonable to expect that there is a quantitative
dependence between the value of � and the smoothness of D(3r (b)).

Set

md := ⇡
1
2 (2e)�

1
2 d

d
2 (d � 1)�

d�1
2 , cr :=

rr 0

4
, d :=

d
d � 1

,

r⌥ :=
2

1±
p
1� md�

.
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Theorem 5.5. Let d � 3, b : Rd ! Rd . Assume that b 2 F1/2� , md� < 1. Then�
e�t3r (b), r 2 [2,1[

�
extends by continuity to a quasi bounded C0 semigroup in

Lr for all r 2]r�,1[.
For every r 2 Is :=]r�, r+[ we have:

(i) The resolvent set ⇢(�3r (b)) contains the half-plane O := {⇣ 2 C | Re ⇣ �
d��}, and the resolvent admits the representation

(⇣ +3r (b))�1 = 2r (⇣, b), ⇣ 2 O,

where
2r (⇣, b) := (⇣ �1)�1 � Qr (1+ Tr )�1Gr ,

the operators Qr ,Gr , Tr 2 B(Lr ),

kQrkr!r  C1|⇣ |�
1
2�

1
2r , kGrkr!r  C2|⇣ |�

1
2r 0 , kTrkr!r  mdcr�, (?)

Gr ⌘ Gr (⇣, b) := b
1
r · r(⇣ �1)�1, b

1
r := |b|

1
r �1b,

Qr , Tr are the extensions by continuity of densely defined (on E :=
S
✏ e�✏|b|Lr )

operators
Qr � E ⌘ Qr (⇣, b) � E := (⇣ �1)�1|b|

1
r 0 ,

Tr � E ⌘ Tr (⇣, b) � E := b
1
r · r(⇣ �1)�1|b|

1
r 0 .

(ii) It follows from (i) that e�t3r (b) is holomorphic: there is a constant Cr such that

k(⇣ +3r (b))�1kr!r  Cr |⇣ |�1, ⇣ 2 O.

(iii) For all p < r < q and ⇣ 2 O, define

Gr (p) ⌘ Gr (p, ⇣, b) := b
1
r · r(⇣ �1)

� 1
2�

1
2p ,

Qr (q) ⌘ Qr (q, ⇣, b) := (⇣ �1)
� 1
2q0 |b|

1
r 0 on E .

Then Gr (p) 2 B(Lr ). Moreover Qr (q) extends by continuity to a bounded opera-
tor in Lr . We denote its extension again by Qr (q).

(iv) For every ⇣ 2 O,

2r (⇣, b) = (⇣ �1)�1 � (⇣ �1)
� 1
2�

1
2q Qr (q)(1+ Tr )�1Gr (p)(⇣ �1)

� 1
2p0 ;

2r (⇣, b) extends by continuity to an operator in B(W� 1
p0 ,r ,W1+ 1

q ,r
).

(v) By (i) and (iv), D(3r (b)) ⇢ W1+ 1
q ,r

(q > r). In particular, if md� < 4 d�2
(d�1)2 ,

then there exists r 2 Is, r > d � 1, such that D(3r (b)) ⇢ C0,� , � < 1� d�1
r .
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(vi) D(3r (b)) ⇢ W2,1
loc and

h3r (b)u, vi = hu,�1vi + hb · ru, vi, u 2 D(3r (b)), v 2 C1
c (Rd).

(vii) Let {bn} be given by (5.2), then

e�t3r (b) = s-Lr - lim
n
e�t3r (bn) (uniformly on every compact interval of t � 0),

(viii) (e�t3r (b), t > 0) preserves positivity and

ke�t3r (b) f kp  C̃r t
� d
2 ( 1r � 1

p )k f kr , 0 < t  1, r� < r < p  1, f 2 Lr .

Proof. 1. Suppose that (?) is established.
Then 2r (⇣, b) � L2 \ Lr = 22(⇣, b) � L2 \ Lr , ⇣ 2 O, and (i), (vi) follow

immediately from Theorem 5.2.
(vii) is a simple consequence of Corollary 5.3 and the bound ke�t3r0kr0!r0 

Cr0 = Cr0(�, r� � r0) (t  1, r� < r0 < 2). The latter is also needed for the proof
of (viii) (cf. Theorem 5.4).

(iv) is an obvious consequence of (i) + (iii).
It remains to prove (?) and (iii).

2. Proof of (?). Let r 2]1,1[.We will need

(a) µ � � ) k|b|
1
r (µ �1)�

1
2 kr!r  (cr�)

1
r µ� 1

2r 0 (recall cr = rr 0

4 ).
Indeed, in L2 define A = (µ � 1)

1
2 , D(A) = W 1,2. Since �(A � µ

1
2 ) is a

symmetric Markov generator, for any r 2]1,1[,

0  u 2 D(Ar ) ) v := u
r
2 2 D(A

1
2 ) and c�1r kA

1
2 vk22  hAru, ur�1i.

Now, let u = A�1
r | f |, f 2 Lr . Clearly, kukr  µ� 1

2 k f kr . Since b 2 F1/2� we have

(cr�)�1k|b|
1
2 vk22  hAru, ur�1i = h| f |, ur�1i,

and so k|b|
1
r ukrr cr�k f krkukr�1r , k|b|

1
r A�1

r f krr  cr�µ� r�1
2 k f krr . (a) is proved.

(b) µ � � ) k|b|
1
r (µ �1)�

1
2 |b|

1
r 0 f kr  cr�k f kr , f 2 E .

Indeed, let u = A�1
r |b|

1
r 0 | f |, f 2 E . Then arguing as in (a) we have

k|b|
1
r ukrr  cr�k f krk|b|

1
r ukr�1r , or k|b|

1
r ukr  cr�k f kr .

Thus (b) is proved.
(c) µ � � ) k(µ �1)�

1
2 |b|

1
r 0 f kr  (cr 0�)

1
r 0 µ� 1

2r k f kr , f 2 E .
Indeed, (c) follows from (a) by duality.
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We are in position to complete the proof of (?). Using (b) and the pointwise
bound

|r(⇣ �1)�1(x, y)|  md(��1)�
1
2 (x, y), Re ⇣ � d� (A1)

(see proof of (A1) below), we have, for every r 2 Is and µ = �,

kTr f kr  mdk|b|
1
r (��1)�

1
2 |b|

1
r 0 | f |kr  mdcr�k f kr , f 2 E .

Note that mdcr� < 1 due to r 2 Is .
Next, using (a) and the pointwise bound

|r(2d⇣ �1)�1(x, y)|  2
d
2md(|⇣ | �1)�

1
2 (x, y), Re ⇣ > 0 (A3)

(see proof of (A3) below), we have, for every r 2 Is, ⇣ 2 O and µ = |⇣ |,

kGr (2d⇣, b)kr!r  2
d
4 (cr�)

1
r md |⇣ |

� 1
2r 0 .

Now, using the identity (⇣ �1)�1 = (2d⇣ �1)�1
�
1 + (2d � 1)⇣(⇣ �1)�1

�
,

we obtain

kGr (⇣, b)kr!r  2
d+4
4 dmd(cr�)

1
r |⇣ |�

1
2r 0 ⌘ C2|⇣ |�

1
2r 0 .

Similarly, using (c) and the pointwise bound

|(2⇣ �1)�
1
2 (x, y)|  2

d+1
4 (|⇣ | �1)�

1
2 (x, y), Re ⇣ > 0 (A4)

(see proof of (A4) below), we have, for every r 2 Is and Re ⇣ � �,

kQr (2⇣, b) f kr  k(2⇣ �1)�
1
2 kr!rk(2⇣ �1)�

1
2 |b|

1
r 0 f kr

 |2⇣ |�
1
2 2

d+1
4 (cr 0�)

1
r 0 |⇣ |�

1
2r k f kr , f 2 E .

Finally, using the identity (⇣ �1)�1 =
�
1+ ⇣(⇣ �1)�1

�
(2⇣ �1)�1, we obtain

kQr (⇣, b) f kr  k1+ ⇣(⇣ �1)�1kr!rkQr (2⇣, b) f kr

 2
d+3
4 (cr 0�)

1
r 0 |⇣ |�

1
2�

1
2r k f kr ,

= C1|⇣ |�
1
2�

1
2r k f kr , f 2 E,

completing the proof of (?).
3. Proof of (iii). We have to deduce the bounds on kQr (q)kr!r , kGr (p)kr!r .

Let Re ⇣ � � and r < q. Using (c) and the formula

(z �1)�↵ =
sin⇡↵
⇡

Z 1

0
t�↵(t + z �1)�1dt 0 < ↵ < 1, Re z > 0,
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we obtain

kQr (q) f kr  k(Re ⇣ �1)
� 1
2q0 |b|

1
r 0 | f |kr

 k(��1)
� 1
2q0 |b|

1
r 0 | f |kr

 sq 0

Z 1

0
t�

1
2q0 k(t + ��1)�1|b|

1
r 0 | f |kr dt

✓
sq 0 =

sin ⇡
2q 0

⇡

◆

 sq 0

Z 1

0
t�

1
2q0 (t + �)�

1
2 k(t + ��1)�

1
2 |b|

1
r 0 | f |kr dt

 sq 0(cr 0�)
1
r 0

Z 1

0
t�

1
2q0 (t + �)�

1
2�

1
2r k f kr dt = K1,qk f kr , f 2 E,

where K1,q < 1 due to q > r.
Let ⇣ 2 O and 1  p < r. Similarly, using (a) and the pointwise bound

|r(⇣ �1)�1+
1
2r (x, y)|  md,r (

�1
d Re ⇣ �1)�1+

1
2r (x, y) (A2)

(see proof of (A2) below), we obtain

kGr (p) f kr  md,pk|b|
1
r (��1)

� 1
2p | f |kr

 md,psp(cr�)
1
r

Z 1

0
t�

1
2p (t+�)�

1
2�

1
2r 0 dtk f kr =K2,pk f kr , f 2Lr ,

where K2,p < 1 due to p < r. The proof of (iii) is completed.

4. We now give a proof of (A1)-(A4).
Proof of (A1). Let ↵ 2]0, 1[. Set c(↵) = sup⇣>0 ⇣e�(1�↵)⇣ 2

�
= (2e(1 �

↵))�
1
2
�
. Then, for all ⇣ > 0,

⇣e�⇣
2

 c(↵)e�↵⇣
2

(?)

Using the formula (⇣ �1)�� = 1
0(�)

R1
0 e�⇣ t t��1(4⇡ t)�

d
2 e�

|x�y|2
4t dt, 0 < � 

1, first with � = 1, and then with � = 1
2 , we have

|r(⇣ �1)�1(x, y)| 
Z 1

0
e�tRe ⇣ (4⇡ t)�

d
2
|x � y|
2t

e�
|x�y|2
4t dt

 c(↵)

Z 1

0
e�tRe ⇣ t�

1
2 (4⇡ t)�

d
2 e�↵

|x�y|2
4t dt

✓
by (?) with ⇣ =

|x � y|
2
p
t

◆

= c(↵)↵� d�1
2 0(1/2)(↵Re ⇣ �1)�

1
2 (x, y).
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The minimum of c(↵)↵� d�1
2 0(12 ) in ↵ 2]0, 1[ is attained at ↵ = d�1

d (= �1
d ), and

equals md .
The proof of (A2) is similar.
Proof of (A3). First suppose that Im ⇣  0. By Cauchy’s theorem,

Z 1

0
e�t⇣ (4⇡ t)�

d
2 e�

|x�y|2
4t dt =

Z 1

0
e�⇣re

i ⇡4 e�i
⇡
4
d
2 (4⇡r)�

d
2 e

� |x�y|2

4rei
⇡
4 ei

⇡
4 dr

(i.e., we have changed the contour of integration from {t | t � 0} to {rei
⇡
4 | r � 0}).

Thus

|r(⇣ �1)�1(x, y)| 
Z 1

0

�
�
�
�e

�⇣rei
⇡
4
�
�
�
�(4⇡r)

� d
2

�
�
�
�
x � y
2r

�
�
�
�

�
�
�
�e

� |x�y|2

4rei
⇡
4

�
�
�
�dr,

�
�
�
�e

�⇣rei
⇡
4
�
�
�
�  e�r

1
p
2
(Re ⇣ � Im ⇣ ),

�
�
�
�e

� |x�y|2

4rei
⇡
4

�
�
�
�  e�

|x�y|
4r

1p
2 , Re ⇣ � Im ⇣ � |⇣ |,

|r(⇣ �1)�1(x, y)| 
Z 1

0
e�

rp
2
|⇣ |

(4⇡r)�
d
2
|x � y|
2r

e�
|x�y|2
4r dr,


2

d
2md

0(12 )

Z 1

0
e�

r
2d

|⇣ |
(4⇡r)�

d
2
|x � y|
2r

e�
|x�y|2
4r dr,

= 2
d
4md

�
�1
d 2�1|⇣ | �1)�

1
2 (x, y),

and so (A3) for Im ⇣  0 is proved. The case Im ⇣ > 0 is treated analogously.
Proof of (A4). First suppose that Im ⇣  0. By Cauchy’s theorem,

Z 1

0
e�t⇣ t�

1
2 (4⇡ t)�

d
2 e�

|x�y|2
4t dt

=
Z 1

0
e�⇣re

i ⇡4 r� 1
2 e�i

⇡
8 e�i

⇡
4
d
2 (4⇡r)�

d
2 e

� |x�y|2

4rei
⇡
4 ei

⇡
4 dr,

so we estimate as above:

|(⇣ �1)�
1
2 (x, y)| 

Z 1

0
e�

rp
2
|⇣ |r� 1

2 (4⇡r)�
d
2 e�

|x�y|2

4r
p
2 dr,

= 2
d+1
4 (2�1|⇣ | �1)�

1
2 (x, y).

The case Im ⇣ > 0 is treated analogously.
Remarks. 1. In the proof of Gr (p), Qr (q) 2 B(L p) we appeal to the L p inequal-
ities between the operator (� � 1)

1
2 and the “potential” |b| (Appendix E). This
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is the reason for the symmetry of the interval Is in spite of �1 + b · r being a
non-symmetric operator.

2. In the proof of Theorem 5.5 carried out for the Kato class Kd+1
� the interval

Is transforms into [1,1[, and the dependence of the properties of D(3r (b)) on �
gets lost. The latter indicates the smallness of Kd+1

� as a subclass of F1/2� .
3. We obtain, using [17, Corollary 2.9] (see examples in the beginning of the

section):

|x |�2x 2 F
1
2
� ,

p
� = 2� 1

2
0
�d�1
4
�

0
�d+1
4
� ,

|x |�2x 2 F�1,
p
�1=

2
d � 2

,

and so � <
p
�1.

4. Theorem 5.5, compared to Theorem 4.8, covers a larger class of vector fields,
and at the same time establishes stronger smoothness properties of D(3r (b)):
D(3r (b)) ⇢ W1+ 1

q , r , q > r , r 2 Is , while in Theorem 4.8 D(3r (b)) ⇢ W 1, dr
d�2 ,

r 2] 2
2�

p
�
, 2p

�
[.

Nevertheless, in spite of the inclusion F�1 $ F1/2� , � =
p
�1, cf. (5.1), the

difference in the admissible values of �, �1 shows that these classes are essentially
incomparable.

5. In order to define 3(b, V ) � �1 + b · r � V , 0  V, with b 2 F�b it is
enough to assume that kV

1
2 (��1)�

1
2 k2!2 

p
�V with �b + �V < 1. However, if

b 2 F1/2�b , then 3(b, V ) can be defined only for V such that kV
3
4 (��1)�

3
4 k2!2 

(�V )
3
4 with �b + �V < 1.

5.5. Lr -strong Feller semigroup on C1 corresponding to �1 + b · r, b 2 F1/2
�

In Theorem 5.5 one can use the following approximation of b by smooth vector
fields:

bn := e"n11nb, "n # 0, (5.4)
where 1n is the indicator of {x 2 Rd : |x |  n, |b(x)|  n} (alternatively, one can
use the K. Friedrichs’ mollifier).

For any �̃ > � we can select a sequence "n # 0 such that bn 2 F1/2
�̃
with the

same � = �� (see the argument in the proof of Theorem 4.4).
Since the assumptions on � involve strict inequalities only, we may assume

without loss of generality that bn defined by (5.4) are in F1/2� with the same �� .

Theorem 5.6. Let d � 3, b : Rd ! Rd , b 2 F
1
2
� , md� < 4 d�2

(d�1)2 . Fix r 2
⇤
d � 1, 2

1�
p
1�md�

⇥
. By S denote the L. Schwartz space of test functions. Then:

(i) e�t3C1 (b) :=
�
e�t3r (b) � S

�clos
C1!C1

(after a change on a set of measure zero),
t � 0,
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determines a positivity preserving contraction C0 semigroup on C1 (Feller
semigroup), where the semigroup e�t3r (b) has been constructed in Theo-
rem 5.5;

(ii) [The Lr -strong Feller property ]
�
(µ + 3C1(b))�1 � Lr \ C1

�clos
Lr!C1

2

B(Lr ,C0,↵), µ > 0, ↵ < 1� d�1
r ;

(iii) The integral kernel e�t3C1 (b)(x, y) of e�t3C1 (b) determines the transition
probability function of a Hunt process;

(iv) Let {bn} be given by (5.4), then

e�t3C1 (b) = s-C1- limn e�t3C1 (bn)

(uniformly on every compact interval of t � 0),

where 3C1(bn) := �1+ bn · r, D(3C1(bn)) = (1�1)�1C1.

Proof. (i), (ii). Let 2r (µ, b) be the operator-valued function introduced in Theo-
rem 5.5.

1) For every µ � d�, 2r (µ, b)S ⇢ C1, and k2r (µ, b) f k1  µ�1k f k1,
f 2 S .
Indeed, by Theorem 5.5(v), since r > d � 1, 2r (µ, b)Lr ⇢ C1, which yields the
first assertion. Since e�t3r (b) is an L1-contraction, the second assertion follows.

In view of 1), we can define (µ � d�)

2C1(µ, b) :=
�
2r (µ, b) � S

�clos
C1!C1

2 B(C1)

(after a change on a set of measure zero).

2) µ2C1(µ, b) s
! 1 as µ " 1 in C1.

Indeed, since kµ2C1(µ, b)k1!1  1, and S is dense in C1, it suffices to prove
that

µ2r (µ, b) f s
! f as µ " 1 in C1, for every f 2 S.

Put2r ⌘ 2r (µ, b), Tr ⌘ Tr (µ, b). Since µ(µ�1)�1 f s
! f in C1, it suffices to

show that kµ2r f � µ(µ �1)�1 f k1 ! 0. For each f 2 S there is h 2 S such
that f = (��1)�

1
2 h, where � = �� > 0. Let q > r . Write

2r f�(µ�1)�1 f = �(µ�1)
� 1
2�

1
2q Qr (q)

�
1+Tr

��1b
1
r (��1)�

1
2 ·(µ�1)�1rh.

Using estimates k(1 + Tr )�1kr!r  (1 � mdcr�)�1, kQr (q)kr!r  K1,q < 1
(cf. proof of Theorem 5.5(iii)) and

k(µ �1)
� 1
2�

1
2q kr!1  cµ� 1

2+
d
2r �

1
2q , c < 1,

we obtain

k2r f � (µ �1)�1 f k1  Cµ
� 1
2+

d
2r �

1
2q µ�1krhkr .
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Since r > d � 1, choosing q sufficiently close to r , we obtain

�
1
2

+
d
2r

�
1
2q

� 1 < �1,

so µ2r � µ(µ �1)�1
s

! 0 in C1. The proof of 2) is completed.
2r (µ, b) satisfies the resolvent identity for µ � d� (Theorem 5.5(i)), and so

does 2C1(µ, b) � S . Therefore, 2C1(µ, b) is a pseudo-resolvent for µ � d�.
The latter and 2) yield (by Theorems D.1 and D.2, Appendix D): 2C1(µ, b) is the
resolvent of a densely defined closed operator 3C1(b).

By 1), k(µ + 3C1(b))�1k1!1  µ�1, so �3C1(b) is the generator of a
contraction C0 semigroup e�t3C1 (b). Clearly, e�t3C1 (b) is positivity preserving,
so we have proved (i). Now (ii) follows from Theorem 5.5(iv). The proof of (iii) is
standard.

(iv) Note that

(µ +3C1(bn))�1 � S = 2r (µ, bn) � S, n = 1, 2, . . . , µ � d�,

The latter, combined with

2r (µ, bn) f
s

! 2r (µ, b) f in C1, µ � d�, f 2 S, (?)

yields (µ +3C1(bn))�1
s

! (µ +3C1(b))�1 in C1, µ � d�) (iv).

Proof of (?). It suffices to prove that

(µ �1)
� 1
2�

1
2q Qr (q, bn)(1+ Tr (bn))�1Gr (bn)

s
! (µ �1)

� 1
2�

1
2q Qr (q, b)(1+ Tr (b))�1Gr (b) on S in C1.

We choose q close to d � 1 so that (µ � 1)
� 1
2�

1
2q Lr ⇢ C1. Thus it suffices to

prove that

Gr (bn)
s

! Gr (b), (1+Tr (bn))�1
s

! (1+Tr (b))�1, Qr (q, bn)
s

! Qr (q, b) in Lr .

In turn, since (1+Tr (bn))�1�(1+Tr (b))�1 = (1+Tr (bn))�1(Tr (b)�Tr (bn))(1+
Tr (b))�1, it suffices to prove that Tr (bn)

s
! Tr (b). Finally,

Tr (bn)� Tr (b) = Tr (bn)� b
1
r
n ·r(µ�1)�1|b|

1
r 0 + b

1
r
n ·r(µ�1)�1|b|

1
r 0 � Tr (b),

and hence we have to prove that

b
1
r
n · r(µ �1)�1|b|

1
r 0 � Tr (b) := J (1)

n
s

! 0 and Tr (bn) � b
1
r
n · r(µ �1)�1|b|

1
r 0

:= J (2)
n

s
! 0.
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Now, by the Dominated Convergence Theorem, Gr (bn)
s

! Gr (b), J (1)
n |E

s
! 0.

Also

kJ (2)
n f kr =kGr (bn)(|bn|

1
r 0 � |b|

1
r 0 ) f kr

 kGr (bn)kr!rk(|bn|
1
r 0 � |b|

1
r 0 ) f kr

 md(1+ �)µ� 1
2r 0 k(|bn|

1
r 0 � |b|

1
r 0 ) f kr , ( f 2 E).

Thus, J (2)
n |E

s
!0. Since kJ (2)

n kr!r , kJ (1)
n kr!r  md�,we conclude that Tr (bn)

s
!

Tr (b). It is clear now that Qr (q, bn)
s

! Qr (q, b).
The proof of (?) is completed.

The proof of Theorem 5.6 is completed.

Remarks. 1. The assertion (iv) of Theorem 5.6 holds for any {bn} ⇢ C1(Rd , Rd)\
F1/2� , bn ! b Ld a.e., in particular, for the bn’s given by (5.4), but not for bn’s as
in Theorem 4.12.

2. Theorem 5.5 allows us to transfer the proof of convergence inC1 to Lr , r >
d � 1, a space having much weaker topology (locally). The same idea has been re-
alized in the proof of Theorem 4.12.

3. In comparison with the construction of a Feller semigroup in Section 4.6,
here the relative ease of the construction stems from the fact that one already has
the limiting object, i.e., 2p(µ, b), p > d � 1, while in Section 4.6 one has to work
with Cauchy’s sequences.

4. Theorem 5.5 and Theorem 5.6 admit generalization (a) to the operator
(�1)

↵
2 + b · r, 1 < ↵ < 2, and (b) to the operator �r · a · r + b · r with

a 2 (Hu) uniformly Hölder continuous.

Appendix

A. Monotone convergence theorem for sesquilinear forms

LetH be a (complex) Hilbert space with the inner product h f, gi and norm k f k =

h f, f i
1
2 . Let T denote the family of all closed, symmetric, non-negative, densely

defined sesquilinear forms in H. If t 2 T , then there exist a unique self-adjoint
operator T � 0 such that

t[u, v] = hTu, vi, u 2 D(T )
�

⇢ D(t)
�
, v 2 D(t).

Then
t[u, v] =

⌦
T
1
2 u, T

1
2 vi, D(T

1
2 ) = D(t).

In this case we say that T is associated with t and write T $ t or/and t = tT .
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Let a, b 2 T be such that D(a) \ D(b) is dense inH. Then a + b 2 T . Thus,
for a, b, a + b 2 T and A $ a, B $ b, we write A+̇B $ a + b. A+̇B is
called the form sum of A and B. A+̇B, a self-adjoint extension of the algebraic
sum A + B, possesses some exclusive properties described below.

We endow T with a semi-order �:

a � b , D(a) � D(b) and a[u]  b[u] (u 2 D(b)).

Here and below a[u] ⌘ a[u, u]. If a, b 2 T and A $ a, B $ b, we write A  B
if and only if a � b. In this case (�+ B)�1  (�+ A)�1 (� > 0) in the sense that

k(�+ B)�
1
2 f k  k(�+ A)�

1
2 f k ( f 2 H).

Theorem A.1. (Convergence from below, see, e.g., [11, ChapterVIII, Section 3]
or [4]). Let {an}1n=1 ⇢ T be such that

a1 � a2 � . . . .

Define a by

a[u] := lim
n
an[u], D(a) :=

⇢
u 2

1\

n=1
D(an) | the finite lim

n
an[u] exists

�
.

Suppose that D(a) is dense inH. Then a 2 T and, for all u, v 2 D(a),

an[u, v] ! a[u, v].

Let A $ a and An $ an. Then

(�+ An)�1
s

! (�+ A)�1 (Re � > 0),

(�+ An)
1
2 u s

! (�+ A)
1
2 u (u 2 D(a), � > 0).

Remark. This theorem is extremely useful for constructing operator realizations
of formal differential expressions. See, e.g., Section 2. Also, it is a proper tool for
perturbation theory of self-adjoint operators.

B. The criteria of Phillips and Stampacchia

There is a characterization of Markov semigroups in terms of their generators.
Let X be a set and µ a measure on X. Recall that a C0 semigroup T t , t � 0, of

contractions on L p = L p(X, µ), p 2 [1,1[, is called Markov if, for each t > 0,

T t L p+ ⇢ L p+, (i)

( f 2 L p, | f |  1) ) |T t f |  1. (ii)
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Let �A denote the generator of T t . Let us introduce the following conditions:

[A f, f +] � 0 ( f 2 D(A) \ Re L p) (R. Phillips), (i0)

Re [A f, f � f^] � 0 ( f 2 D(A)) (G. Stampacchia). (ii0)
Here sgn z := z/|z| if z 6= 0, and sgn 0 := 0; f + := f _ 0; f^ := (| f | ^ 1)sgn f ;
[ f, g] := h f, |g|p�1sgn gikgk2�p

p , f, g 2 L p, the semi-inner product in L p. Here
and elsewhere f ^ g ⌘ inf{ f, g}, f _ g ⌘ sup{ f, g}.

It follows from Proposition 1 and Proposition 2 below (see [22, Section 1]) that

(i)+ (ii) , (i0)+ (ii0)

This equivalence is useful first of all for actual verification of (i),(ii) in the case
when A is an operator realization of a formal partial differential expression.

Proposition B.1. Let e�t A, t � 0, be a contraction C0 semigroup in L p such that
e�t ARe L p ⇢ Re L p. Then

(i) , (i0).

Proposition B.2. Let e�t A, t � 0, be a contraction C0 semigroup in L p. Then

ke�t Avk1  kvk1 (v 2 L p \ L1; t � 0)

if and only if
Re [A f, f � f^] � 0 ( f 2 D(A)).

C. Trotter’s approximation theorem

Consider a sequence {e�t Ak }1k=1 of C0 semigroups on a (complex) Banach space Y .

Theorem C.1 (H. F. Trotter [11, Chapter IX, Section 2]). Let

sup
k

k(µ + Ak)�mkY!Y  M(µ � !)�m,m = 1, 2, . . . , µ > !,

and
s- lim

µ!1
µ(µ + Ak)�1 = 1

uniformly in k, and let s- limk(⇣ + Ak)�1 exist for some ⇣ with Re ⇣ > !. Then
there is a C0 semigroup e�t A such that

(z + Ak)�1
s

! (z + A)�1 for every Re z > !,

and
e�t Ak s

! e�t A

uniformly in any finite interval of t � 0.

The first condition of the theorem is satisfied if, e.g., supk k(z + Ak)�1kY!Y 
C|z � !|�1, Re z > !.
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D. Hille’s theorems on pseudo-resolvents

Let Y be a (complex) Banach space. A pseudo-resolvent R⇣ is a function defined
on a subsetO of the complex ⇣ -plane with values in B(Y ) such that

R⇣ � R⌘ = (⌘ � ⇣ )R⇣ R⌘, ⇣, ⌘ 2 O.

Clearly, R⇣ have common null-set.

Theorem D.1. If the null-set of R⇣ is {0}, then R⇣ is the resolvent of a closed linear
operator A, the range of R⇣ coincides with D(A), and A = R�1

⇣ � ⇣ .

Proof. Put A := R�1
⇣ � ⇣ . Since R⇣ is closed, so is R�1

⇣ and A. A straightforward
calculation shows that (⇣ + A)R⇣ f = f , f 2 Y , and R⇣ (⇣ + A)g = g, g 2 D(A),
as needed.

Theorem D.2. If there exists a sequence of numbers {µk}⇢O such that limk |µk |=
1 and supk kµk RµkkY!Y < 1, then the set {y 2 Y : limk µk Rµk y = y} is
contained in the closure of the range of R⇣ .

Proof. Indeed, let limk µk Rµk y = y. That is, for every " > 0, there exists k such
that ky � µk Rµk yk < ", so y belongs to the closure of the range of R⇣ .

See [10, Section 5.2], [36, Chapter VIII, Section 4].

E. Lr-inequalities for symmetric Markov generators

Let X be a set and µ a � -finite measure on X. Let T t = e�t A, t � 0, be a symmetric
Markov semigroup in L2(X, µ).

Theorem E.1 ([22, Theorem 2.1]). If f 2 D(Ar ) for some r 2]1,1[, then f(r) :=
| f |

r
2 sgn f, | f |

r
2 2 D(A

1
2 ) and

4
rr 0

kA
1
2 f(r)k22  Re hAr f, | f |r�1sgn f i  {(r)kA

1
2 f(r)k22, (i)

where {(r) := sups2[0,1]{(1+ s
1
r )(1+ s

1
r 0 )(1+ s

1
2 )�2}, r 0 = r(r � 1)�1;

�
�Im hAr f, | f |r�1sgn f i

�
� 

|r � 2|
2
p
r � 1

Re hAr f, | f |r�1sgn f i; (ii)

If 0  f 2 D(Ar ), then

4
rr 0

kA
1
2 f

r
2 k22  hAr f, f r�1i  kA

1
2 f

r
2 k22; (iii)
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If r 2 [2,1[ and f 2 D(A) \ L1, then | f |
r
2 , f(r) 2 D(A

1
2 ) and

4
rr 0

kA
1
2 f(r)k22  Re hA f, | f |r�1sgn f i  {(r)kA

1
2 f(r)k22, (iv)

�
�Im hA f, | f |r�1sgn f i

�
� 

|r � 2|
2
p
r � 1

Re hA f, | f |r�1sgn f i; (v)

If r 2 [2,1[ and 0  f 2 D(A) \ L1, then f
r
2 2 D(A

1
2 ) and

4
rr 0

kA
1
2 f

r
2 k22  hA f, f r�1i  kA

1
2 f

r
2 k22. (vi)

(The proof of (iii) works in the assumptions of (vi); the proof of (i), (ii) works in
the assumptions of (iv), (v).)

F. Extrapolation theorem

Let X be a set and µ be a measure on X . Set L p = L p(X, µ), p 2 [1,1].

Theorem F.1. (T. Coulhon-Y. Raynaud [34, Proposition II.2.1, Proposition
II.2.2]). Let Ut,s : L1 \ L1 ! L1 + L1 be a two-parameter evolution family
of operators:

Ut,s = Ut,⌧U ⌧,s, 0  s < ⌧ < t  1.

Suppose that, for some 1  p < q < r  1, ⌫ > 0, M1 and M2, the inequalities

kUt,s f kp  M1k f kp and kUt,s f kr  M2(t � s)�⌫k f kq

are valid for all (t, s) and f 2 L1 \ L1. Then

kUt,s f kr  M(t � s)�⌫/(1��)k f kp,

where � = r
q
q�p
r�p and M = 2⌫/(1��)2M1M

1/(1��)
2 .

Proof. Set 2ts = t + s. The hypotheses and Hölder’s inequality imply

kUt,s f kr  M2(t � ts)�⌫kUts ,s f kq
 M2(t � ts)�⌫kUts ,s f k�r kUts ,s f k1��p

 M2M
1��
1 (t � ts)�⌫kUts ,s f k�r k f k1��p ,

and hence

(t � s)⌫/(1��)kUt,s f kr/k f kp
 M2M

1��
1 2⌫/(1��)

⇥
(ts � s)⌫/(1��)kUts ,s f kr /k f kp

⇤�
.

Setting R2T := supt�s2]0,T ]

⇥
(t � s)⌫/(1��)kUt,s f kr/k f kp

⇤
, we obtain from the

last inequality that R2T  M1��(RT )� . But RT  R2T , and so R2T  M .
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Corollary F.2. Let µ be a � -finite measure on X . LetUt,s : L1\ L1 ! L1+ L1

be an evolution family of operators. Suppose that, for some 1  p < q < r  1,
⌫ > 0, M1 and M2, the inequalities

kUt,s f kr  M1k f kr and kUt,s f kq  M2(t � s)�⌫k f kp

are valid for all (t, s) and f 2 L1 \ L1. Then

kUt,s f kr  M(t � s)�⌫/(1��)k f kp,

where � = p
q
r�q
r�p and M = 2⌫/(1��)2M1M

1/(1��)
2 .

G. N. Meyers embedding theorem

Theorem G.1 (See [28, Theorem 2]). Let a 2 (Hu), � I  a(x)  ⇠ I Ld a.e. on
Rd . In L2 = L2(Rd ,Ld) define A, the Dirichlet extension of �r · a · r. Then
there exists p > 2 determined by the condition kr(1 � 1)�

1
2 k2p!p < ⇠

⇠�� such
that (1+ Ap)�1 extends to

(1+ Ap)�1 2 B(W�1,p,W1,p).

Proof. First, let a 2 (Hu) \ [C1]d⇥d . Set ⌧ := ⇠ I � a. Then

(1+ A)�1 f = (1� ⇠1)�1 f � (1� ⇠1)�1r · ⌧ · r(1+A)�1 f, f 2Cc,

kr(1+A)�1 f kp  kr(1� ⇠1)�1 f kp

+ kr(1�⇠1)�
1
2 kp!pk(1� ⇠1)�

1
2r · ⌧ · r(1+A)�1 f kp.

Let ' 2 L p0 , p > 1, F := r(1 � ⇠1)�
1
2', G := r(1 + A)�1 f . Then, using

v · ⌧ · v̄  (⇠ � � )|v|2, we obtain
�
�⌦', (1� ⇠1)�

1
2r · ⌧ · r(1+ A)�1 f

↵��

 (⇠ � � )h|F |, |G|i  (⇠ � � )kFkp0kGkp


⇠ � �
p
⇠

kr(⇠�1 �1)�
1
2 kp0!p0k'kp0kr(1+ A)�1 f kp.

Therefore,

k(1�⇠1)�
1
2r ·⌧ ·r(1+A)�1 f kp 

⇠ � �
p
⇠

kr(1�1)�
1
2 kp0!p0kr(1+A)�1 f kp.

We arrive at

kr(1+ A)�1 f kp  kr(1� ⇠1)�1 f kW�1,p!L pk f kW�1,p

+
⇠ � �

⇠
kr(1�1)�

1
2 k2p!pkr(1+ A)�1 f kp,
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i.e.,

kr(1+ A)�1 f kp  kr(1� ⇠1)�1 f kW�1,p!L p
�
1� (p)

��1
k f kW�1,p ,

where (p) := ⇠��
⇠ kr(1�1)�

1
2 k2p!p.

Let an := e
1
n a. Using that (1+ Ap(an))�1 ! (1+ Ap(a))�1 strongly in L p

and that r is closed, we arrive at the required estimate.
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[24] G. METAFUNE, D. PALLARA, J. PRÜSS and R. SCHNAUBELT, L p-theory for elliptic oper-
ators on Rd with singular coefficients, Z. Anal. Anwendungen 24 (2005), 497–521.
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