Ann. Sc. Norm. Super. Pisa Cl. Sci. (5)
Vol. XXI (2020), 1573-1647

On the theory of the Kolmogorov operator
in the spaces L? and C,
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Abstract. We establish the basic results concerning the problem of constructing
operator realizations of the formal differential expression V - a - V — b - V with
measurable matrix a and vector field b having critical-order singularities as the
generators of Markov semigroups in L? and Coo.
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1. Introduction

Let £9 be the Lebesgue measure on R, d > 3. Let Q be an open set in R4, Our
object of study is the formal differential operator

d

(=V-a-V+b-Viux) = Z i a,k(x)axku(x) —i—Zb (x)oyu(x), xeQ.
i, k=1 i=1

Under rather general assumptions on the matrix a,

a=a":Q->RIQRY, ae[Ll. (@, LH]",

ol < a(x) for some constant o > 0 and Llae. xeQ, (Hy)

we will construct by means of the theory of quadratic forms in Hilbert spaces three
operator realizations Ap, Ajp, Ay of —=V-a-Vin L? = L%, Ld). Each of these
realizations is the (minus) generator of a symmetric Markov semigroup and inherits
some basic properties of the classical Dirichlet and Neumann extensions of —A.
Let A denote one of these operators and let {e™’ At > 0}1<r<oo be the collection
of consistent (¢ "4» [ LPNLY = e "4 [ LPNLY, 1< p,q <00, Ay = A) Cy
semigroups on the scale [1, oo[ of L” spaces.

For any £¢ measurable b : Q —> R? we define in L" the maximal operator
B, Db-Vofdomain{f e L' N (Q)lb Vfel}.

1. Assuming that

loc

bg:=vVb-a'-belL+L>, (Cy)

we will prove, essentially using specific properties of the symmetric Markov semi-
group e 4 and the structure of B,, that B, is A, bounded (with relative bound

zero) in L” for allr €]1, d+2]
. )The interval ]I, 5 Jr2] cannot be enlarged to [1, %] under the assumption
d)-

By means of the standard tools of the perturbation theory for linear opera-
tors one concludes that the algebraic sum A, + B, of domain D(A,) N D(B)),
p €]l, %] is the (minus) generator of a quasi bounded Cgy semigroup in L?, say
Ap = Ap(a, b). Moreover, essentially using speciﬁc properties of the symmetric
Markov semigroup e 4, we will prove that T go := e~ "r is a Markov semigroup
(i.e., positivity preserving quasi contraction, L>° contraction C¢ semigroup), so the
whole family {7} <, <o is well defined. Let — A, denote the generator of 7). Then

DA DA +B, 1 <r <ooand A, = A, + B, only forr €]1, %].

2) In place of A one can substitute the form-sum A+V provided that V f (x) =
V(x) f(x), V is £¢ measurable,0 < V and D(A%) N D(V%) is dense in L2. The

simplest sufficient condition is V € LIOC, see, however, the example in [33].
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2. In order to treat more singular b’s we introduce the class Fs(A) of form-
bounded vector fields. We say that b : Q — R4 belongs to Fs(A), and write
b € F5(A) if and only if b is L4 measurable, bg € Llloc and there are constants
6 >0, 0 <X < oo such that

1
1ba (A + A) 2[00 < V6.
Under the following assumptions on (a, b) :
a € (Hy), b € Fs(A), § <4, andb? € L' + L™ (%)

we will construct an operator realization A, (a, b) of —V-a-V+b-Vin L" for every

rel. = [2%/5, oo[ such that — A, (a, b) is the generator of a Markov semigroup.
This semigroup is holomorphic forr € 1 := 2}—@’ oo[. Forevery r € 12,
eTIAr@h) = o L7 lim oA (@ bn), (%)

ntoo
where b,, := 1,,b, 1,, denotes the characteristic function of the set {x € Q | b, (x) <
n};
d A
2 ) Wy = 77—
2r — 1)

The interval /. is called the interval of contraction solvability.

Note that any b satisfying the assumption (Cy) belongs also to Fo(A) :=
(s=0 Fs(A). In particular, for each n = 1,2, ..., b, satisfies (C4) and belongs
to Fs(A). Again, in place of A one can substitute A-+V provided that V is £¢
measurable, 0 < V and D(A%) N D(V%) is dense in L2.

For 0 < § < 1, (xx) can be viewed as a (fundamental) property of the semi-
group e~ "Ar (@b ‘however, for | < § < 4, (sx) becomes the principal means of
construction of e ~?Ar(@b)

Next, we will prove that for more regular matrices the constraint bz e L'+1L>®
in (k) is superfluous. This is true in particular for any a € (H,), the class of
uniformly elliptic matrices (i.e.,a € (H;) and a(x) < &1 for some constant £ and
L%ae. x € Q).

Moreover, it will be shown that if

(a,b) = (a € (Hy), beFs(A), § <4),

_(1_1
||€_tAr(a7b)”r%q <celor =Gy r<gq<oo, rel;

then, e ~"Ar@P) [ L N LP, p e I?, extends to a bounded holomorphic semigroup
; . 2
in L" foreachr € I,, — I., where I, 'Z]%%Tﬁ’ oo. !

! The maximal interval of quasi bounded solvability for A — V, with0 <V <A +¢(§),0 <
§ < 1,is Iy :=1r(8), r' G, ' (§) := ﬁ 7L This was proved in 1995 by Yu.A. Seménov,
based on ideas set forth in [31]. The fact that the semigroup associated with the Schrodinger
operator —A —V,V € L%’OO, can be extended to a C(y semigroup on L” (R?) for everyr € I
was first observed in [17].
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We will present examples of (a, b) which show that I., I, are maximal, as
well as examples of (a, b) = (a € (Hy,), b € F5(A), § > 4) which show that the
constraint § < 4 has direct bearing on the subject matter.

The class Fs(A) contains vector fields b having critical-order singularities:
the basic properties of A,(a, b) (including the smoothness of D(A,(a, b))) ex-
hibit quantitative dependence on the value of § (note that b € Fs(A) if and only
if cb € F25(A), c > 0,50 ¢ effectively plays the role of a “coupling constant” for
b - V). See examples in Sections 4 and 5.

Now consider the following assumption on (a, b) :

ac (Hy)andb € Fs(A), § <1

(removing in (x) the constraint bZ e L' + L*> but restricting the range of §).
Using old ideas of J.-L.Lions and E.Hille we will construct in L? a Markov
semigroup e ~A@P) which possesses some important properties:

e—tA, (a,b) — —tA,(a,by)

s-L"- lim e

2<r <o0)
ntoo

whenever {b,} C Fs(A) and b, — b L% ae.

A
= —-—,2<r <gq <o00.
20 — 1)

”e_tAr(a'b)”r—n] =< Cetwrt_(%_é)%a Wy
ADA+ B, D(A) C D(A%), the resolvent set of —A contains O := {¢ | Re¢ >
A}

1 1
C+M T =C+ATA+T)TC+ AT, T2 Ve (€O
Under more restrictive assumption on (a, b),
aec (Hy)and b € Fs(A), § <1,

the results obtained above by different techniques are unified. In particular, the
interval [2, oo[ extends to /. and 1,,,.
It is useful (in some cases necessary) to have the convergence

eI @) — o 17 [im gt Ar(anbn)
ntoo

where a, a, € (Hy), b € Fs(A), b, € Fs(A,), § <4, a,, b, bounded and smooth,
anda, — a, b, — b L9 ae.

We prove this convergence, although under the additional constraints a € (H,,)
and § < 1. To make this result unconditional we need to address the following prob-
lem: Given (a, b) = (a € (H,), b € Fs(A)), to construct (a,, b,) with the claimed
properties. In the simplest case @ = R?, a = a, = I we solve the problem
by simply putting b, = E,(blg,), where Q, = B(0,n) and E, f = e"’""Af or
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E.f = ye, * [, Ve, is the K. Friedrichs mollifier, with evident modifications for
QcRL(Q= U, 2, Qn € Qu41, Qp are open and bounded).

We also mention the following result. Set Viu(x) := oyu(x), (Va), =
Zflzl(via,-k) and b := (Va), so formally =V -a -V +b -V = —a - V? (=
— > aixViVi). Seta, = Eqa, by := (Va,). Fix § < co. Then b € Fs5(A) =
b, € Fs(A,) provided that the matrix a € (H,,) is diagonal and |b| € L2+ L™,

3. Let Coo = Coo(RY) denote the space of all continuous functions vanishing at
infinity endowed with the sup-norm. Our next concern is: to find a subclass of (H},)
and constraints on § which allow to construct in C«, a Co semigroup associated
with =V -a -V + b - V whenever b € Fs(A).

As the first step we consider the case

2
(a,b) = (I,b € Fs = Fs(—A)) with /8 < 1 A T d > 3.
The constraint on § allows to establish the following fundamental fact [18]:

. - . d
C+ AL C W, cep(=Ay), j= 7, (%)

d
whenever g € ]2\/ d-2), %[ (C1f).In particular, e A L7 C ™74 for any

re ]L q] .

2-Vs

Note that (%) is a “trivial” fact only for (d, ¢) = (3, 2). Indeed, (b € Fs, § <
1) implies that Ao = —A +b -V, D(A2) = W22 c W12/, Thus, if d = 3, then
¢+ A2 ¢ whe ¢ CO’%. However, already for d = 4, (¢ + A% ¢
WLr p=d, not p > d.

We emphasize that the assumption b € Fj does not guarantee W2/ estimates
0% (¢ + A,)~'L" for r large enough to conclude that, for any ¢ > 0, e A L" C
c>e.

We will also discuss the analogue of (x) for (a,b € Fs(A)), a(x) = I +
clx72x ® x, ¢ > —1.

Armed with (x) we will prove that

§5-Coo- lim e Ao ®n) - — E, (bl 1))
ntoo

exists uniformly in # € [0, 1], and hence determines a Cy semigroup e "ACx (a
Feller semigroup), whose generator is an appropriate realization of A — b - V on
Coo- (This result has been established in [18] under the additional assumption |b| €
L? 4 L>®.) We emphasize that in general there is no direct connection between
Ac,, and the algebraic sum —A +b - Veven forb € [L>®)1 —[C19. In particular,
C® ¢ D(Ac,). The same remark applies to A,,r > 2, whenever |b| € L9 — L",
qg<r.
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4. Next, consider the case ( = RY)

1
(a,b)=(I,beF;)withs <1, d = 3.

By definition, b € Fg/z if and only if |b| € LllOC and there exists 0 < A = A5 and
1 1
B2 = A) 4 [l22 < V6.

Recalling the definition of the Kato class K5d+1: el — A)*% 11 < 6, itis a
simple matter to conclude that K¢t ¢ F}* while ;oo KT — Us oo Fs # @.
Taking into account that by interpolation, Fg» C F;, it is clear that Fy ; F:s/ %,

To deal with such general class of vector fields we will again use ideas of
E.Hille and J.-L.Lions (alternatively, ideas of E.Hille and H.F. Trotter) to con-
struct the generator —A = —A(b) (an operator realization of A — b - V) of a
quasi bounded holomorphic semigroup in L. This operator has some remarkable
properties. Namely, p(—A) D O :={¢ | Re¢ > A}, and, for every ¢ € O,

@+ M) =R+ HS)) I,
4 3 -1 .
=J} = JHF (L + S HY) ™' S Ui
IHE S <8, 1@+ M) s < 1217'A = 8)7

_d1_1
||67’A’||r_>q <ce™72070) . 2<y < g < o0;

where J; i= (¢ — A) 74, H := |b|]2J;, S:=b2-VJ}, b := |b| %b.

(In particular, D(A) C W%’z, the Bessel potential space. In this regard,
we note that the Kato-Lions-Lax-Milgram-Nelson Theorem applied to the opera-
tor —A + b - V requires b € Fs, 8 < 1, a more restrictive assumption, while giving
a weaker regularity result: D(A) C wh2),

As in the case b € Fs, it is reasonable to expect that there exists a quantitative
dependence between the value of § and smoothness of the solutions to the equation
&+ A)u=f, ¢tep(—A;), felL. Suchadependence does exist. Set

1Q2e)"2did — 1)~ T 4 2
mg :=7122e — , Kq4'= ry = .
¢ ¢ T I T—mgs
It will be established that if b € Fy/*> and m48 < 1, then (e "2 ® | r € [2, o0) ex-
tends by continuity to a quasi bounded C¢ semigroup in L” for all » €]r_, ool.
For every r € I; :=]Jr_,r4[, the semigroup is holomorphic, the resolvent set

o (—A; (b)) contains the half-plane O := {¢ € C | Re¢ > kgXs}, and the re-
solvent admits the representation

CHAG) ' =¢-ANT"-0,0+T)7'G,, ¢eO, (%%)

1
where Q,, G,, T, are bounded linear operators on L"; D(A, (b)) C witer (g>r).
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d—22
(d-1)*’
C+A0)'L Oy <1 -4

The results above yield the following: Let b € F:S/ ? for some & such that my8 <

In particular, for my6 < 4 there exists r € Iy, r > d — 1, such that

4 (j__lz)z . Let {b,,} be any sequence of bounded smooth vector fields, such that b, —

b strongly in Llloc, and, for a given ¢ > 0 and some §; €15, 6 +¢], {b,} C F(]f with
A # A(n). Then
5-Coo- lim e "ACoo (Pn) (% % %)
ntoo

exists uniformly in 7 € [0, 1], and hence determines a Cy semigroup e~"A¢oc (),

The results (xx), (x x x) can be obtained via direct investigation in L” of the
operator-valued function ®, (¢, b) defined by the right hand side of (»xx) without
appealing to L? theory (but again appealing to the ideas of E. Hille and H. F. Trotter)
[12].

There is an extensive literature on regularity of solutions to elliptic and para-
bolic equations having unbounded coefficients that are smooth outside of a discrete
set, see, in particular, [1,3,7,23-27,30] and references therein. In this work we
adhere to the principle that the regularity properties of solutions should depend on
the integral characteristics of the coefficients (here, on the relative bound §). Thus,
as a by-product, we allow coefficients to be discontinuous (unbounded), e.g., on a
dense set.

In the next parts of this work we will extend our regularity results in the spaces
L? and C to the operator A + b - V, and with time-dependent coefficients a, b.

ACKNOWLEDGEMENTS. We are grateful to the anonymous referee for a number of
valuable comments that helped us to improve the paper.

2. Markov generators associated with —V - a - V

Throughout the paper we denote by B(X, Y) the space of bounded linear operators
between complex Banach spaces X — Y, endowed with the operator norm || -
Ix—y: B(X) :== B(X, X). Set || - | p—q == Il - lLr—14-

1.Let X be a set and  a measure on X. Fix p € [1, oo[. A Cy semigroup 77, > 0,
of quasi contractions on L? = LP(X, ) (i.e. [T fll, < e“?'|I fllp, f € LP)1is
called Markov if, for each t > 0,

T'LY c LT, )

(feLllIfl=h=IT"fl<L (ii)

With each Markov semigroup 77 we associate a collection {7’} ,<, <o of consistent
quasi contraction Cp semigroups on the scale [p, oo[ of L" spaces as follows.
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Since [Tl p—p < e“?" and [T flloo < | flloo (f € LP N L), by the Riesz

Interpolation Theorem, ||T7 f|, < eg“’l”||f||, (f e LPNL*>) forallr € [p, co].
Since L? N L™ is a dense subspace of L” for each r € [p,oco[, T' [ LP N L™ :
L" — L" extends by continuity to a semigroup in L":

T = (T" [ LP N LSS .

Next, by Holder’s inequality:

T = D fll <20 f s 1T = DFI, (f € LP A L),

and hence we see that 7)! is strongly continuous.
Set T’f := T"'. Then T! and Tq’ , T, q € [p, oo[ are consistent:

I NLY =T, [ L' NL%.
Let —A, denote the generator of 7)) and A := A,,. Then
Ar | D(A) N D(Ay) = Ay | D(A)ND(Ay) (p<r,q < o0).

because & := (1 + A)"'[L' N L>®]is a core of A, forallr € [p, ool.

Definition. Let A > 0 be a self-adjoint operator in L?(X, ). The semigroup
T! = e "4t > 0,is called symmetric Markov if, for all > 0,

T'Li C LY, and (f € L, |fI < )= [T fI < 1.

With each symmetric Markov semigroup 7" we associate the collection {7}/ }1 <, <00
of contraction semigroups defined by

T! = (T" [ L' LS . (e[l 00,
T = (T)H*.
It is easily seen that the semigroup 7} is strongly continuous for each r €]1, oo[. (It

is also known that Tl’ is strongly continuous as well, see, e.g. [22, Proposition 1.8].)
We have A, [ D(A;) N D(Ay) = Ay | D(A,)ND(Ay) (1 <r,q < 00).

2. Let €2 be an open set in RY, d >3,
a=a":Q->RIQRY, ae[Ll (@ £H]"

ol < a(x) for some constant ¢ > 0 and L4ae. x € Q. (Hyp)
One can define at least three realizations of the differential expression —V - a - V

in L2 = L%(Q, £%) as (minus) symmetric Markov generators: Ap, A;p, Ay, the
Dirichlet, intermediate Dirichlet, and generalized Neumann [32]:
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Let 7 denote a collection of all closed, symmetric non-negative quadratic
forms in L2. Define the pre-Dirichlet form ¢ by setting

elu,v]:= (Vu-a-Vi), D(e)=ClQ) xcl),

where
(f) = /Q faLt, (f.g) = (1B,
and
d
Vu-a-Vo(x) = Z ik (X) 0 u(X) 0y, v(X).
i k=1
Let

Ty ={teT |t T, e*T s>0, isasymmetric Markov semigroup}

(t < T denotes the one to one correspondence (Appendix A)).
Let

Tu(e) ={tedy|tDe}
It is said that T € 7Ty is local if T[ f, g] = O whenever (f, g) € D(t), f,g >0, and

frg=0.
Consider the following extensions of &:

Tp = &% (the closure of ¢),

wp D tp, D(uip) = 1{u € Wy*(Q) | (Vu-a- Vi) < oo},

™D Tp, Dn):={ueWH(Q)| (Vu-a- Vi) < oo).
Lemma 2.1. tp, tip, v € Ty (e), and are local.

Proof. Define
1 -1
a"() =0l + (a(-) — al)(l + —a(-)) , n=12,...
n
Clearly, ol <a"(-) < (n+o)l anda"(-) <a"t'() <a() L ae.
Let E = W, () or W"2(£). Define

" [u,v]:=(Vu-a" -Vv), D(@GE") =E,
e"u,v] :=(Vu-a" - V), D(") = D(e).
It is well known that t”* € Ty;(¢"), and are local (by verifying the Beurling-Deny

conditions, using properties of Sobolev’s spaces, such as “C>®(Q) N W%(Q) is
dense in W12(€)”, and Fukushima’s test function fe = eqﬁ(e_lf), ¢ isa C>®
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function from R to [0, co[, ¢(0) = 0, |¢'(x)| < 1 and ¢ (x) = |x| — 1if |x]| > 2;
otherwise, see [8, Sect. 1.4] or [5, Theorems 1.3.5, 1.3.9]).
Define t by

tlu, v] ;= limt"[u, v],
n
D(t) :={u € E | sup(Vu -a" - Vit) < oo}
n

={ueE|(Vu-a-Vu) < oo}.

By the Monotone Convergence Theorem for a non-decreasing sequence of closed
symmetric non-negative quadratic forms (Appendix A), t € 7 and, obviously,
7 € Ty (e) and is local. Since T D ¢, ¢ is closable. Thus 7p is well defined. Now
it is clear that 7p belongs to 7y (¢) and is local. ]

Remarks. 1. The operators Ap, A;p, Ay associated with 7p, 7;, Ty, respec-
tively, possess some nice properties. C2°(£2) is a form core for Ap. If A (a) stands
for A;jp or Ay, then e $4r@ = g_lim,, ¢ —$4r(@") p €ll, oo[. At least e~42 and
e~S4iP have nice embedding properties (L? — L9).

2. tp is the maximal element of 7/ (¢) endowed with the semi-order 7; <
7, & D(t1) D D(2), 1i[u] < 12[ul, u € D(12).

3. b-Vis A, bounded

Let 2 be an open set in R4, d >3, and L? = LP(Q, £%). Leta : @ — R? @ R4
be a symmetric £¢ measurable strictly positive (¢ € (H;)) matrix. Letb : Q — C¢
be £¢ measurable and define B, = B, (b) to be the maximal operator of b - V in
L", 1 <r < oo, of domain

D(B,):={heL"||Vh| €L}, and b-Vhe L}

Throughout this section A = A(a) denotes Ap, A;p, Ay. In case of Ay we also
assume that 92 € C91.

Definition. We say thatb - V is A, bounded if || B (A + A1 |lr—» < oo for some
A > 0.

1.Set j := dde and j' = %.

Proposition 3.1. Assume that bfl =b-a"'- b <W+C L ae.for a function

We L' anda non-negative constant C. Then, for everyr €]1, dz—_fz], the operator
B, is A, bounded and the inequality

172

1/2
1B+ A" e < 4<m) +4c(r, HIWI
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holds with the constant c¢(r, j) — oo asr — 1. 1If bg € L°°, then the assertion
above is valid for all 1 < r < 2. Moreover, for a given n > 0, we can choose Wy,
C1 and then A > 0 such that bZ <Wi+Ciand

4 Ci 1/2+4( NIW 1/2
o cr. HIWIY? <.

Proof. Setu = (A + A,)"'h, h e L! NLYP. Letl < p<2.Sinceu € D(A,) =
Up = u? e D(A'/?) (Appendix E, Theorem E.1), we conclude that Vi, € L?.

(We use that D(A%) C E where E = WOI’2 if A= Apor Ajp, and E = Wh2if
A=Ay Since2 > pandu € L,

2—-p

2/p Iz e
Vu=Vuy" = @2/puy” Vu, =2/p)u2 Vup.

Now, |b- Vu|? < bZVu ca-Viu = (2/p)2b§u2_1’Vup -a- Vi, and so by Holder’s
inequality,

Ib- Vul? < 2/ p)Ibzu* Pl (A uy, AV2up)

< (p = D70 o (Apu, P ).

If b2 < C, then (take p = r) b - Vul? < S lul>7"(A-u, u""), and since

lull, < 27MA], and (Aru, u"™Y) (= (4 Apu, w1 — A"y < (h,u'™) <

C
6 - Vul, S‘/m Al (o)

Al ey,
If b2 < W, then the same argument (withr < p <2,(p — 1)~! > /(7= — j’71y)
yields
— -1 —
16 Vully < (p = D7 Al lull) ) IWa?=Pl] .

Therefore, by Holder’s inequality and the embedding (A+A,) ™! : L" — L9, r~1—
g~' < U b - Vull, < e j)||W||},/2||h||,, h € L' N LY. 1t remains to pass
in this inequality and in (e) to an arbitrary h € L', . Using the facts that the weak
gradient is closed in L", and L' N L* is dense in L", we have || 1{pj<nyb - Vul|, <
c(r, j)||W||},/2||h||r for all & € L', . The use of Fatou’s Lemma now completes the
proof. O

Remarks. 1. The implication 4 € D(A,) = Vh € [L’]d for r €]1, 2] follows
now, e.g., from a priori estimate |V(1 + A)~'h|l, < C@)|Al,, h € L' N L*®,
which in turn is a simple corollary of (e). We also mention that, in general, even the
condition b2 € L* allows b to be unbounded.
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2. Let us recall a simple corollary of the Hille Perturbation Theorem (see, e.g., [11,
Chapter IX, Section 2.2]):

Let e7'4 be a symmetric Markov semigroup, K a linear operator in L" for
somer €]1, ool. If for some A > 0 1K A+A)" o < %, then — A\, .= —A,— K
of domain D(A,) is the generator of a quasi bounded holomorphic semigroup
onlL".

Thus, Proposition 3.1 implies that the (minus) algebraic sum A, 4 B, is the

2d
1, a+2 |-

Sometimes one can employ the Miyadera Perturbation Theorem [29] (see

also [35]):

generator of a holomorphic semigroup in L" for every r €

Theorem 3.2. Let e~'4 be a symmetric Markov semigroup, K a linear operator in
L" for some r € [1,00[. If for some » > 0 |[K(A + A) 7', < oo, and there
exists > 0 and B < 1 such that

/0 IKe~" A flldt < Bllfll;,  f € D(A),

then —A, := —A, — K of domain D(A,) is the generator of a quasi bounded Cy
semigroup on L.

3.Even in the case a = I, the assumption W € L/ " cannot be weakened to W € LP
for some p < j’. Also, this assumption does not guarantee that B; is A; bounded.
Of course, ifa = I and |b| € L4, then B, is A, bounded for each r €]1, d[.

Ifa € (H,) and |b| € L¢ (2 = RY), then B, is A, bounded for each r €
11,2+ €], where O < ¢ < d — 2 depends on the ellipticity constants (o, £). Indeed,
forevery r € [%, 2+ 8]

dr

1By (e + AT fllr < 161al V(e + A7 flls, 5= —  (feC)

1 1
where [|[V(i + A7 flls < V(e + AH7MA - A)flls—>slll(1 — A)"2f|ls. By
the N.Meyers Embedding Theorem, ||V (u + A1 = A)2|sms < 00 provided

that £ /o is sufficiently close to 1 (Appendix G), and, clearly, ||(1 — A)_% fls <
Cs|l £, which now yields the required.

2. Now we specify the results of the previous subsection to b : 2 — R?. Denote
T! = e 'O+A ) where A, (b) = A, + B, of domain D(A, (b)) = D(A,). Since
b is real valued, T/Re L” C ReL”. We claim that 7, is a positivity preserving
L contraction semigroup. We prove this here only for b, € L°° by verifying the
criteria of R. Phillips and G. Stampacchia for th (Appendix B).

Let bfl < C,C < 4i. SetT" = & 4+ Ay(b). It is seen that, for f € D(A),
Re (I'f, f) = 0, (Indeed, by the quadratic inequality, Re (I"f, f) > A||f||§ — }L(b .
a b b |IfI? = (k - %)||f||% > 0 where at the last step we used bg < C). Thus,
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YI;Zt is a contraction. For any f € Re L? define f, = f VO0.If f =Re f € D(A),
then

(Tf, f+) = Mf2) + (AL, fa) + (b -V f, f1).

Taking into account that A is local and f € D(A%) C WOI’Z, we obtain
(Af. 1) =(Vf-a-Vf)=(Vfr-a-Vf),
(b Vf fl = bra™ bV -a-Vfi)2
< SUD Ve a V.

Thus (I'f, f4+) > 0forall f =Re f € D(A) = D(I).
Next, let f € D(A). Then fr := (1 A|f|)sgn f and f — fa are from D(A%)
(e.g., by the Beurling-Deny Theorem, see [22, Section 1])

1 f _
V(f = fA) =11 (1 - |—f|)Vf + Wvlfl] andRe fVf =|fIV|f|.

Setting ¥ = 1j7|>1(] f| — 1) we have
Re(Tf, f = fA) =A(f1,¥) + (V¥ -a- Vi) +(b- Vi, )
C
> (n— Z)(Ifl, ¥) > 0.

Thus Re (I'f, f — fan) = 0forall f € D(A) = D(I').
Corollary 3.3. th is a Markov semigroup.

Now let r €]1, 2[. By the construction of A, and A, T f = th f whenever f €

L™ N L?. Therefore, for each r €]1, 2[, the semigroup T! preserves positivity and
is L™ contraction.

4. b-V is A form-bounded

Throughout this section we are assuming that €2 is an open subset of R?, d > 3,

a:Q—>RIQRY a symmetric £¢ measurable strictly positive (a € (H1)) matrix.
By A we denote one of the operators Ap, A;p, Ay. In the results concerning

(LP, L9) estimates for Ay we also assume that 9Q € C%!.

Definition. We say that a b : RY - R4 belongs to Fs(A), the class of A form-

bounded vector fields, and write b € Fs(A),if b, :=~vb-a~! - b e leoc and there
exists a constant 0 < A = A5 < 0o such that

5oL+ A) 2|20 < V6.

(Equivalently, b2 < 8A + c(8) in the sense of quadratic forms for some constant

c(8) (= A8).)
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Write Fs = Fs(—A). (Clearly, b € F 25 = b € Fs(A).)
Example 4.1. 1. The inclusion |b| € LY + L® = b € F) := (s=0 Fs follows
easily from the Sobolev Embedding Theorem.

2. For |b| € L% (the weak L? space), one has, using [17, Proposition 2.5,
2.6, Corollary 2.9]:

. _1
beFs, withy/8; = [[b|(h — A) 222

_1 _ 1
< 11blla,0082; ? Il|x] 1(A—A> 2|22

_1
< 1blla,00, 727"

where Qy =7 5 F(% + 1) is the volume of the unit ball in R¥.
3. By Hardy’s inequality, b(x) := «/E%M_Zx € Fs,8 > 0. (And, of course,
bgFs,ifd <§.)

4. For every ¢ > 0 one can find b € Fs such that |b| ¢ Lt

o » €8 consider

130,14a) — 1B0,1-a)

b (x) = - -,
el = 1)~ (= In[jx] = 1])

>1, O<a<l.

5. Let W, denote the class of vector fields » such that |b|? is in the class of
Chang-Wilson-Wolff (s > 1):

{v € Ly = lvllw, == SZP@/ @) 1(Q) ¢ (v 1(Q)7)dx < OO}

Where |Q| and I(Q) are the volume and the side length of a cube Q, respectively,
: [0, oo[— [1, oo is an increasing function such that f | chx) < oo. By [2], if
b € Wy, then b € Fs, 8 = §(|16%|lw,) < oo.
The class Wy contains, in particular, the vector fields b with || in the Campa-
nato-Morrey class (s > 1)

l,
{v €Ly, : (IQI / lv(x)|* dx)A < csl(Q)f2 for all cubes Q}

(write b € Cy). (For the complete diagram of the spaces of vector fields b : R¢ —
R? considered in this paper in connection with the operator —A + b - V see Sec-
tion 5.)

Remark. If K is a positivity preserving linear operator on L? or C (e.g., @
Markov semigroup or the resolvent of its generator), then

IKf| < K|fl, (f €L? orCx,respectively).

This well known fact will be extensively used below. (For a proof, if needed, see
[22, Proposition 1.5].)
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If b € Fs(A), 0 < § < 1, then the Hille-Lions theory (Section 4.3) yields
the following: In L2, there exists an operator realization A = A(b) of the formal

differential operator A + b - V such that D(A) C D(A%), o(=AN) DO :={¢ e
C|Rel > Ay = 2(1+J_)} If ¢ € O, then

Re=R; (1+T)" IRM, (io)

1 1
where Ry = Re(b) := (( + A)7', Roc =@+ A", T:=R; b-VR] .

—tA(b,,) —tA

Soe asn 1 0o, (iip)
(14 A)2(Re(by) — Re () >0 asn 1 oo, (iiio)
where b, := 1,b, 1, is the indicator of {x € Q | b,(x) < n}.
Remark.
et M) i5 a Markov semigroup. @)

Forall2 <r <g <oocandt > 0,

1

le™M llyag < ¢ 20D, (i)
Indeed, (i) follows from (iip) and the results of Section 3.2. Also, slightly modify-
ing the arguments from Section 3.2, it is not difficult to verify directly that 1,4+ A (b)
obeys the conditions of R. Phillips and G. Stampacchia. In turn, (ig) + (i) entails
(i7) by modifying the arguments from the proof of Theorem 5.2 below.

Now, we develop the semigroup theory of =V -a -V +b - Vinthe L" =
L7 (2, £4) spaces in the case 0 < § < 4.

Theorem 4.2. Assume that b € Fs(A) for some 0 < 8§ < 4.If1 <6 < 4also
assume that by, € L> + L™, Setrs := . f ThenV -a -V —b -V has an operator

realization — A, (b) in L" for anyr € I, := [rs, oo[ as the generator of a positivity
preserving, L contraction, quasi contraction Co semigroup on L" . In full:
Let 1,, denote the indicator of {x € Q| b,(x) < n} and set b, := 1,b. Then

e B =g L7 lim e A (e 10 :=]rs, 00)); ()
n—oo
clos
o thrs(B) . [e_tAr(b) rLl N Lr:| (r € ICO); (k%)
L's—L"s
Ad
—tAr(b) tor = ;
e <e , w, — ——., r e 1. 5
I lr—r < "T2r=1) ( )

There is a constant ¢ = c(8, d) such that the (L", L1) estimate
—tA(b) to, —4(-1)
le™ ™, ng <ce®t 27 a (% % %)

isvalid forallrs <r <q < oo, t > 0.
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For eachr € 12, ¢! Ar®) s a holomorphic semigroup of quasi contractions
on the sector

|argt|§%—9r, 0<9,<%, tan6, < K2 —r'va)~!, (¢ ¢ %)

2 — .
where KC = \‘;_l + /S ifr <2rsand K =" jjfrf/g ifr > 2rs.
Remarks. 1. The additional assumption b, € L?>+ L®incase 1 <8 < 4, for
a general a € (Hj), seems to be close to optimal. For more regular a’s no such
assumption is needed. See Theorem 4.3 below and the remark after.

2. The interval I, = [—=—~ o f’ oo[ is called the interval of contraction solvability.

2— 5_d-2 /3 2\/—
We will show below (Theorem 4 4) that if the matrix a is uniformly elliptic, then,
for any r € I, — I., one can still define e="" as a quasi bounded holomorphic
semigroup. We also note that I,, 3 d, whilst I. > d whenever /8 < 2%.

3. The example of A,(b) D L = —A+b-V, bx) = clx|2%x, ¢ =
%«/3 (8 < 4)in R?,d > 3, shows that both intervals I., I,, are maximal.
(Indeed, it is not difficult to see, appealing to Hardy’s inequality, that A, (b) ceases
to be quasi accretive for any r ¢ I.. For the proof of the maximality of I, see
remark after the proof of Theorem 4.4.) Any ¢ < d — 2 is admissible according to
Theorem 4.2. In turn, ¢ = d — 2 (& § = 4) makes I, = &, while ¢ = d makes
I, = @ even formally (c =d = § = 4(;%2)2 > 4). Note, however, that as
¢ 1t d —2theinterval I,,, | ]%, ool.

InQ = B(0, 1) := {x € R? | |x| < 1} consider the Dirichlet problem

The interval I, :=]—%—~=, o[ is called the interval of bounded solvability.

Lu=0, u=0o0nad. (D)
Obviously, u; = 0, up = |x|“— 1, o« = ¢ — (d — 2), are solutions of (D);
u, € L" forall0 < r < _i =2 __d rsj. In particular, up € L" for all

o 2 /8d-2 —
rs < r < rgj, and satisfies the maximum principle. If u, would be a solution to

Arv = 0 (equivalently, e’ Ary = v) for some r € 1?2, then uy should belong to
L. Thus up ¢ D(A,),r € I..

If§ > 4, then « > 0, and so the problem (D) has two bounded weak solutions.
By the way, now u» does not satisfy the maximum principle. See also example in
Section 4 4.

Thus, the assumption § > 4 (even for a = I) destroys the uniqueness of (ac-
cordingly defined) weak solutions.

We refer to [6] where the critical case § = 4 in dimension d = 3 is studied.
See also [26] concerning the case § > 4. In [6] it is demonstrated that already for
& = 4 the properties of the constructed semigroup are drastically different from the
properties of ¢’ and e A A, D —A +b-V,withb € Fs(—A), 8 < 4.
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Proof. 1. First of all, let us prove that forallr € I, n > 1, t >0,
e Ao, < e (*)

Setu = u, := e Ml |p| = e A2 B || b e L'NL™. By the results of Section
32,u € D(A)N LSFO. If r > 2, then by Theorem E.1 (Appendix E), u, u%, u" €
D(A?), and since D(AZ) C E (E = WS2if A = Ap or Aip, and E = W2 if
A= Ay), Vu? = 5u?"'Vu because r > 2and u € L®; if | < r < 2, then
Iy = %Vu’ = %M%Vu% because u € D(A,) and u” !, u? e L.

Noticing that A, (bp)u = A;u + b, - Vu if 1 < r < 2, and A,(by)u =

Ao(ba)u = Au+by - Vu, Au € L2 u™" € L2, (Au,u™") = L[ A%u5)% if
r > 2, we have

<%u, ur_l) = <A,(bn)u, u’_l) = (Aru, u’_l) + (bn -Vu, u’_l), 1 <r <2,

<%u, ur—1> = (A (bp)u, ur_l) = (Au, u’_1> + (by - Vu, u’_l), r>2.

Therefore,

Using the conditions r € I., b € F5(A) and completing the quadratic estimate
r r r.n —1 L r a
20(uzby - Vu2)| < ellbau? |3 + e | A2u? |3
1 r
< (e + & DIIAZu2 |3 + ec(®) ull,
we obtain (choosing ¢ = %, and taking into account that /8 < % forr € 1)

c(®)r’
2

r r 4 1 r
2/(uzby - Vu?)| < ;||A2u2||%+ flue]]”

Thus % Ju|l- < %)’/ lue|l.-. The desired bound (x) follows.
Since the mapping I. 5 p — || fllp, f € L' N L is continuous, () yields
the bound
le™ ™ ®Vh)lo < llhllos (€ L'NLY).

Next, if § < 1, then u, = u, and hence u, — u stronglyin L, r € I?.

2. To justify (%) when 1 < § < 4, we use the direct method: setting g =
Uy — Uy, we will prove that, for each r € 12, |gll; — 0 as n, m 1 oo uniformly
ont € [0, 1]. Obviously, the latter combined with (x) will yield (x).

Since — 4 ¢ = Ag+ by, - Vg + (b — by) - Vu, u = u,, we have, multiplying

Ir—2

both sides of the equation by g|g , integrating over €2, using the assumptions
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b e Fs(A), b2 =V + Vo, Vi € L', andr > rs,

d c(8)
Jlells < == lgly + {1, = Lnlbav/Vu -a - Vulg ™)
t NE
c(d) 1 _ 1
< N/_qu*+r<| — Ll Vi)2lIgllog  (Au, )2, (o)

To get a suitable bound on ||g||, we need the following estimate:
! 2 2
/ e N(Au,u)dt < |h5+TIVililhls (¢ = [Voolloo)-
0
Evidently, — & ||u||3 = 2(Au, u) +2{ub, - Vu) > (Au, u) — (b2u?). Setting V() =
< ||h]loo, We have e~ (Au, u) < ——1/f(t)+
e~ VilillrlZ, andSOfo M Au, u)dt < (0)+1=¢ a IVilli Al < IR1I3+

TIVilillh ||c2>0' The required estimate is proved.
Now, using this estimate, the bound ||g|lco < 2||/]|co and the equality g|;=¢ =

e \u ||%, and using the bound ||u || o

0 one can easily integrate (e), obtaining sup, (o 7y ||g(t)||3’ < C|a, - 1,)Vil,
where the constant C depends on T, r, 8, ||hll2, l|1llco, | Vi1, || Veolloo Only. The
latter makes ||gll, — 0 as n,m 1 oo uniformly in ¢+ € [0,T]. Thus the
s-L"-1im, e A ) defines a Cy semigroup. We have proved (x). Now it should
be clear that

e~ 2@ £, < e fl,,  (rel’, feL ' NL™®) *)

and e "M (® defined by (*x) is indeed a semigroup. The fact that it is strongly

continuous follows from (x') and || f — e~ *A® f||, — O as¢ | O for any r € I?
and any f € L' N L> by employing Fatou’s Lemma.
3. A proof of (x *x x) presented below is based on the embedding property of

A2 and (%), the L” quasi contraction property of e ~*Ar(®») In view of (%), it suffices
to treat the case A(b,,). We have for u := e_”\(b")f, f e LL NL*®, r =2rs,

d, . 4 c(d)
— gl = (; —2~/3)||Aé ur|l3 — 7” ully

i
Note that % > /8. Using the Nash inequality ||A%h||2 > CN||h||2+" ||h||1 d
(*'), we have setting w := [Ju.,

d _
—w
dt

I\J

> —cow™d +cre CSt”f”r(s ,

[SVIN]

where ¢; = CN%(% — 2«/5) c %(T %wr52r5.
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Integrating this inequality yields

& _dl_.L
e 85y ry <0 et 25T g >0, (4%)
By duality, ||e_tArs (bn) ||(2r5)/_)ré < the right-hand side of (xx), and

_tAE _ _d1
le™ M Py = lle B0 < Cr(d, rs)e™stt 2

by the Extrapolation Theorem (Appendix F). Interpolating the latter, we arrive at
the desired estimate.

4. Proof of (x % * ). Set z := 2A+/5. We need to prove that

[Im (A, (b)u, ulu| ") < K2 — V/8r") 1Re ((z + Ay (b))u, ulul"~2),
ue DA D)), re If. (o)

a) First we prove (e) for b = b, and u = u,, € D(A,(by)), where b, := bl,, 1, is
the indicator of {x € Q | b,(x) < n}. Note that D(A,) N L is a core of A, (b,)
forr € {r <2} N1I2, and D(A) N L™ is a core of A(b,) forr € {r > 2} N I¢.
Thus, we will take u, from these cores. Then A, (b,)u, = Auy, + by, - Vu,, where
Av = Ayvifve D(A)NL®and Av = Avifv e D(A)N L.

Using the assumption b, € Fs(A), inequality |A2|u|Z]l» < [|AZulul>"" ],
equality X = (Vu - a - Vi, [u]""2) = Re (Au, ulu|"~2) — ‘“j—;z)||A%|u|%||§, and
completing quadratic estimates we obtain

_ —_ 2 r 1 r
IRe (by - Vau, ulul" ") = [(by - Viul, [ul"™")| < ;IlbaIMIZIIzIIAzlulzllz

24/8 NG

1 r.n AN/ O r
< A2 ul 2|3 4 S fuls
r r
_ _ r 1
[tm (b, - Ve, ulu|"=2)| < [(bn - Vi, ulul =2)| < |bglul?[|2X2

-2 1 r
)||Az|u|2||§

1 ~ o r
< —Re (Au, ulu|’ =) + | §¢ —
4e r2e

+aselull, (> 0);
RHS = Re ((z + A (by))u, ulul 2

~ r— 2\/5 1 r )\\/S r
>Re (Au, ulul" %)= == A2 |u] 2|3 + (z — 7)||u||,;

r'/8
2

RHS > (I — ——)Re <Au,u|u|’—2>+(z—@)nun:; )
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LHS = [Im (A, (by)u, ulu|" )]

=2 1 s oy N r
[2F+ }Re(Au ulul" )+ (56— = ) IAZ 15 + Adeull:

(0)
r =2
=1

|r — 2| 2./8 = 2 1o
— | —— + é¢ A?|u|2
+ H:Z — + i| + P Az |ulz]|5

{M/i 1}( - Afg)—xas}nun: (2% %)

Note that » < 2rs makes

1
LHS < |: + i|RHS

L 2v3 + de — ;8 > 0 for any ¢ > 0. Thus, setting

4 1 r2

&= jandz:ZA\/g, we obtain from (x x x) and (%)
Ir =2 1
LHS < | ——— + — |RHS
2Jr —1 4
Ir — 2| 24/8 r—2 L
+{[2 _+—]—+5 e 4Re<Au ulul""%)
|r—2| 1 VL .
{[ ( ——)—/\88 llully
2Jr —
<[ r =2 -+ ]:|RHS
~ 2V =
lr — 2| 17745 r—2.rr r'/s
- 4+ — Se — — 11— 'RHS
+{|:2\/r—1+ 2 +(8 }"28)4 ( 2)
Ir — 2 1 ) o~
+ +6r2¢) )22 — r'v/8)"'RHS
(w— e —1>( ) )X )
|r / i| / —1
- +r'V/8 (2 = r'v/8) 'RHS.
= Ble-r
If r > 2rs, then setting ¢ = Vr:/%] and z = 24+/8 we obtain from () and (%)
LHS < [ 2 I]R (Au, ulul”=2) + el A ul 13 + Adejull]
c u,ulu I u el\u
2 /— 2
[ —2 + ! —+9 /1|R (Au, ulu|"=2) 4 rde|ul”
— E— c u, u\u El\u
27r — 1 4
-2
Si(Z—r’x/g)_lRHS,
Nr—1

i.e., we have established (e) for b,, and u,,.
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b) By a), the semigroups e /A bn) are holomorphic and uniformly bounded on
the sector § =: {|arg?| < 5 — 6,}. By (%), u, 1= et ln) f sy = o IAD)
f € L", pointwise on the positive semi-axis. Therefore, by the Privalov-Vitali
Convergence Theorem u is holomorphic in S and u(z) = s-L"-lim-u,(z), z € S.
It follows that u'(z) = s-L"-lim-u}(z),z € S, and so A, (by)un, — Ar(b)uin L".
Moreover, passing to a subsequence if needed, we have g, := |u,|" " u, — g =
ul"2u £¢ ae. and lIgall = luall;™" = lglls = lul;~". Thus, g, — g in
L"". Tt follows that in (e) we can pass to the limit n — oo. This ends the proof
of (k * *x). O

4.1. Uniformly elliptic case I

We say that a matrix a is uniformly elliptic and write a € (Hy) if a € (H;) and
there is a constant £ < oo such that a(x) < &1 for £L? aex € Q.

In the uniformly elliptic case and 1 < § < 4 the assumption b, € L> + L™ is
superfluous:

Theorem 4.3. Leta € (H,), A = Ap or Ay, andb : @ — R?, b e Fs(A) for
some 1 < 6§ < 4. Then the limit

2
2—8

exists uniformly int € [0, T] for each T < 00, and determines a positivity preserv-
ing, L contraction, quasi contraction Cy semigroup on L".

e MO g LT lime T A0y sy =
n

Proof. 1. Letk > 2. Fix 0 € Q2. Define

0, ift <k
n@) :=1{ (E-1)" ifk<r<2%  andzx)=n"52) R>0.
1, if 2k <1

Note that |V¢| < Rfllv;g“l_%.
By u,, we denote the solution to (% —I—A,(b,,))u,, =0, u,(0) = f € LooﬂLi.
Set v := ¢u,. Clearly,

d
<; <E+A+b,,-v> u,,,u’—‘>=o.

Set [F,G]— := FG — GF and (Av,v" ™) := (Vv -a - Vv"~1). Since the matrix
is uniformly elliptic, (A2¢, AZy) = (Vo - a - Vi) for all ¢, ¥ € D(A?) = E,
where E = Wy> for A = Ap and E = W'2 for A = Ay. Also u, € D(A) N
LY, D(A) C D(A%) — E. Thus v € E as well as v? and cv " lsince r > 2.



1594 DAMIR KINZEBULATOV AND YULIY A. SEMENOV

Therefore (Au,, cv"™") = (Vu, - a - V(cv'™1)). Now it is easy to justify the
following equation and equality.

<<% + A+ by - V) v, v’1> = ([A, Cl-uy +upb, - Ve, v’*) (%)
r—1 2 L L— r—1
<[A7 ;]7un9 v ) = r_/(vvz : aul’l 2 V;) (VC - av . Vun)
2 < : : £> 2< : : ’_>
=—(Vv2.—-.V¢,vZ)——{(V¢-—-VvI, v2
r’ ¢ r e
a r
+ V; . C_Z V;, v

By the quadratic estimates

<unbn - Ve, vr”) = <bn . %, vr>

M\/_ 1y r/8
< — IIA2 2||2+—4M <V{ 3 Ve, v>
uc(ﬁ)
07
M/_ lvll; (n>0)

N o —2)2< a >
.V 2 <— A2 v v ) )

2(r =2) <V r

r

| Q

we get from (%)
d 2 1 r
Lkl +2(—/ - +u)«/5> 1AZv2|3
t r
_ 72 2
- ((r 2" T f
u~/s An
Recalling that % > \/5, we can find u > 0 such that % —(1+ /,L)\/S > 0. Thus
d 4r =22+ 1% a
—||v||’§(—+r Ve — Ve v) +
Next, <V§ V¢, v ) < éR*ZHIV;;*zev’Hl, where & = k~! and 1y, denotes the

indicator of the support of |V¢|. Since ||un|lco < || flloos ||1V;||L < c(d, Q)szd,

and

_|_
)(Vg“ VeV )+ e

’ :" O 0

~26 26 —26 2
Mve 70" I < Mvewy Lz 0l < Mgl g luen 122 110117
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we obtain, using the Young inequality, the crucial estimate (on which the whole
proof rests)

20 s
(Ve - % V) = @) T R F1 + il

Fix 0 by 0 < 6 < ;5. Now from (s*) we obtain the inequality
—||v||r <N@d, vl + M. d, HR | fllee, v = g —d >0, (xx%)

from which we conclude that, for given T, f € LN L°°, & > 0, there exists R
such that

sup  [[Cun (@), < e.

1€[0,T],n
2. Let k be as above. Define
1 if t <2k
n() = (1——(t—2k)) if 2k <t <3k and;(x):n(%) R > 0.
0 if 3k <t

Note that |[V¢| < Ry ¢!~ 1.
Set g := uy — up and v := {g. Let (Av, v|v|"72) := (Vv -a - V(olv|7?)).
Clearly

< + A+ b, V)g—}—{(b — by) - Vi, vv| ™ 2>_0

;
<< + A+ b, v) v, v|v|’—2>
-

v
[A,¢]-g+vby - Tg,vlvlr_2>+(§(bm—bn)-Vum,vIvlr_z),

([A, ¢]-g, v]v]™?

~

2(r—2) a
(V]v |2 - Vg, |U| )+ (V¢ - Ve, vl"),
r ¢ §

i” Il

dr'"’

40r —2)% +r28 ) a r4+u

_ \% v/ é r
5( o Ve Ve el

+ 7 (E (b — bn) - Vi, v|v|"~2) with the same g as in (x%),

(¢(bm — by) - Vi, v|v| %)
< (C(bm —bn) @ (b — b)) 2 (Vi - At - Vi) 2 Q21| flloo) ™"
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In order to estimate fOT(Vum(t) -af - Vuy,(t))dt note that (j—tum + Auy + by -
Viuy, tuy) =0, or

%%((u,zn) + (Vi - a - Vup) + (Vuy - auy - V&) + (b - Vitg, Cum) =0,

and so

%<cufn>+<wm +ag Vi) <2 (<v; = vc> +(ba”! -b>) I1£1%

T
/o (Vup (1) - al - Vup (1))dt < I|f||§+2T<<V§ : ; ' V§>+(§b'a_l -b)) £ 113

= IfI3+ TLWRIfI%.

Now it should be clear that the above is sufficient for concluding that the following
inequality analogous to (x x x) holds for all n, m and ¢ € [0, T],

e Micgll < tMR7V| fII%
+ VIR fllo) T (113 + LRI fIIR)?
A u=bw) -a™" - (by — b)) 7.

3. It follows from Step 1 and Step 2 that, foreachO < T < 0o, r > rs, f €
L%r N L% and € > 0, we can find R < oo and M < oo such that

sup (1 = 1B@2%r) Un(t) — um ()l < €;
tel0,T], n,m>1
sup 11B0,2kR) (Un () — um @)l < €.

tel0, T, n.m>M
The proof of Theorem 4.3 is completed. O

Remark. Leta € (Hy). Set A := A;p or Ay. Fix any compact K in Q2. The proof
of Theorem 4.3 shows that the matrix a(x) admits the (|x|*, s < 2)-growth at
infinity while on K being just from [L']?*¢ Indeed, for instance, let A = A;p. By

the definition of A;p, ¥ € D(A%) if and only if ¢ € W&’z and (V{-a-V{) < oo.
It is a simple matter to check that

(Vv ™) -a- V(oo ™)) < oo,
and hence to conclude that
(Ag. gvlol™2) = (Vg -a- Vvl 7).
If A = Ap one has to modify ¢ to C function and use the fact that C! is a core

1
of Aj,.
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4.2. The maximal interval of bounded L? solvability for -V -a-V +b-V

Theorem 4.4. Leta € (H,). Assume that b € F5(A) for some 0 < § < 4.
(@) e ™M) e I, extends to a positivity preserving, L contraction, quasi
bounded holomorphic semigroup on L" for everyr € I, — I, I, ::]ﬁ, ool.
-
(b) For everyr € I, and g > r there are constants ¢; = ¢;(§,r,q),i = 1,2,
such that

. 4l 1
”e_tAr(b)”r%q <ci et 2G q), t>0.

Proof. Proof of (b). Suppose that (a) has been proved. Then (b) forr € I, — I,
and g € I, follows from (a) by Theorem 4.2(x * *) and the Extrapolation Theorem
(Appendix F). By interpolation, we obtain (b) forall ¢ > r and r € I,,.

Proof of (a). Let © = R4. Set b, := Ve, * (b1,), where v, is the K. Friedrichs
mollifier, 1,, is the indicator of {x € Q | x| < n, [b(x)| < n}.

For any § > & we can select a sequence ¢, | 0 such that b, € F3(A) with the
same A = \Ag. (Indeed, we have for f € L?

1 1
I1,b1(A + A2 £1I5 + by — LibI(L + A2 113
_1
SIFI3 4 by — L,bI(L 4+ A) "2 f115.

1
bl (-4 A)72 f113

NN

In turn, by Holder’s inequality,
1 1
1bn—1,b| 4+ A) "2 13 < ||bn—1nb||2d||(x+A>*ff||2dz_dl<cdubn—lnbumnfn%,

where Cy > 0 is the constant in the uniform Sobolev inequality. Since 1,b € L™
and has compact support (and hence y;, 1,0 — 1,bin L* ase | 0),forevery § >

8, wecanselecte,,n = 1,2, ... sufficiently small so that ||b, —1,b]2¢ < %,and

hence [|[b, — 1,b|(A + A) 2 £I2 < (5 — 8) || £ |13. Therefore, |||y | (. + A) "2 £|13 <
S||f||%, as needed.)

Since our assumptions on § involve strict inequalities only, we may assume
that b, € Fs(A) for all n with the same A = A;.

First, we prove that

_ _ . d
[(z+ A5 (bn)) Higjmqj <clz —z0l™", Rez>z0, n=1,2,..., j= 1_2’ (o)
where A7 (by) is the adjoint of A,(by), ¢ = = €], %[, for some ¢, zo0 > 0
independent of 7.

Forl < p<2,letBy,:=—-V b, =—b, -V —divb,, D(Bp ) := D(A)p).
Then the operator A*I; = A, + By, of domain D(A)) is the (minus) generator of a
quasi bounded holomorphic semigroup on L”.

Setu =u, =+ Aj‘,)_lh, he L'NL®, Rez > z(r’\—fl) By consistency,

u=(@G+A)"h,soue D(A%),and,clearly, lu|loo < o0 for every n.
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a)0 <d < 1.Fixany2 <gq < close to Then

7 Wit

((z+ A"u, ulul?™?) = (2 + A=V - by)u, ulu|™?),
—(V - (), ulu|972) = (by - uVit, u|?7%) 4+ (g — 2)(by - Vlul, [ul9™"),

and so
ZlluellGH+(Au, ulu =) by-u Vi, |ul772) (g —2) B VIael, [ul7™") =, ulul173).
Taking the real and imaginary parts of this identity, we have

Re zllull§ + Re (Au, ulu?2) + (g — Dby - Viul, [ul9™") < |(h, ulu]??)]
a(|Imzfllull§ — 1tm (Au, ulul?72)] = |(by - uVid, [u|972)]) < al(h, ulul™?)|
O<a<l).

Adding these inequalities and using the inequality |Im (Au, ululi=2)| < 4=2 Re -

(Au, u|lu|?-2), we obtain

alzllulld + Re (Au, ulu|97?)

]_
( “w—)
< al{by - uVit, [ul?=2)] + (@ — Dl{by - Val, [al9=] + (0 + @) Allq s

Recalling that | (b, - uVii, [ul972)|* < (b2, |u|9) X, where

4(qg -2
= (Vu-a- Vi, [u|??) =Re (Au, ulul?™?) — %MA%M%H%,

(see the proof of Theorem 4.2, Steps 1, 4) and performing quadratic estimates, we
conclude that, for a sufficiently small «, there exist zo = zp() > 0 and a constant
C, < o0 such that

q 1 4 2 q—l
|z —zolllullg + I1A2|u]2 |3 < Callhllgllully ~,  Rez > zo.

. - ol | Il
The latter, Young’s inequality (|2 — 2ol lull§ " lullg; < B0 4 2201y and the

Sobolev Embedding Theorem yield

lullg; < c(g, d)|z — zol 7 lAlly, Rez > zo. (%)
b) Let 1 < § < 4, so the interval ] %[ does not contain 2. Fix any 1 <
q < close to == Followmg the arguments above, but using Theorem E.1(7),(ii)

(Append1x E) in place of Theorem E.1(iv),(v), we obtain (*) in the case.
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We a.re in posmon to complete the proof of Theorem 4.4 for @ = R?. Fix
1 <gqg< JS close to f Set R*(z) := (z + A*(b )~L. Our goal is to prove that

IRy (D) lgj—sqj <clz—2z0l™ I Rez > zg. Givenl = (I', ...1%) € Z¢, define a cube
Q= (x € RY | [I"]z — 20/ % — x| < 4lz — 20D F, m=1,....d).
Given k € Z4, subdivide R into Qy + ZleZd y Qi- Fix k.
1) Leti € Z be such that [k — i| < e = %L1+ 5, & <y < 1. Then
1R () illgj—qj < €11z = 201", e1 = c1(q. d),
where 1; denotes the indicator function of Q;. [Indeed, by Holder’s inequality,

|I1kR*(Z)1 hllg; < IRE@llgosgi 1017 llgj. ' = 4,50 (¥ and [[1;]l; = cqlz —
20!~ 5 yield the required.]
2) Leti € Z¢ be such that [k — i| > «. Then (£ the ellipticity constant)

_1 _
IR ()i llgj—qj < 2lk — i1 7|z — 2017, 2 =c2(q,d,y,&).

(The proof of the inequality, which we call the separating property, is given below.)
1) and 2) combined yield

(Ri(Dh. &)< Y [(kRi(D)Lih, Iig)| < sup<Z LR @ik, Y 1k|g|>
i,keZd €2\ cza keZd

IR} @)llgjsgj < E1lz =20l +E2lz—z0l ' sup D Jk—il7Y
keZd je7d: |k—i|>a

- _ . _ d -1
< &1lz — 207" + &lz — 20l 1supf vdt
kezd Ja

<alz— 207,

which yields (e) in the case Q = R¢.
By duality, (e) yields (r := ¢’ € I?,s := (qj) € L)

Iz + Ar(bn) ls—s <clz—2z207", Rez>z9, n=1,2,...
In view of Theorem 4.3, for every f € L" N L*
I+ A b)) flls <clz—zol M flls, Rez > zo. (v0)

By (ee), e ™A ® £lls < M| flls, t € [0, 1], for M < oo. The strong continuity of
e in " rel 2, and the following elementary result:
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Let Sy : LP'NLP2 — LPNLP2 1 < py <pr<o0, k=0,1,2,.

be such that ||Sg fllp, < M fllp;, 1 = 1 2, for all f € L ﬂLPZ k
and some M < oco. If ||Sx f — Sofllp, — O for some py €]p1, pal, then
IS¢f = Sofll, — O for every p €lpi, pal,

yield e =A@ f . f strongly in L% as ¢ |, 0, forall s < s; < r (and ultimately
for all s1 € I,, — I?), which gives assertion (a) of the theorem.

Now we come to the proof of the inequality from 2). Let i € Z¢ — {k} be such
that |k — i| > «. Define functions ¢; (x) by

1
|z —zo0| 2k —x 1 1
Gi(x) 1=77(| . |IZ—ZOI2<1+—)),
|k —i] 14

where
1, s <1
n(s) = (l—sm;l)m, l<s<m+1
0, m+1<s (m=%).

We list the following properties of ¢; : ¢; [ Or = 1, & | Qi = 0. Define

20 Ve, ) = 0L
G2 Jklz — 2ol

[i(x) :==Vi&i(x) -

I\)\'—‘ I\JI'—

Using the inequalities —dsn(s) < n(s)' "V ande-a-e < &, we have

1\? _
I < (1 + ;) Elk—i| 7z —20lg; . (o)

Lemma 4.5. Define v; := R} ()1, f, u := ivi, f € L' N L. Then

Iz = zolllull§ + lulll; < (@) (Tilul?). ()

- -2 2 L= — ..

|z = 2ol U Nullg Ml ) < eqy vIElk =il (o P )47 i)
1 . _

lullyj < cq. VIE [k =il 71z = 20l 1 fllgs- (ii)

Dueto & | Qx = 1, (iii) implies 2).

Proof of Lemma. (ii) follows from (i), Young’s inequality and (o). In turn, (ii{) fol-

lows from (ii) by applying Holder’s inequality to (|v;|? [u|9=2"), so that ||ull,; <
1 . 1 .

c(q. Y)E¥ |k —il” 7|z — zol” |lvill¢, then applying [|R}(2)llq—q < Clz — zol™"

o flvilly = llvilly < clz = 201" i fllg, and finally [[1; fll; < ILillgjrll fllg; by
Holder’s inequality.
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We are left to prove (i). We have (z+ A, —V -by)v; = 1; f (if g > 2, we write
A = Ajinplaceof Ay)and,since ¢; | Q; =0, ((z+Ay+V-by)v;, Giululi7?)y =0.
One can easily check that g € D(A%) = (ig € D(A%). Since v; € D(A), both u
and u|u|?72 belong to D(A%) (Appendix E, Theorem E.1). Thus

zllulll + (Agu, ulul!™2) — (V- byv;, Gulu|?™%) = ([Ag, &l-vi, ulul9™?),
where

([Ag. &il-vi, ulul?™?) := (Vg - avi-V(muw—z))—(va-a-Vvi,u|u|‘f—2>

<vc, T -V (ful? 2)> <v;,~§

+<V{l 'Vé‘ialu|q>'

The rest of the proof resembles what we already did. Taking the real and imaginary
parts of the last equation and performing quadratic estimates we arrive at (i). [

~Vu, ulu|?” 2>

| =

w~
[y}

The same proof works for an arbitrary open Q C R? with ¢; | € in place
of ¢;. O

Remark. The example of A, D —A 4+ b - V with b(x) := c|x|’2x € Fs(—A) in

R, ¢ = d%Z V8,8 < 4, can be used to show that the interval of bounded solvability

Iy =]ﬁ, oo[ can not be enlarged, i.e., the constructed Coy semigroup e’ Ar
-7

can not be extended to a quasi bounded Cq semigroup on L® fors ¢ I,,. Indeed, by
duality it suffices to show that e —thg ,q €11, f d 2[ can not be extended to a quasi
fd - Set u(x) = |x|~“exp(—|x|?),
x € RY. Then u € D(A}) for any ¢ e]l, 5[ Clearly, 11, Hz[c]l L the

bounded C semigroup on L” for any p >

interval of contractive solvability for e 1N, Now, suppose that e ~A¢ admits ex-

tension to a semigroup of bounded linear operators L” — L”. Then, using the
analogue of Theorem 4.2(x * x) for the semigroup ¢4 and then applying the Ex-
trapolation Theorem (Appendix F), we obtain that e’ Aq e B(LY,LP),t > 0, and

1
le="Aa 1O lysp < c1e”2t_7(___) Next, it is seen that (A + A¥)u = f, 1 > c2,
fi=[r+2d —o)]lx| e —4px|7*2" M € L9, and so (A + AZ) T f = u.

The latter means, in view of |le™ 1A (b)||q_>,, < ¢y €2 1_7(___ that u € LP,
which is clearly impossible.
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4.3. Uniformly elliptic case II. The Hille-Lions approach

Leta € (H,), b € F5(A), 0 < § < 4, and let A, (a, b) be the operator defined in
Theorem 4.3. It is useful (in some cases necessary) to have the convergence

e_lAr (a,b) — S-Lr- lim e_tAr(ansbn)’
n

where a,, and b,, have smooth and bounded entries.

Theorem 4.6. Fix § < 1. Let a,a, € (H,), b,b, : @ - R4, n = 1,2,...
Assume that

b € Fs(A(a)), b, € ¥F5(A(ay,)) with fixed A = As foralln = 1,2, ... (i)

]dXd

an —> a strongly in [Li,, , by — bstrongly in [leoc]d. (i)

Then s-L"-limy 400 e~ Aranbn) — o=tAr(@b) yhepever r € 12 =]rs, oo (recall
2

rs = m)

Proof. 1.Set H="L*(Q, L), Hy=((D(A2), | fI3=AIfI3+IA £13). H_=
H% . By (g. f), g € Hy, f € H_ denote the pairing between (H, H_) which
coincides with (g, f)# for f € H. Then Hy C 'H C 'H_ is the standard triple of
Hilbert spaces w.r.t. (, ). By A denote the extension by continuity of A = A(a)
to the operator from H, to H_. Then A € B(H,, H_) and |(f, (¢ + A) f)| >
I£13, f € Hs, Re¢ > A.Thus ¢ + A is a bijection. Clearly (¢ + A)~' [ H =
¢+ A~
Consider B=b -V : Hy+ — H_.Byb € Fs(A), Be B(Hy, H-) and

P oA 2 120 — A8
LCHA+B = U=V (u+ A f), p="—""—
I(f, (€ IO =( W (w+Af), u NG >
whenever Re ¢ > A—‘Z/S
Thus,forf\ = f\(a,b) ‘= A+ B and every . € O, .= {z | Rez > #},

{4+ Aisa bijection.
In H define the operators

_ b
H=b,C+A)2, = V@t A)"2 and H*S.

a

Clearly, due to b € Fs(A), for each ¢ withRe¢ > A,

IH* a2 = [|Hll22 < V8.
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Since (L% ae) [Sf] < /5 -a~!- %\/V(g FA)If-a-V( + A)2f, and so

ISfll2 < Ifll2, f € L?, we conclude that || H*S |22 < V/5.

Set Re=Re(a,b) = (¢ + N7, F,=F(a) =+ A =¢+A7",
P; P;(a b) —H S.

Clearly, forall £, n € O :={z | Rez > A},

Ry = Ry = (0= ORc Ry (p1)
Re = By — BeBRe = Fo — B BE, + FoBEBE, — ..

A A A 1 1

F;BF; [H:F;P;Fz, ”P{“Z—)Zf‘/&

A AA AA 1 1
FeBF¢BF, | H=F}H*SH* SF}.

Therefore,
A 1
Ri:=R | H= F (1+P)'F2; (p2)
Ry = Fy — FfH*(l + SH*™! SF}; (P5)
IR o2 < 161711 = /&)~ (p3)

Now, we employ Hille’s theory of pseudo-resolvents. By (p1), R; is a pseudo-
resolvent on O. By (p»), the common null set of {R; | ¢ € O} is {0}. Also, from

(p2) it follows that vR, S lasv 1 oo. (Indeed since |[VR,||>—» is bounded in
v, it suffices to prove vR f — ffor f € D(A2) In view of (p}), we only have

to prove that vM, f = vF,, H}(1 —1— SvH)™ 1SVF,, f — 0. Since ||S,,F,, f||2 <
IF,Oh + A2 flls < v UL+ A)Z flla, it is scen that M, fllz < v72[|( +

A)% fll2.) Therefore, the range of R; is dense in H, and R; is the resolvent of a
densely defined closed operator A = A(a, b) (Appendix D, Theorem D.1).
Finally, by (p3), —A is the generator of a quasi bounded holomorphic semi-
group.
Remarks. 1. The above construction of A(a, b) works for a € (H;), A =
Ap, Ay or A;p. The use of (p2) leads to the convergence (1 + A)%(R{ (by) —
R; (b)) - 0 claimed in Section 4 almost immediately.
2. Ifa € (H), A= Ap, then Hy = Wy*(Q), Ho = W), If
a e (H,), A= Ay, then Hy = WEL2(Q). O

2. In view of (p3) it suffices to prove the convergence R (ay, b,) N Ry (a,b)
for ¢ = As. For brevity, set F,, = F)(a,), F = F)(a).
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Note that F,,;s — F ifand only if ((F,,— F) f,F,, f) = 0and (F—F,) f.Ff) —
0 (f € 'H). In turn,

[((Fu = F) f,Fu f)l = {VEf - (an —a) - VE; )| < IVF; fll2ll(@ — an) - VFf 2,

1 _3
IVE2fll2 <o 2272 fl2

and a, — a strongly in L120C. Thus F, = F.
Next, employing the formula

1 1 o0 1
Fl(a)=m" / T2 F,;(a)dt,
0
it is seen that

/T ’_%H(Fzﬂ(a) — Frpian)) fladt < 27215

and

T
. _1
lim / 172N (Fr(@) = Fiia(an) flladt = 0.
0
1 1
Thus F,} 5 F2 and, since V is a closed operator in H, VF,; 2 VF%. In turn,
the latter and the fact that b, — b strongly in L2 yield H Sn S H*S. (Indeed

loc

s- L2 H*S, = s-L*-F;} b VF3 . Therefore, it sufﬁces to establish the convergence
| F? 2, VFif— H* L “VFZ fll» — 0, or ||F (b - 9) — H* (3 (p)||2—>0 only

forall p € [Cé’o]d. For such ¢, we have Fn by, - @) — H*(b% cp) = Fn (by - ) —

F% b -9) N 0.) Now the convergence R (ay, b,) N R (a, b) easily follows. The
theorem is proved for r = 2, and hence for all r € I?. O

4.4. Non-divergence form operators

The following theorem is a by-product of Theorem 4.2 and Theorem 4.6.
Theorem 4.7. Set b := (Va), (Va)y = Zflzl(viaik), and bg =b-a'-b.

(i) Ifa € (Hy), b € Fs(A) for some § < 4 and also bg e L'+ L>® ifl <6 <4,
then a - V? has an operator realization —A, (a, b) in L" for every r € I? as the
generator of the positivity preserving, L quasi contraction, L*° contraction C
semigroup e ~Ar@b) — g 7 1im, e~ "Ar@bn)

() Ifa,an € (Hy),n =1,2,...,(Va) € Fs(A), (Vay) € Fs(An) (An = Alan))
for some § < 1 and all n, and if

]d><d

a, — a strongly in [L120C , (Vap) — (Va) strongly in [Lloc] ,
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then, for everyr € 1?2,

e tAr(@b) _ s-L’-n’?le—’Ar%”n), b= (Va), b, = (Vay).

i) IfQ =RY, a € (Hy,), b := (Va) € Fs, = Fs,(—A) with §; = 28,8 < 1,
and |b| € L? + L™, then, for every r € 12,

. A
e @) — g 17 Jim e Ar(anbn) anp :=ena, b, .= (Vay).
n

) IfQ2 = R aisa uniformly elliptic diagonal matrix, b :== (Va) € Fs(A) with
8§ < 1,|b| € L?> + L™, then, for eachr € 12,

o—tAr@b) _ —t Ay (an,by)

s-L"-lime a, = e%a, b, .= (Va,).
n

Proof. The claimed convergence in (i) (respectively, (if)) is a direct consequence of
Theorem 4.2 (Theorem 4.6).

The important thing in (ii7) is the fact that b, € F5(A,), 0 < § < 1, uniformly
in n, and so A, (an, b,) are well defined for r € I¢.

1. SetE, f := e f. Alternatively, we may set E, f := y, * f, ¥, denotes the K.
Friedrichs mollifier. Note the following elementary pointwise inequalities (below
b-b=|b*=:b%

(VE,a)* < Ex(Va)’.

En(f)1* < (Eal fP)Enlgl?,  fog € L2+ L.

Clearly, b = (Va) € Fs;, = b € Fs(A) with c(§) = ”fyﬁ Thus we only need to

show that b, € F;, in order to conclude that b, € F5(A,). Set | f|: := | f|+ ge™.
We have for f € W2,

I(VEqa) f1I5 = I(E.Va)?| fI*h = lim ICE.Va)?| 121,

I(Ex(Va)?) £ 121 = (Va)y/ Eal £1213

< 81 IV Eal FI213 + c1 DI Enl £12111

E.(If1VIfle) |? )
=& || =L S Eal £l
1” B |, T OIS

< SUEZ(VIf1)2 N1 4 c1GDIEnl £12111
< 81 IVIflell3 + ctGDIIflel3
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Since

12{8 (B1IVIfIel3 +c1GDIIf1e13) = SUIVIFIIE + et GBI FII3

<8IVSIZ+ 1@,
we have proved that b, € Fs,.
2. Now we claim that under assumptions on a in (iv)
b e Fs(A) = E b € F5(A,).

Only for simplicity we treat the special case: a = «*I, with b = (Va) = 2k Vk €
Fs(A). Since bfl = 4(Vk)?, the assumption b € Fs(A) means that

A(VIO2IfID) < SIkV IR +c@IfI2  f € D(AZ).

2
Seta, := Epa. Then (Vay) = 2E,(kVk), (Vay)-a;"' (Va,) = AE2ETOE Note
that
|En(cViO)? < (Enic®) En| Vi,

and so
((Vay) -ay - (Van), | f17) < ME.Vk?, | fI*) = 4(IVk |, Enl 1)

KIVE, | fIZ

But 4(|Vic %, Eal f12) < 8V Eal FRIE + c®)IVEL I3 = (250 +

IVESBR _ |Eu(f1eVIf10P 2
c(8)(Enlf17) and Stz = e Ob < £,V f e[, Thus,

H(VK)?, Egl £17) <SUCEn VI IR @) F17) = SUEatcDIVILIIP) ) f17)

and

1 1
(Van)-a; " - (Va), |f1*) < SIAZIFIIE + cOILIE < 8IAL FII5 + @I FII3-

In other words E,b € F5(A,) as required.

3. By Theorem 4.6, steps 1 and 2 entail the claimed convergences in (iii), (iv). U

Remarks. 1. If a,, Va, in (ii) are smooth (e.g., in the assumptions of (iii) or (iv)),
then by the Krylov-Safonov a priori Holder continuity of (A 4 A(a,, b)) ™' f, f €
Coo [20, Section4.2], for every r > d, there exists a constant 0 < o < 1 such that

A+ AL N L® c e, > wr.

2. Let {&,} be a sequence such that ¢, | 0 as n 1 co. The proof of (iii) yields the
following.
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For any b : RY — R4, |b| € L?  define b, = E,b := Ve, * (b1p0,n)) and

loc
choose {¢,} such that b, — b strongly in [leoc]d asn 1 0o. Fix § < oco. Then

beFs = (bn € Fs, b, — b strongly in [leoc]d, and hence ¢ /A0 5 e_’A(b)).

3. The same arguments used in step 2 yield the following:
Ifa € (H), ay = k?8it, |kil +|Viki| € L> + L>, i,l=1,2,...,d, then

b eFs(A) = by € Fs(A) (b= (Va), by =enb).

Example. In R4, d > 3 consider the matrix

d—
a(x) = 1+c|x|_2x ®x, ajpx)= Bik-i—clxl_zx,-xk with ¢ = 1 -1, a < 1.
-«

Thus a(x) is strictly positive, (Va) = (d—1)c|x|%x, a~! = I—H%lxl_zx@x and

b2 = % |x|~2. The following Hardy type inequality (with the best possible
constant) will be proved below:

d—=2?% i 0 7 1,2 d
(c+ D——llx["Al; = (Vh-a-Vh)  (h e W (R)). (*)

() implies that b € F5(A) with § = 4(1 + ﬁ)z and ¢(8) = 0. In particular, § < 4

ifand only if ¢ €]—2(d—2), O[ or equivalently ¢ €]— ﬁ 0[ U ]0,d—2[. Armed
)

with (x) and Theorem 4.2, one can reconsider the conclusions in [21, Chapterl,

Section 3, Example 4].

Consider the following problem in L? (R4, £9), p>0,d>3:
a-Vu=0, ux |{x|>1}=0.

If ¢ # 0, then the problem has two solutions #; = 0 and uy = [x|* — 1. If § < 4,
then a < 0 and the unbounded solution to A,u =0, p > 2——25 is inadmissible

according to Theorem 4.2. (A, D =V -a -V + (Va) - V only formally equals to
—a-V?).Ifa > 0 (so that § > 4), then the problem has two (bounded) solutions.

Conclusion. The condition § < 4 of Theorem 4.2 can not be substantially strength-
ened.

Proof of (x). Let ¢ > 0. Since (¢, x - Vo) = —%(qb, @), ¢ € C°, we have

(@, —V-(a—1)-Ve)=c(llx-V(xI"'®)lI5 — @ — DlIxI""¢lI3).
Next, the following inequality (with the sharp constant) is valid:

d
by -V £llz = 212, (f € D(D)), (V)

where D [C?:@(X-V—l—v-x).
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Indeed, since the operator D = (D | C(?O)CIOS_) ;2 is self-adjoint, (D —

L2
M7 < |Irr11—M for Re A = 0. Therefore

1 d d
lx-Vfll2= IIE(X-V+V~x—d)fII2 = [[(D-v—-1 §)f||2 > Ellfllz, (feC)
and (V) is proved. But then

2
6.~V @-1-9) = 913 @ e,
(x) follows now from the equality (¢, —V -a - Vo) = (¢, —V - (a — 1) - Vo) +
(¢, —A¢) and Hardy’s inequality (¢, —A¢) > %HMF%H%.
Finally, the obvious inequality (1 + ¢)(¢, —A¢@) > (¢, —V - a - Vo) clearly
shows that the constant in (%) is sharp.
If —1 < ¢ <0, (x) is a trivial consequence of Hardy’s inequality. O

Remark. The Krylov-Safonov a priori estimates yield the uniqueness of a “good”
solution to —a - V2 = fin L4 provided that a € (H,) is continuous outside of a
“sufficiently small” set [3].

The assumption (Va) € Fs(A) does not guarantee W2 estimates on €+
A, (a, Va))~'L" for some r > (d—2) V2. The same is true even for (Va) € Fy(A).
(See also Remark 5 in the next section.)

4.5. Wls_estimates on solutionsto (u — A+ b-V)u = f,b e F;s

Letd > 3, LP = LP(RY, LY, b: RY - R? b e Fs5, 0 < § < 4. Define
bn = Enb = Ve, ¥ (blB(()’n)), n = 1, 2, e

Set A p(by) := —A +by -V, D(Ap(by)) = W2P(RY), 1 < p < oco. Clearly,
—A(by) is the generator of a holomorphic semigroup in L”. According to Theo-
rem 4.2 and the fact b, € Fs (see Remark 2 after the proof of Theorem 4.7), for
eachp el = [ﬁ, ool

5)
—tAp(bn) < e®r! = _c®
lle lp—sp < €7, wp 2(p—1)’

and by Theorem 4.3, for each p € I?, s-LP-lim, e 1Ap(n) exists and determines
the C¢ semigroup e 'A7; A p = Ap(D) is an operator realization of —A + 5 -V in
LP.

Theorem 4.8. Let d > 3. Fixany § € ]0, 1A (ﬁ)z[ Assume that b € Fs. Let
q € [2, %[ Setu = (u + Aq(b))_lf, where f € LY, u > wy. Then there
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exist constants Ly = Ao(8,q) and K; = K;(8,q), | = 1,2, such that, for all
n > AoV g,

_1
IVully < Ki(pw—20) 211 fllgs
d

1_1 .
IVullg; < Ka(i—20)" 2W g J=—7—

d
In particular, (1 + Ag(b))™! : L9 — ™74 whenever d > 4, q e ]d -2, %[
d
and p > wq. Ford =3, (u+ Ag(b) ™' : L1 — ™74 whenever g € [2, %[
B> wy.

Proof. 1. Letq € ]ﬁ, oo[ Clearly b, - V | W4 is a Miyadera perturbation of

—A by V (Apy— A)_l lg—q <1, Ay = my 4 for some constant m,, 4. Therefore,
by the resolvent identity, (1 + Ay (b)) 'L ¢ W24, pu > wy. Moreover, it is
easily seen that (A, + A4 (b))~ "Wl ¢ W34, and so, by the resolvent identity,
(1 + Ag (b)) W C W3, 1 > .
2. Letg € [2, %[. Setu, = (u + Aq(bn))_lf, 0 < f e C. We will use
the following notations
d
w = Vu,, w;:=Viu,, wj:=Viwg, Au,=V- -w= Zwii;
4 i=1
¢ ==V w/f?) == Vi(ww).

i=1

We have
(= D, ) = —(by - Vitn, §) + ([, §).
Since
d
(—Aup, @) = (= Aw, ww]??) = Y (wix, wir|w]?* + (g — 2)|w|?wi Vi wl)
i,k=1
and

¢ =—|wl1 2 Auy—(g—2)|w|? P w-Viw|=:¢1+¢2, ¢1=—w|?*(uuy+b-w—f),
we arrive at
w(lwl?) + Iy + (g — 2)Jg = by - w — f, w72 (Rttn + by - w — f) “
+ (g = Dw|!w - V]wl),
where
d
= > (IVw (wl72), Ty = (IVIwl? jw]972).

i=1
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Now we bound the terms from the right-hand side of (x) by J;, By := (|by -
w|2|w|‘1 %),
lwllg %, 112 and (2-)?11 12 as follows:

1 92
D by - w. (wl ) < LB lwllg® 1f g (27 <@ = luallg < (1~

) fllg )
2) (bp - w, |w|92b, - w) = Bq

3) [{by - w, lw]472(— f)>|<B ||w||q IIfIIq .
4) (g —2){by - w, w9 3w - VI]w|) < (¢ —2)BZJ}.
) — £ w92 pu,) < 0.
—f w972, - w><B ||w||q2 I£llg-
7) <f,|w|q 2f) < lwld 2112
-2
8) (¢ —2)(—f wl? 3w - V|w|) < (¢ — 2>J ||w||q2 I fllg-

I\)

(Below we will get rid of the terms arising in the right-hand side of 1), 3), 5)-8) using
Young’s inequality, at expense of increasing the coefficients K, Kz of || fl5.)

By means of 1)-8) we have (e, &g > 0)
. . 1
right-hand side of (x) <(¢ —2)eJ; + (¢ — 2) <80Jq + 4—Bq>
€0
Lises, (1491 # 72| 1112
+ (1 +3¢)B; + +4—+Eﬁ lwllg ||f||q-
By bn € Fa,

q q 5‘12
By < Ibalwl 2113 < 8IVIw]Z 3 + c@wllf = =g + @ wlg.

O_q«f

Setting & we have

S 2
right-hand side of (x) < |:(q — 2)M + T + (@ —2)e + 38L:|Jq

+ <1 +3e 4+ 15 2)e(a)nwnz
g8

2
q 1 % =2y o2
+(l+—4+ .
< 2 T3 q)2>||wllq £y
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Thus

1) ) 2 8 2
wllwliy + 1+ [(q —2 (1 - %) - i} Jg — [(q —2)¢ +3s%} J,

2

q—2 q q 1 M q—2 2
<(1+3 1) 1+=+———- .
< (130 T Yot + (1 5+ oo g

Since I; > J;andg —1— (g —2)%3 — % > 0dueto® g € [2, %[ we conclude
that, for suitable ¢, there are C1 = Cy(¢,d,q) > 0 and C; = Cz(¢, 6, q, wy) < 00
such that
~ q q-2 2
(n— @) lwllg + C1dg < Callwllg “NI I,

where @, = (1 + 3¢ + %)C(S).
The latter, the Sobolev and the Young inequalities combined imply that

_1 ~
2| fllg whenever > Ao 1= @wp > wy.

Q|

Vuullgi < KZ(IL - )\O)

1 1
It is also seen thgt Vuplly < C22 (w—Ap) 2 ||f||q..Since u, — u strongly in L:’L
and hence in L‘f, and since (C2°)4 is dense in L‘ij, we have u € W14/ and the

1 1
inequality [|Vullq; < K2(w — 20)? 2|l fllg holds forall f € LY.
We have established the assertions of the theorem for all f € L% and hence
forall f € LY (with K; — 4K;,l =1, 2). O

Remarks. 1. There is an obvious analogue of Theorem 4.8 for @ C R¢ with the
additional assumption Q2 € C%! in case of A = Ay.

2. Only for d = 3 and ¢ = 2 the result of Theorem 4.8 is “trivial”. Namely, the
assumption b € Fs, § < 1, implies that b - V is Rellich’s perturbation of —A in L2,
and so —A>(b) = A —b -V of domain W22, (Indeed, define T = b-V(u — A)~!,
M > A, and note that

-1 1
1T ll2—2 < 11BI(w — A) 72 a2 V(i — A) 72 [l22 < V6.

Thus, by Theorem 4.6, the Neumann series for (u + A>(b) ™! = (u — A7 +
™)

Hence,forRe¢ > A, (¢ —l—[.\z(b))’1 c L2 > w2, 2j = 6 = 2d. However,
already for d = 4, W22 ¢ W'2/, 2j = d but not crucial 2 > d.

2Set1//(q)=q—l—(q—2)q‘/75—q2f—‘, 2<gqg < % Note that y(2) = 1 — 8 > 0

and W(Z/\/E) = 0. Also ¥ increases on [2, % éiﬁ] and decreases on [% %, %[, and so
¥ > 0on|[2,

20
2.
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3. Under the same assumptions on § as in Theorem 4.8, a stronger regularity
of the elements of D(A,(b)) has been recently established in [14, Theorem 1].

Namely, if b € Fs, § < 1, then for every ¢ € [2, %[ the formal differential

expression A — b - V has an operator realization —A,(b) on L9 as the generator
of a positivity preserving, L contraction, quasi contraction C¢ semigroup such
that D(A4) C W1+%’q, s > ¢. In particular, by the Sobolev Embedding Theorem,
if 8 < 1 A (5%)°, then there exists ¢ > d — 2 such that D(A,(b)) C CO7,
y <1-— dq;Q.

4. Let |b| € L4 4+ L*®, d > 3. Then, by the Sobolev Embedding Theorem, for
any ¢q e]%, d[, there exists a constant A4, > O such that

d
(+Ag®) ™" L9 — W27 c 74 forall o > Agp.
In particular,
(m+ A ) LN LY — % forany o < 1.

By Theorem 4.8, the last embedding also holds for b € Fy = (). Fs.

5.1n fact, for b € [L%>°]1¢ (C Fs with 8 = c4|b|l4.00, see Example 4.1 above),
one has the following characterization of W24 smoothness of u = (n+Ay (b))~ ! f,
feLi,1<gq <d.Using that

d _
IV(=A) "  p <mi(=A) 2 (x, ), x, yeR? withmi="= 27

we have
15 -V — A goq
1
< 16-V(=A) " yoglAC — D) gog < 2mENIBI(—=A) 2 |l4q, Rel > 0.

LetQy =7 5 F(% + 1) denote the volume of the unit ball in R¢. Then

115] (—A)_% lg—q (we apply [17, Proposition 2.5])

_ 1 1
< 1blld,00 g Mx 1™ H(=A) "2 lgmg (we apply [17, Lemma 2.7])

_1
= ||b||d,oonde,q7 Rd,q =

_1
We conclude that if ||b]|7.00 < %(mflﬁd 4 Rd,q)_l, then b - V is Rellich’s pertur-
bation of —A, and so Ay(b) = —A +b -V, D(Ay(b)) = w2a, generates a
holomorphic semigroup in L4. (Note that ¢ = d is unavailable for b € [L4*]¢))
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6. Letd > 3 and b(x) = c|x|™2x, |c| < 1. Clearly, b € Fs with § = %

satisfies the assumptions of Theorem 4.8 if d > 4. For d = 3 however |c| has to be
strictly less than %

For this vector field, the proof of Theorem 4.8 can be modified to take advan-
tage of the fact that div b exists and is a form-bounded potential:

Corollary 4.9. Let @ = RY, d > 3. Let b(x) := —c|x|2x, ¢ = 152/5, 8 < 0.
Then

1) The interval of contraction solvability for Ay(b) D —A +b -V is |1, oo.
2)d>4 Letu= (u+ Ag()7'f, 0 >0, f € L9. Then, for any § < oo, there
existq > d — 2 and constants K; = K;(6, q), | = 1,2, such that

1
IVullg = K121 fllgs

11
Vullgj = Kapt 211 fllg-

3) d = 3. Then the assertion of 2) holds for any g > 2 and </§ < %

d
In particular, both in 2) and 3), (u + A4 )y = c%1=q

Remark. We need ¢ > 2 due to our choice of the test function ¢ in the proof
below.

Proof. Set |x|> == |x|> 4+ &, & > 0, be(x) = —c|x|7%x, u = u; = (u+
Ay (b))~ £, w := Vu. We follow the proof of Theorem 4.8. We have

ulwl?) + Iy + (g — 2)Jg = c{lx[;7%x - w, @) + (f. p).
where ¢ := —V - (w|w|972). Integrating by parts, we have
(%1570 - w, @) = Z + (x|, %x - Viwl, [w]?™"),

where
Z = (x]2 w7 = 2(Ix |74 (x w) w172,

and so
(IxI;72x - w, @) < (Ix|72wl9) + (Ix|7%x - Viw], [w]4™h),

we obtain the inequality
w9y + I, 4+ (g — 2)Jy < c(Ix|72w|9) 4+ c(lx|72x - Viw], [w|?™) + (£, $).

Noticing that

2e

_ _ d—2 _
(Ix|72x - Viw], [w)d™1) = — (IxI72|w]?) (x4 w7y,
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I; > J; and
Slwl?y = (x| wl?) — e(lx |72 |x| "2 w]?),

we have
u(lwl?) + (g — 1) Jy

< c<1 - @)<|x|—2|w|‘1> - c(l _4-
q
q

2
<here we are using Hardy’s inequality (|x|_2|w|‘1) < J )

~(d-2)2"
d-2\ ¢*
(1= )t (-

Therefore,forg > d —2ifd > 4,andg > 2 ifd = 3,

qlg—d+2)
Ci
(d —2)?

2
)e<|x|;2|x|—2|w|‘I> +(f, ¢)

-2
>e<|x|;2|x|—2|w|‘1> + (f, ).

M(leq)+[61—1— i|]q = (f. ).

Now, arguing as in the proof of Theorem 4.8 (see estimates 5)-8) there), we bound
(f, ¢) as follows:
-2
(f.¢) <eJg+C(e)|wll] ||f||§, 0 <C(e) < oo,

where ¢ > 0 is to be chosen sufficiently small.

Finally, applying the Sobolev and the Young inequalities as in the last step
of the proof of Theorem 4.8, we obtain the required estimates on |[ully1.q,
el yi.ai O

Corollary 4.10. Let @ = R?, d > 5. Let b(x) := c|x|%x, ¢ = 4525, /5 <
d

ﬁ. There exist ¢ > 2V (d — 2) and constants K; = K;(8, q), | = 1, 2, such that
u=(u-+ Aq(b))_lf, un >0, f eLl,satisfies

_1
IVully < Kip 21 fllgs

11
Vullgj < Kaped 2| fllg-

d
In particular, (i + Ag(®)™" : LY — C®'745. (For dimensions d = 3,4, see
Theorem 4.8.)

Proof. Modifying the proof of Theorem 4.8, we have
ulwl?) + Iy + (q — 2)Jg = —c{lx[%x - w, §) + (f, p),

Integrating by parts, we have (|x|;2x-w, ¢) = Z+ (|x|72x - V]w]|, |[w]?~"), where,
recall, Z = (x| 72 |w|?) — 2(|x|;*(x - w)?[w]?72), and (x| %x - V]w], [w]?™") =
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— 2 (|x] 2 wl) — 2 (|x];*wl?). Clearly,
(el 0o w) 2wl ?72) < (x4 el a2 wl9)
= (Jx| 2 wl?) — 2&(|x[; x| w]?) 4+ (x| x| T2 w]?),
(x| x| 2wl ) < (x] 72 x 2 wl9).
Therefore,

plwl?) + I, + (g — 2)J,

q+d-2  _ q+d—-2 5 _
< e (i) — e T —= (Il x i) + (. 9)
q(q+d—2)
< —J b b
scT oy et )
and so ( d-)
q(q +d —
4 —1l—c——=—|J; < ([, ).
M(lwl)+[61 a2 i|q_<f¢>
It is seen that if /5 < %thenq -1 —c% > ( for some ¢ > d — 2. The
rest of the proof repeats the end of the proof of Corollary 4.9. O
Remark. Consider the formal differential operator L = —A + b -V, b(x) =

%«/Em_zx. If 6 > 4, then the Dirichlet problem for L in {|x| < 1} has two
distinct bounded weak solutions, moreover, one of these solutions does not satisfy
the maximum principle; see Remark 3 after Theorem 4.2. In view of Corollary
4.10, this observation can not be used to justify discarding b(x) = %\/3 |x|~2x
regardless of the value of 6 (and thus the whole class Fs — [LY + L°°]9) as an
argument for the “optimality” of the assumption b € [L? + L] (a recurring
theme in the literature).

In [26, Theorems 3.23, 3.24], the authors take full advantage of the specifics of
the operator —A + ¢|x|~2x - V with ¢ € R and construct its realization generating
a positivity preserving holomorphic semigroup in L7 if:

_d=2 /5 ] 2 [
a)c=5546,0<8<4,pe = , 00|
(a) 2 p 2275

(b)0=d%2~/5,458<oo,p€]%,oo[;

©c=-525,0<8 < o0, p ell, ool

They also explicitly describe the domain of the generator. In cases (a), (c) the
authors obtain W7 (R?) and W27 (R?) characterization of any u in the domain of
the generator:

In the assumptions of (a), |Vu| € L? if p € }272;_2, d|:, and V;Viu €
2-5-FV8

S

‘/7
e

Lp,i,k:],...,d,ifp€:| 22 v%[;
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In the assumptions of (c), |Vu| € L? if p € |—52—5—.d|,and V;Viu €
2-2+92Vs

. _ . 2 d
Lp’l’k_l"“’d’lfpe:|2_|_dd—2\/§’§ .

This, however, does not allow to conclude that |Vu| € L” for somer > d, as
in Corollaries 4.9 and 4.10, and hence that u € C%” for some y > 0. See also
Remark 3 after the proof of Theorem 4.8.

We generalize and detailize Corollary 4.10 as follows:

Corollary 4.11. Ler Q = R?, d > 3. Assume that b € Fs, 8 < 4,b* € L' + L™,
and G = G(b), G := Vib;, satisfies the inequality

(Gh, h)| < 81{IVIRI?) + c1(8)(h%),  h e CPRY,RY) (%)

for some 0 < 81 <1 — 4,0 <c1(81) < 0. Letu = (,u—i—Aq(b))_lf, feld,
> wq,q €12V g, qt[, where

. 2- VT2 -8 —48

31

There exist constants g = Ao(8, q) and K; = K;(8, q), | = 1, 2, such that, for all
n > AoV g,

q

_1

IVully < Ki(n—20) 2l fllgs
_1

IVullgj < Ka(e = 20)* 211 fllg-

In particular, if 2 — /8 + /(2 — /8)2 — 481 > (2 Vv d — 2)8 then there exists

d
g €2vd—2,q" such that (u+ Ag(b))™" : L9 — ™' 74

Q=

Proof. Set b, := E,b, where E, = e%. Then b, € Fs (see the arguments in
Section 3.4) and E, G (b) satisfies (x) with the same §; for all n. Indeed,

(E.G®)h. h)| < (GBY R). i = (Enh?)?,
and by (%),

(G @Y, i < 81|V (Ealh)? ], + c1 GDIEnli Pl

Noticing that

2
V(E, hz%Zzﬂw <E”Vh2
([V(E.(R1%)2]7) NGATE S IEVIRIPY

= |VIAllI3, and  [[Eq k1?1 = A3,

we obtain that E, G (b) satisfies (%)
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Now, we have
pllwl?) + 15 + (g = 2)Jg + by - w, ) = (f, ¢).
Integrating by parts, we obtain

(b - w, ¢) = ([E,G(B)]w, wlw]|?) + (by - VIw], [w]97").

Thus,
|<bn-w,¢>|<61<|V|w|%|2>+a<b2,|w|‘1>+i1 o=
= n 401 q\/g
2 2 1
< | Lsi+ Lo+ — |4, + (e (1) +c)wlf
=4 4 4o | 1
2
q q @) +c@d) g4
=|Ls +—\/§}J + ———Flwlig.
[41 T | S

Applying I, > J,, we obtain

c1(81) + ¢(8) . q

(Itis seen thatif g €]2Vv g~,q™[,theng — 1 — ﬁél — 4./8 > 0.) The rest of the
2 2
proof repeats the end of the proof of Corollary 4.9. O

Remarks. 1. The requirement 5> € L' 4 L™ is not essential: one can get rid of it
by defining b, as b, := e ¢,b, where ¢, (x) = n,(x]),

1 ift <n
M) :=32—1L ifn<r<2n
0 if 2n < ¢,

and ¢ | 0 are chosen sufficiently small. (Albeit this works for §; < 1 — § The
latter does not affect the result since the interval ]¢—, ¢ is open.)
2.1t is easy to modify the proof above to work on an arbitrary open set @ C RY.
3. For the vector field b(x) = c|x|~2x,c > 0, one has & - Gh = ¢(|x|~2|h|* —
2(x - h)*x|™*), and so [(Gh, h)| < c(|x|72|h|?). Thus, for this vector field the
conditions of Corollary 4.11 are satisfied with §; = ﬁc, 5 = 2

4
mc . In
particular, one recovers the assertion of Corollary 4.10.

In [15,16] we extend Theorem 4.8 to the operators —V -a -V + b - V and
—a - V? + b - V. Here we only mention the following:
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Theorem ([15]). Let @ = RY,d > 3,¢ > —1l,a(x) = I +c|x|2x @ x. Let
beFs(—A), orb e Fs(A), where A = Ap.

(i) [Divergence form operator] If V8 €10, 1A ﬁ[ and |c| is sufficiently small,
or

ce]—%,z(d—@(d—l)[ (d > 4), cel-1/9,1/4] (d=3)
24 75

and § is sufficiently small, then, for ¢ > d — 2 sufficiently close to d —?2 the operator
realization Ag(a,b) of =V -a -V +b -V is well defined, and there exist constants

Ao = Ao(c,8,q) and K; = Ki(c,8,q), | = 1,2, such thatu = (u+Ay(a, b))_lf
(n € p(=Ay), f € L9) satisfies the inequalities

1
Vully = Ki(w —20)" 21 fllq,

1_1 . d (*)
IVullgj < Ka(u—20)7 2N fllg.  J= 75

d
In particular, (1 + Ay (a, byl L4 - Co’lfﬁ,for all > iAo vV wy.
(if) [Non-divergence form operator] If V8 €10,1A ﬁ[ and |c| is sufficiently
small, or
1

ce}
(d—4)?
1+ 1T@—3)0d=

d-3
— [ d=4), cel—-1,1/3[ (d=23)

and § is sufficiently small, then, for all ¢ > d — 2 sufficiently close to d — 2 the
operator realization Ay (a, (Va) + b) of —a - V2 +b-Vin L4 is well defined, and

(*) holds for u = (u + Ag(a, (Va) + b))‘1 (n € p(—=Ay), f € L9).

4.6. L"-strong Feller semigroup on C, corresponding to —A + b -V, b € F;
Armed with Theorem 4.3 and Theorem 4.8, we establish

Theorem 4.12. Letd > 3,b:R? > R4 h e Fs, 8 € ]O 1A
(i) The limit

7 2)2[ Then:

e ®) = 5 Cop-lime Ao b) (7 > ()
n

exists and determines a positivity preserving contraction Cqy semigroup on Cs.
Here {b,} is defined in Section 4.5, Ac, (bp) == —A + b, -V, D(Ac, (bp)) =
(1-4)"'Cx,

(i) [The L" -strong Feller property | ((u + Ac,, G LN COO)
BL",C 'J) whenever r € ]2 Vv (d - 2), [and n> y.

clos
L"—Cx

lACoo

(iii) The integral kernel of e &) determines the transition probability

function of a Hunt process.
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Proof. We will need the following auxiliary results. Set

_ c(d)
gi=Uy —Up, Uy = U+ Ar(by)) lfa fEleLOO7 w > T

Lemma 4.13. There are positive constants C = C(d), k = k(8) such that

2\ ok 12
lgll-; < (C3||Vun||qj)’ (r**) gl 2y

2 . / X

whereqe]Q_ﬁv(d—2),%[, 2x = qJ, ]=ﬁ, X :=mandx/(r—2)>
2

2—/8"

Proof. Note that g satisfies the equation

(u + Aq(bm))g =F, F = (by — bp) - Vuy,.

Let v = glgl 2, v = glg| e Taking the scalar product of the equation by ¥, we
have

4 2 _2
wllvl3 + r—an% = = {v, by - V0) + {(bu = b) - Vi, v,

r/

By the quadratic estimates,

(v, b - V)| < ellbmvll3 + (42) 7Vl
< (e84 (4&) D Vv[i3 + ec®)lv]3
= VBIVul3+ Ve e®vl3 (e =@V,
(b = b - Vit, v]0] )] < ((1bal + 1w DIVl [0]' 77 [ Vit ])
< n8|Vvll3 + ne® vl
IVunlll3 (7 > 0),

2
1=

+ 07|

we obtain the inequality

11 2 4 2 2 —1y1,,1-2 2
|:M—(;%+7I)C(5)i|||v||z+(W_;‘/E_W(S)”Vl’nz =n vl [Vuglls.
Since r > r2—/

ﬁ s 2 /5 > 0, we choose k > 1solargethat%—%\/5=
Z(%—\/5)>2r_k.Fixnbyn8=i—Z § —r7% (= r7%). Thus

r\r rr’ r

cd) ([ 4 1 _ _ 2
p———— = =s—rF) I3 4+ r vl < s T V13,
) r
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Our choice of u (1 > CES—‘S) ) ensures that the expression contained in square brackets
is strictly positive. Thus

(1-2)

2 2k 2 2
IVvll5 < or IIVunlllelvllh/(l_%).

Finally, applying the uniform Sobolev inequality c4|lv||3 ;< IVv|l3, we end the
proof of Lemma 4.13. O

Lemma 4.14. In the notation of Lemma 4.13, for any ro > ﬁ

c(8)
Iglloo < Bllglly, 1 =14k Vv ra

where y = (1 — x7/)(1 — XT/ + %)_1 > 0,and B = B(d, §, Ky) < o0 is a constant

(K> is the constant in Theorem 4.8).
Proof. Let D := C4 sup, ||Vun||fij. By Theorem 4.8, D < oo. We iterate the in-
equality
Lodop, o 1-7
lgllrj = D)7 lIgl o) (*)

as follows. Successively setting x'(r; —2) = rg, x'(rp —2) = jr1, x'(r3 —2) =
jra, ... sothatr, = (t — 1)_1(t"(% +2) — t"‘l% —2), where t = % > 1, we
get from (x)

liglly,j < D*"Thligllt,

where
1 2 2 2 1 2 2 2
an:_<1__)<1__>...(1——)+—<1——)(1__)...(1__)
rl r r3 rn r r3 rq In
1 < 2) 1
R
rn—1 n n
2 2 2
Yp={1—— l——)...{1—-—;
r ) n

_ _ _ _ _ _ _ 2k
r |t 022 nha-andpa-2nh - rta=a . a=anh
n=\r"n rnil rniz ...rl .

Since a, = t" —r; 't — D~V and y, = rot" 1 (x'ry) 71,

and
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n

Note that ||g|l,, — Oasn, m 1 cosincerg € 17, and so ||g||3/0
enough n, m.
Finally, since

< |lgll} for all large

1 —1 -1 2.-1 n—1,.—1
% r tr t°r t r
Ot =rr, " r, % ...ry " and bt" <r, <ar",

where a = r(t — 1)_1, b= rlt_l, we have

PF < (@ ® @ yer " (@@
1 1
_ [at”—t‘"(t—l)"tzl’-'_l it_i:|b < |:a(t—l)‘lbt(t—l)2:|b‘
The proof of Lemma 4.14 is completed. O

Remark. The fact that ¥ > 0 is the main concern of the iterative procedure.

Lemma4.15. Let U, = (4 + Apy(bp)'F, o > Q0 F := b, - V(u —

A7f f e Cg. There are constants 0 < 7 < 1, B and B independent of n
such that

1Unlloo < BIIUIIY,,
InUnlloe < BlluUnll,
_2
whenever ro > Py

Proof. Proceeding exactly as in the proof of Lemma 4.13, we obtain the inequalities

—1 22\ 2kt 1-7
1Unllrj < (COIV (=AY flIg ) D 11 Unlly )
2 1 okl 1-7
[Unllrj < (COINV Flg )7 ) NnUnll ) —oys

their iteration provides the required result. O

Lemma 4.16. In the notation of Lemma 4.15, we have

8/2 - -3
||uUn||rs(—(—,—J5)) (u—@) IV £l
r\r )

whenever r > —2—.

25

D=



1622 DAMIR KINZEBULATOV AND YULIY A. SEMENOV

Proof. Proceeding again as in Lemma 4.13, we obtain the inequality (n > 0)

11 4 2 _ _2
[u—(;%+n>c(5)]||vllg+(W—;x/g—an)IIVvH% < @ LI,

r=2
where v := U,|U|,” and f, := V(1 — A)~! f. Setting here né = -5 — 2./5 and
noticing that

u—(lLJrn)c(rS):u—@(i/—E)ZM—@

rJ/s § \rr r )
we have
8(2 c(d) 21-2)
—(—, - ﬁ) (u ~ —)nvu% <8l Al
r\r )
It remains to note that || £, < u = |V £]l. 0

Lemma 4.17. s-Coo-limy 400 (p + Ac, b)) =1 uniformly in n.

Proof. We only need to show that
Tim sup e[ + Ar )™ = (0 = )7 flloe =0 forall f € C.
n

Indeed, since —[(1 + A, (b)) ™' — (0 — A7 f = (w+ Ar (b)) by - V(i —
A)~'f = U,, we obtain by Lemma 4.15 and Lemma 4.16 that

A 7 . c(8) -5 ;
liUnlloo = BlinUnlirg = B{ it = == ) IV £l
which yields the required. O

We are in position to complete the proof of Theorem 4.12. (i) follows from
Lemmas 4.14,4.17 and Theorem 4.3 by applying the Trotter Approximation Theo-
rem (Appendix C). (ii) is Theorem 4.8. The proof of (iif) is standard.

The proof of Theorem 4.12 is completed. U

Remarks. 1.Theorem 4.12 is valid for any {b,} C C*° N Fs, b, SbLdae.
2.For a parabolic variant of the above iteration procedure see [13].

5. b-V is —A weakly form-bounded

Let LP? = LP(R?, £4), p € [1, oc], be the standard (complex) Lebesgue spaces.
Consider the following classes of vector fields:
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Definition. (1) A b : R¢ — R belongs to the Kato class Kg”l (write b € Kg“'l)
if |b| € L] . and there exists A = A5 > 0 such that

1
Ib(A — A)" 211 < 6.

2)Ab: R - R4 belongs to F(ls/ ’ = F(ls/ *(=A), the class of weakly form
bounded vector fields (write b € F:s/ 2) if |b] € LllOC and there exists A = Ag > 0
such that 1 1
B1Z(h — A) 3 lap < V6.
Example 5.1. 1. The inclusion [p| € LP +L® (p > d) = b € K¢ =

Ms=o K& follows from Holder’s inequality.
2. We have:

_ 1
b(x) := eljy <1lx1[*71, 5 <8< 1,

wheree = (1,...,1) e R, x = (x1, ..., xq),1s ian)lel —F;, for any 8, > 0.
In turn, b(x) := v/6452|x| 2x € Fs — K{ ' forany 6,81 > 0.
Thus, Kd*! — Fs # @, and F5, — K¢ # & forany 8, 8; > 0.
3. Anexample ofa b € Kg“ — Kg“ , 0 > 0, can be obtained as follows.
Fixe e R?, |le| = 1. Letz, := (27,0,...,0) e R n > 1. Set

o0
b(x) :=eF(x), F(x):=Y 8"1p;, snx), xeR
n=1

where B(z,,87") is the open ball of radius 8" centered at z,, and 1p;, g-ny is its
indicator.
Then b € K?H — KgH for appropriate § > 0.

4. The class F:S/ *is the largest:

K{T'CF>,  F; CF fors =5,

(5.1)
(beFSl andfng’jl) = <b+feF,§/2, ~/3=<‘/E+\/$)

Indeed, for b € K¢, [|b|(h— A)"2 |11 < §. By duality, [| (. — A) "2 |l < 8.
and so by interpolation, [|[b|Z(A — A)~2|b|2 o2 < 8. Therefore, b € Fy”. The
second inclusion Fg, ; F(]S/ .8 = /81 is the consequence of the Heinz inequality
[9]. The last assertion now follows from

12
beFﬁ

12

172
1’f€F32 =b+feFy",

where we have used (|b| + [f))2 < |b|2 + [f|2.
5. For the examples of vector fields in the class Fs see Example 4.1 in the
beginning of Section 4.
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Remarks. 1.The classes Fs ,Kg”l cover singularities of b of critical order (i.e., sen-
sitive to multiplication by a constant® ) at isolated points or along hypersurfaces,
respectively, as follows from Example 4.1(3) and Example 5.1(2,3). The classes
Kg“ ,Fo and, thus, [L? + L°°]¢, do not contain vector fields having critical-order
singularities.

2. The Kato class Kg”l , with § > 0O sufficiently small (yet allowed to be non-
zero), is recognized as the class ‘responsible’ for the Gaussian upper and lower
bounds on the fundamental solution of 3, — A 4+ b - V. The latter allow to construct
an associated Feller semigroup (in Cp). The class Fs, § < 4, is recognized as the
class ‘responsible’ for dissipativity of A — b -V in L?, p > 2/(2 — +/8), needed
to run the iterative procedure of Section 4.6 (taking p — 00, assuming additionally
8 < min{l, (2/(d — 2))2}), which produces an associated Feller semigroup in Co.
We emphasize that, in general, the Gaussian bounds are not valid if b € [Ld]d,
while b € KgH ,in general, destroys the L”-dissipativity.

/
Fy*
K& Fy - W,
K+t Fo C,

[Ld-i-Loo}d [Ld,oo +Loo]d

L7 + L) (p > d)

Figure 5.1. General classes of vector fields b : RY — R? studied in literature in
connection with operator —A + b - V. Here — stands for strict inclusion of vector

spaces, and 5 reads: if b € W; (s > 1),then b € Fy with § = 8(||b2||WS) < 00.

5.1. A variant of the Hille-Lions approach. L2-theory

Let WP = WeP(R4, £4), o > 0, be the Bessel potential space endowed with

norm ”u”p,a = ”g”p? u = (1 - A)_7g7 g € va and W—Ol,p’ pl = %a

the anti-dual of WW*?. For a comprehensive account of Bessel potential spaces
see [37, Section 2.6].

3 For instance, the uniqueness of weak solution to the Cauchy problem for 9; — A+ b -V can fail
if b € Fy is replaced with cb (€ F 25) for a sufficiently large constant c. [18, Example 5].
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Theorem 52. Letd > 3, b : RY — R?. Assume that b € Fy*, § < 1. Then
there is an operator realization —A of A — b -V in L* generating a quasi bounded
holomorphic semigroup e~'. We have:

(i) The resolvent set p(—A) contains the half-plane O :={{ € C|Re { > A =
MAs}. The resolvent admits the representation

CH+A) =@ - NTIA+HS) T - A,
where H = |b|2(f — A)"4, b := |b|"2b, S 1= b? - V(¢ — A)"3, and
IH*S|lmn < 6 3 1
() C+MN "= - = —-A)TITH* (1 +SH)TIS(C — A) 73

(i) 1+ M) o2 =X =872I7" (£ €0);
(iv) Aisrelatedto —A + b -V as follows. If f € D(A), then

1

(Af.g) = (V. V) + (b2 V. blig). (g W'?);

W) If f € D(A), thenb -V eLl | DA c W2, and

loc? loc ’

(Af.d)=(f.—Ad)+(b-Vf.9) ($eCD).

Proof. 1. Set Hy := L?. Define A := A — A of domain D(A) = W22, H, :=
(D(AY), (f, §)H, = (A*f, A%g)) (@ = 0) and J; := (A — A)—%, the % power of
Bessel’s potential. Clearly, H, = W?*2and H_;| = W22, Consider the chain

N

of Hilbert spaces

H]CH%CH%CH%CHOCH_I.

N

j=_1¢g 123 et
Then J; : H1—>H1+1, = —1.0, 7, 7, 7 are bijections,

I

Hg CH; CH_l
Z i

is the standard triple of Hilbert spaces (so that H* 1= =H 3 with respect to ( f, g)n 1
By (f, g) 1 feH_ 1, 8 € ’Hs we denote the pamng between H_ ! and Hs

Then
(f,g)% = (f, &)1, Whenever f € H%.

N

By A we denote the extension of A — A to a bounded map from H% into H_ 1. Then

IS

@+ DLDN 2l (€ Hy. Reg 20,

B—
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and so ¢ + Ais a bijection; ||¢ + A||H3»H . > 1. Clearly
1

4
D(A):{feH%MfeHo}andA—‘ =+ A7 Hy = I

12

The operator B:=b-V: H% — ’Hﬁl‘ is bounded. Indeed, since b € Fy'~,

b%-V:'H <

—Ho, 1617 : Ho—>H_1, BeB(Hz, H_1) with |Blly, ~7_, <5.
4 4

3
pis

Thus |((§+A+l§')f,f)%| > (1-8)|fl3, andsol +A:=¢+A+Bisa
4
bijection.
Set Ry := (¢ + A)~' and Fr := (¢ + A~ (= J)). Clearly,
Re=Ry+(—0ORRy,  ¢.ne0; (p1)
R; = F{ — F;BR; = F; — F;BF{ + Fg‘BFgBF{ — ..,
r D 3 pr37..
FyBFy =7 J:BI} I
FeBE, | Ho = J3Jc|bI3b% - VI3, | Ho = JPH*S U,
Ry =R [ Ho=J}(1+ H*S) ;. (p2)
Since |J; g| < Ji|gl, and hence

1
| H*Sfll+, < ||H||Ho—>H0|||b|2JA|VJ§2f|||Ho
<8IVIZ flllry < 81 fllwo. f € Ho.

it follows from (p;) that

IR 1#g—ry < (1 —8) g7 (p3)

We conclude from (p;) that R, is a pseudo-resolvent, and from (p) that its null-
set is {0}. Therefore, R; is the resolvent of some closed operator A in Hy, and

A = Rg_1 — ¢ (Appendix D, Theorem D.1). It is also seen that D(A) := I%AHO,
Af = Af, fe D).

Next, let us show that A is a densely defined operator. Indeed, by the construc-
tion, Hy is a dense subspace of H_ 1, and hence I@AHO is a dense subspace of H 3
and of ‘H for H 3 is a dense subspace of Hy. Thus D(A) is dense in Hy.

Taking into account (p3), we conclude that —A is the generator of a quasi

bounded holomorphic semigroup. Thus (i) and (iii) are established. (ii) is an easy
consequence of (i).
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2. In order to justify (iv) and (v), define P (b) := —J¢1§J{3 | L? = —H*S
(Re¢ > A). Let {b,} be given by

b, =1,b, n=1,2,..., (5.2)

where 1,, is the indicator of {x € R? | |b(x)| < n}. Then b, € F:S/Z, and so A(b,) is
well defined. Since for every f € L?

1P (D) f — Pe(bn) fll2 < 1H 22111 — ln)IbI%IVJfflllz

1 3
< VoI -1)Kl, K =bI2|VIEfle L,
it is seen that

s-L2-lm(¢ + Abn) ™! = s-L2-1im JZ (1 + Pe(ba)) ™' U

3 | | 5.3)
= J; I+ PD) Je=@C+Ab) .

Let f € L%, g€ W2, ¢ € C. Clearly,b2-V(¢ +A(b)) "' f € L2, |b|2 € L2,
and

(AB) (& + A f, g) = (AB)C +ADB) T £, 8);

(ABa) (& + Aba) ™" f.8) = (V& + Aby) ™" £, V)
bRV + A S IbIEg)
— (V(E +AB) ' £, Vg)
+ (b2 -V +AG) £ b2 g);
(AB) (& + Ab) ™ f.0) = (€ + AB)) ' f. —AP)
bl V@& + AG) £ 16129)
— (€ +ADB) ' f.—Ag)
+ (b7 V(@ + AB) TV, 1bI2 )
=(C+A®B) £, —Ap)
+ -V +AD) f. ).

Thus (u, A¢p) = (—Au+b-Vu, ¢) whenever u € D(A). This means that D(A) C
w2l O

loc *
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5.2. The Hille-Trotter approach. L2-theory

We give an alternative proof of Theorem 5.2.

Let {b,} be given by (5.2) in Section 5.1. Since b, € Fl/z, we have ||b, -
Vin—A)"~ 1||2ﬁ2 < 1 whenever n > n2. Therefore, by the Miyadera Perturbatlon
Theorem, —A(b,) := A — by, - V of domain W2 generates a C semigroup in L.

We can construct A(b) by showing first that the resolvent set of —A () con-
tains O = {¢ | Re¢ > A}, and that there is a constant ¢ such that, for all
n=1,2,...,

1+ A a2 < clgl™!, ¢ €O,

We accomplish this as follows. Define

O, by) = J} (1 + Pe(by)) ' Iy, ¢ €O,

1 3
where P;(b,) = J¢|bla bs . V‘]§4 € B(L?). We prove consecutively that the
operator-valued function ® (¢, b,) possesses the following properties:

O, by)f =+ Aby)"" f, f € L? whenevern>n*Vvi;  (p1)

1O, bp)ll2—2 < c|§|_1 for some constant cand alln =1, 2, ...; (p2)

O, bp) — O, by) = (n = )OE, by)O(, by), neO. (p3)

Note that (p1) follows from the definitions of ® (¢, by,), A(by,), and from the obvi-
ous equality

O, b)) f =Ty f — Jybu VI3 f+ Jyby - VIyby VI f+ ...
=m+Al))f. fel?

while (p2) follows from the definition of ®(¢, b,). (p3) says that @ (¢, by) is a
pseudo-resolvent. But then the range of ®(¢, b,) equals to the range of ®(n, b,)
for all n € O, and hence is dense in L? by (p1). Thus the properties (p1), (p3)
mean that

O, by) = (£ + Aby)) ", (©)

and hence @ C p(—A(b,)) and the semigroup e’ A g holomorphic (due to

(p2)).
Finally, on the basis of the Trotter Approximation Theorem, by proving that

uo(u, by) 5 las @ 1 oo uniformly in 7, we conclude, using ® (¢, by,) 5 O, b)
(see (5.3)), that ®(¢, b) is indeed the resolvent of an operator — A (b), which gen-
erates a holomorphic (| (¢, b)|l2—2 < c|¢|~") semigroup.

The proof that ,u@(u, 2 — 1 as @ 1 oo uniformly in 7 is carried out as

follows. Set H, = |b|nJ and S, = b2 VJ3 Since s-L2- hmmOOpLJ = 1 and

sup, 1© (i, bp) a2 < ™!,

lim yusup I H (L + SaHD) T Sy dufla=0  (f €C)
n
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needs only to be proved (see assertion (i7) of the theorem). Noticing that
1 3
1Sady fll2 = 1163 - VI3 fll2 < V8™ 3|V £]|2 and
1Hy (1 + Sy ) w2 < V81 =871,
we obtain
3
I3 Hy (4 S H) T Sy du fll2 <80 = 8) " w2V £ Lo

The desired convergence follows.
It remains to prove (p3).

Proof of (p3). Set F; 1= (£ — A)~! and define
N{ = (=D)*Fby - VF;...by-VF;, 1 <k:=#bys, N :=F;.

Obviously,

o0
O, by) = Z N é‘ (‘absolutely convergent series in L?),

k=0
oo | ) )
O b)OM.by) =D Y NN tge0. (*)
=0 i=0

Set # = “number of”. Define

I, (€. 0) == Feby - VFy .. .by - VF Fyby - VFy .. by - VFy,
[:=#¢s, m:=#n’s, k:=#b,’s.

Substituting the identity F; F,, = (n — {)~'(F; — F,) inside the product

N{ND = (=D "™ Fyby - VFy . by - VF Fyby - VFy ... by - VFy,

we obtain Né‘N;" = (n— ) N(=1)ktm [Ifirm — Iffn’il} Therefore,

I
(n—¢)Y NiN, =(—1)l[1f,1 Iy + Ly~ o 111‘1]
—
1(1 !
=(=1"(Liy10 = Lo451)-

Substituting the last identity in the right-hand side of (x) we obtain

(= O, b)O(, b) = > (=D (If41.0— 1§41) = O, ba) — O, by).
[=0

The proof of (p3) is completed. O
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It follows from (<) that
—A(by) = —Aby) (= A—by -V, D(=A(by) = W>?).
The latter and (5.3) yield

Corollary 5.3. In the assumptions of Theorem 5.2 we have

C+AbB)) 'S C+HADB) T (€ e0).

5.3. (L? — L9) estimates

Theorem 54. Letd > 3,b : RY — R, b € F/?, 8 < 1. Let A(b) be the
operator realization of —A + b - V in L? constructed in Theorem 5.2. Let {b,} be
given by (5.2) in Section 5.1. There is a family {e =2 ®) ¢ > 0}2<r <00 Of consistent,

positivity preserving, L contraction Co semigroups such that e | L['NL? =
e—lA(b) I*Lr mLQ’

s-L"-lime ™A bn) — o=1Ar(b) (uniformly on every compact interval of t); (i)
n
_ _d(l_1 2As
e fly = e G Dipl o= a6 o =20

(felL,2<r <q<o).

Proof. Since b, € F%, A(b,) is well defined. On the other hand ||b, - V(5 —
A)~ Y52 < 1 whenever n > n2. Therefore, by the Miyadera Perturbation Tpeo-
rem, —A(b,) :== A — by, - V of domain W22 generates the Co semigroup e~/ ®n)
in L2, which preserves positivity and is L contraction, and so is e A since,
forn >n2viand f € L2, (n+A},) "' f = (14 Ab,))~" f. The convergence
(¢ 4+ Aby) ™' > (¢ + A(b))~! yields (i) for r = 2, and hence for all r > 2.
Proof of (ii) Our strategy is as follows: 1) We prove that, for some r €]2, oo,

d
le oy < Cr 3G 0 <t < T <o0). (%)

2) Using the extrapolation between ([le ™™ flloo < || flloos f € L2 N L) and (%),
we conclude that

_ ~ d
e ™ l2moo < Crt™ 4

(see Appendix F). Then (ii) follows from the Riesz Interpolation Theorem.
Since 2) is straightforward, we need only to prove (x). Without loss of gen-
erality we may suppose that A > 1. SetT'o = A — Aand I’ = A + A. Due

to|(n+To)Pfl < Faﬁlfl and |(n +To) Plose < A+ 1nh™# 0 < B <
1, Ren > 0), we have, using Theorem 5.2(i),

3 1
I+ T) " Hasa < (1 =870 4+ T0) " * a2 ll(n + To) " #[l2—2
<(1-=8'a+mp
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Also, forany r €]2,00[and > 0, [[(u+T) 7 Hlror < (14 )7L
Let I, 7 and T = (T p )_1 be the fractional powers of I',. Below we will
need the following well known results:
s sintf 1
7 1-8

~

o 2
/ WP (u+ T 2dp;
0
ITA (e + 1) oma < e (14 )~ 175,

ITPe™ 2 < (Bt~

(see e.g., [19, Chapter 4]).
Fix B = JT, r= sz]. Let F; =T%Pe T f, f € L> N L. We have

_ _ 2 [ _
le™™ fll, = IT2PF|, < ;/0 w2+ T 2 F L dp.
By the embedding (1 + To)#L? C L,

1 1
(e +T)2F |y < el (4 To)"2(1 + Py (b)) (e + To) "3 (u + D) Fla,
and hence || (11 + T,) 2 Fll; < c(@)(1 = 8) ' u™3P | (u + )" R o
Thus

o0
le™™ fll, < C [0 w Pl + ) Fl du

7 o0
5C1</0 w P+ wPlau ||f||z+ﬁ pw P lau IIFzﬂe_’rfllz)
T

1
ro_3 *© s —28 _ -8
=G pwoddp+ [ oprsdpt [ fll2=4C2 771 fll2,
0 T

which ends the proof of (x). O
1
54. L’-thﬁ(z)ry and W1+3"-estimates on solutions to (u — A+ b-V)u=f,
beF
H)

As in the case of b € Fs, it is reasonable to expect that there is a quantitative
dependence between the value of § and the smoothness of D(A,(b)).
Set

1 _1 d _d-1
mg :=m2QRe)"2d2(d—-1)""2, ¢ :=—, Kkgj:=—

2
L STomgs
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Theorem 5.5. Letd > 3, b : RY — R4, Assume that b € F(IS/Z, myd < 1. Then
(e’tA"(b), r e [2, oo[) extends by continuity to a quasi bounded Cy semigroup in
L" forallr €lr_, ool.

For everyr € I :=]r_, r[ we have:

(i) The resolvent set p(—A, (b)) contains the half-plane O := {¢ € C | Re¢ >
Kqhs}, and the resolvent admits the representation

C+AB) ' =0.(,b), €O,

where
0, b)) = -AN"-0,U0+T)'G,,

the operators Qy, G, T, € B(L"),

_1_ 1 _
1Orllr—r <C1lICI7 2727, NGrllr=r £ C2A¢ 27, T |lr—r < mgcyd, (%)

1 1 1
Gy =Gr(¢,b) :i=br - V(¢ — AL, b= b7 b,

Qr, T, are the extensions by continuity of densely defined (on € := | J, e~€lblpry
operators

0, 1E=0,(5.b) [ €:= (@ —A) " b|7,
T, 1 E=T(c.b) | €:=bt V(e — A b7

(ii) It follows from (i) that ™' Ar®) s holomorphic: there is a constant C, such that

I+ AB) rsr <Gzl 0.

(iii) Forall p <r < g and ¢ € O, define

_L
Zp’

Gr(p) = Gr(p. £.b) = b7 - V(¢ — A) 2
0,(@) = 0,(q. ¢, b) = (¢ — A [b|7 on &,

Then G,(p) € B(L"). Moreover Q,(q) extends by continuity to a bounded opera-
tor in L". We denote its extension again by Q,(q).

(iv) For every ¢ € O,

_ 1
% Q)1+ T G (p)(C — A) 7
1+$,r)‘

_1

O, b)=¢-N"" = —-A7
1,

O, (¢, b) extends by continuity to an operator in BOV »7 ,|W

1
(v) By (i) and (iv), D(A, (b)) C wltar (g > r). In particular, if mgé < 4(5:12)2,

then there existsr € I, r > d — 1, such that D(A, (b)) C C%7,y <1 — @.
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i) D(A, (b)) € Wi and

(Ar(D)u, v) = (u, —Av) + (b -Vu,v), ue€ DA (D)), ve Cfo(Rd).

(vii) Let {b,} be given by (5.2), then

e A = g [T lim e A () (uniformly on every compact interval of t > 0),
n

(viii) (e @) ¢ > 0) preserves positivity and

1

~ d 1
le™® p, < Cot 25D fl,, 0<t <1, r_<r<p<oo, fel .

Proof. 1. Suppose that (x) is established.

Then ©,(¢,b) | L>NL" = Oy(z,b) | L>NL", ¢ € O, and (i), (vi) follow
immediately from Theorem 5.2.

(vii) is a simple consequence of Corollary 5.3 and the bound ||e Arg Il 70— ro
Cry=Cry(8,7——19) (t <1, r— < rp < 2). The latter is also needed for the proof
of (viii) (cf. Theorem 5.4).

(iv) is an obvious consequence of (i) + (iii).

—t S

It remains to prove (x) and (iii).
2. Proof of (x). Letr €]1, oo[. We will need
1 1 1 _ 1 ’
@ u=r=1bl"(n—A)"2|;»r < (¢;8)r 2 (recall ¢, = %)

Indeed, in L? define A = (u — A)2, D(A) = W'2. Since —(A — pu?) is a
symmetric Markov generator, for any r €]1, oo,

0<ueD(A)=vi=u’e DA and ¢, |A2v|2 < (A, u” ™).
Now, letu = A=!|f|, f e L". Clearly, [ull, < " 2| f]-. Since b € F;* we have
_ 1 _ _
() I1b12v]3 < (Arw,u” Yy = (| fLu" 1),

1 I =1 .
and so [[[b7ulll <c, 8 fllrllully ™", |||b1|7Ar_1f||r <cdu” 2 || £y (a) is proved.
1 1 1
(b)) u>hr= |||b|?1(,u = N2l fllr <8l fllrs f €.
Indeed, letu = A~ '|b|7|f|, f € £. Then arguing as in (a) we have

1 1o 1
Hbrully < sl fl-NIBlrull, ™" or lblrull, < c 8l f -

Thus (b) is proved.

11 L1
© w=r= =272 fllr < 87w T I fllr f ek
Indeed, (c¢) follows from (a) by duality.
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We are in position to complete the proof of (x). Using (b) and the pointwise
bound 1
IV =87 @yl < ma@ho— A)72(x, ). Red = kgh (A1)

(see proof of (A1) below), we have, for every r € Iy and u = X,
1 1 L
1T fllr < malllblr A = A2 | fllly < macr S| fllrs [ €E.

Note that myc,6 < 1 duetor € Ij.
Next, using (a) and the pointwise bound

IV@kat — A7 @ )] < 27ma(1C] — A)Z(x,y), ReC >0 (As)

(see proof of (A3) below), we have, forevery r € Iy, ¢ € O and u = ||,

d 1 _ 1
1Gr2kal, D) |lr—r <2%(c;8)rmyglC| 2.

Now, using the identity ({ — A)™! = (2kq¢ — A7 (1 + 2kq — DE (¢ — A7),
we obtain

d+4 oo L _ L
1Gr (&, D) lr—r <2°% kgma(c;8)7 |5 2" = Calg| 2.
Similarly, using (¢) and the pointwise bound
_1 d+l _1
(20 = A) 20, I =27 (|5 = A) " 2(x,y), Red >0 (As)
(see proof of (A4) below), we have, forevery r € Iy and Re¢ > A,
_1 1L
10-28, D) fllr = 128 = A) " 2]lr—r (25 — A)721D]7 fI
Ll d+t o1
<12617227F (&SI N fllrs [ €E.
Finally, using the identity (¢ — A)™! = (1+¢(¢ — A)71)(2¢ — A)~!, we obtain
10-(&. D) fllr < 11+ ¢ = D) i 10,28, D) £
d+3 Lo 11
=24 (eIl Ll
L1
=Cilgl 27 || fllr, feé,
completing the proof of (x).
3. Proof of (iii). We have to deduce the bounds on || Q, (¢)|l;—r, |G (P)|l;—r-
LetRe¢ > A and r < g. Using (c) and the formula

sin o

o0
(z—A)%= / T 4z — A dr 0O<a <1, Rez >0,
0
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we obtain

__ 1
10:(@) fll < lI(Re¢ — A) 2" |b|7 | flllr
_ 1 1
< I =A) 2|7 | flllr
sin 57
q

oo _ 1
Esq//o N+ 2= AT DI S (sq/=—)

T

oo 1 1 11
554// t 26+ A2+ A=A 2|7 | flldt
0
1 U i1
Ssq/(cr’S)r// t 2@+ 27| flldt = Kiglfll, feé,
0

where K| ; < coduetog > r.
Let¢ € Oand 1 < p < r. Similarly, using (a) and the pointwise bound

V(¢ — A (x, )| < ma, (] 'Res — A (x, y) (A2)

(see proof of (A;) below), we obtain

1 _ 1L
1G-(P) fllr < ma,pllblm (A — A) 22| f]llr

1 [ _ 1 _1_1
Smd,psp(cr8)’/ t 2 (0 2 dt| fll- =Kz, pl fll-, fEL”,
0

where K, ;, < oo dueto p < r. The proof of (iii) is completed. O

4. We now give a proof of (A1)-(Ag).
Proof of (A1). Let a €]0, 1[. Set c() = SUP; - ;e_(l_“)gz( = (2e(l —
«))~2). Then, forall ¢ > 0,

te™" < cl@ye™ (%)
y2
Using the formula (¢ — A)™# = %ﬁ) I e_gh’z‘/s_l(4711?)_67167| T dt, 0 < B <
1, first with B = 1, and then with B = 1, we have
* - x—1
V@ =) )l < f R 4y 4
0

d lx—yI2

o0
1
<c((x)f e R =2 (Ant) " 2e H dt
0

N iy
by (x) with ¢ = Wi

— c(@)a~ T T(1/2)(@Re ¢ — A) "2 (x, y).
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The minimum of c(oz)oz‘df1 F(%) in« €]0, 1] is attained at o = dd;l(z /<d_1), and
equals my.

The proof of (A3) is similar.

Proof of (A3). First suppose that Im ¢ < 0. By Cauchy’s theorem,

=y

o° —iC _d _ i o° —rrdd _izd _d — T =z
e “Amt)y 2¢” H dt = e e '42(4nr) 2e 4t etadr
0 0

(i.e., we have changed the contour of integration from {¢ | t > 0} to {rei% | r > 0}).
Thus

o0 iz d|lx—Yy *@
VE — A )] < / e ¢ | 4y e vt |dr,
0 r
ot L Ret —tma), [e7 o7 | < FE, Rer g 2
e~ <e—r—Re¢ —1Im¢), |e 44| <e * V2, Re¢—1Im¢ > |¢],
NG

X — by
7| er_  dr,

IV — A) ) < /weh'“@mr)—%
0

d

2mg [0 - x — lx—y[2

<= / e 2Kdl{l(47'rr)_%7| y|e_4—r)dr,
I'(2) Jo 2r

4 —1p—1 _1
=24mg (i 271 = A) T2 (x, ),

and so (A3) for Im¢ < 0 is proved. The case Im ¢ > 0 is treated analogously.
Proof of (A4). First suppose that Im ¢ < 0. By Cauchy’s theorem,

* -1 _d _ iy
et 2(Amt) 2e” & dt
0

o0 iz 1 T md ‘f7y7‘1 T
CodE 1 _ix _imd 4 s
=/ e rT1eT I8 e T T2 (Arr) 2 w4 oA dr,
0
SO we estimate as above:

le—y2

_1 e 1 _d —
1€ = A) 2(x,y)|§f e V2UrT2(4mr)"ze #V2dr,
0

=2F @7 = A I y).

The case Im ¢ > O is treated analogously.

Remarks. 1. In the proof of G,(p), Q,(q) € B(L”) we appeal to the L? inequal-
ities between the operator (A — A)% and the “potential” |b| (Appendix E). This
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is the reason for the symmetry of the interval I in spite of —A 4 b - V being a
non-symmetric operator.

2. In the proof of Theorem 5.5 carried out for the Kato class K?H the interval
I transforms into [1, oo[, and the dependence of the properties of D(A, (b)) on §
gets lost. The latter indicates the smallness of K? *+1 a5 a subclass of F'/ ?

3. We obtain, using [17, Corollary 2.9] (see examples in the begmnmg of the
section):

1 r(&t
X 2x € F2, 5=2% (5 ),

2
|x|_2x EFIS]’ \/g: d—

and so § < \/3 1.
4.Theorem 5.5, compared to Theorem 4.8, covers a larger class of vector fields,
and at the same time establishes stronger smoothness properties of D(A,(b)):

1 r

D(A, () € W9 g > r,r € I,, while in Theorem 4.8 D(A, (b)) C W2,
relZg b

Nevertheless, in spite of the inclusion Fj, g Fl/ 2,8 = /31, cf. (5.1), the
difference in the admissible values of §, §; shows that these classes are essentially
incomparable.

5.In order to define A(b, V) D —A+b-V—-V,0 =<V, withb € Fs, itis
enough to assume that || V% (A — A)_% l2—2 < /8y with §, + 8y < 1. However, if
b € F}?, then A(b, V) can be defined only for V such that V3 (A — A) 752 <

(8V)4 with 8 + 0y < 1.

5.5. L"-strong Feller semigroup on C, corresponding to —A +b-V,b e Fl/ ?
In Theorem 5.5 one can use the following approximation of b by smooth vector
fields:

by = e"21,b, &, |0, (54)

where 1,, is the indicator of {x € Rd |x| < n, |b(x)| < n} (alternatively, one can
use the K. Friedrichs’ mollifier).

For any § > & we can select a sequence &, | O such that b, € Fl/ ? with the
same A = As (see the argument in the proof of Theorem 4 4).

Since the assumptions on § involve strict inequalities only, we may assume
without loss of generality that b,, defined by (5.4) are in F'/ ? with the same As.

Theorem 5.6. Letd > 3, b : RY — R4 p ¢ Faz, mgd < 4(d ek Fixr €
]d -1, H/ﬁ [ By S denote the L. Schwartz space of test functions. Then:

(i) e 1M ®) .= (e—’ Arb) p S)CCIOS Cu (after a change on a set of measure zero),
t>0,
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determines a positivity preserving contraction Co semigroup on Coo (Feller
semigroup), where the semigroup e "*r®) has been constructed in Theo-
remS5.5;

(ii) [The L"-strong Feller property ] ((,u + Ac,, ) Coo)
B, C' u>0a<1-— d—1.

.

(iii) The integral kernel e 1AcooB) (x| y) of e Mo ®) determines the transition
probability function of a Hunt process;

(iv) Let {b,} be given by (5.4), then

clos

L"—Cx €

e oo ®) — 5.Co - Tim e ="Aoo (O)
n
(uniformly on every compact interval of t > 0),

where Ac., (by) == —A + by -V, D(Acy, (bp)) = (1 — A) "' Coo.

Proof. (i), (ii). Let ®,(u, b) be the operator-valued function introduced in Theo-
rem5.5.

1) For every (1 > kg, ©r (11, b)S C Coo, and [|0,(4, b) flloo < ™ [ f oo
fes.
Indeed, by Theorem 5.5(v), since r > d — 1, ©,(u, b)L" C C, Which yields the
first assertion. Since e~ (®) is an L*°-contraction, the second assertion follows.

In view of 1), we can define (1 > kgA)

los
Oc, (1, b) == (O, (11, b) | ). € B(Coo)

(after a change on a set of measure zero).

2) uBOc. (1, b) = 1as 1 1 00 in Coo.
Indeed, since ||u®c, (i, b)|loo>o00 < 1,and S is dense in Cwo, it suffices to prove
that
uO,(u,b)f > fasp t ooinCo, forevery f € S.

Put®, = 0, (u, b), T, = T, (1, b). Since u(u — A)’lf 2 f in C, it suffices to
show that |u®, f — (i — A)~! fllee = 0. Foreach f € S there is h € S such
that f = (A — A)*%h,where A =2As >0.Letg > r. Write

O f—(u—A) " f = —(u—A)" 2% 0, () (14T) " bF (h—A)2-(u— )" V.

USing estimates (1 -+ Tr)_l lr—r < (1 — mdch)_l, ”Qr(‘””r—)r < Kl,q <X
(cf. proof of Theorem 5.5(iii)) and

D _l+i_L
“(M_A) 2 2‘1||r—>oo§CM 2o 2(1’ ¢ < 00,

we obtain

_lyd_ 1
10, f — (1t — A" flloo < Cp” 277 720 =1V,
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Since r > d — 1, choosing g sufficiently close to r, we obtain

1+ d ! 1 1
_— —_— e — < p— ,
2 2r 2q

sou®, —pu(pn — A~ = 0in Coo- The proof of 2) is completed.

®, (u, b) satisfies the resolvent identity for u > «4A (Theorem 5.5(i)), and so
does O¢c_ (i, b) | S. Therefore, Oc_ (i, b) is a pseudo-resolvent for i > kgA.
The latter and 2) yield (by Theorems D.1 and D.2, Appendix D): O¢_, (1, b) is the
resolvent of a densely defined closed operator Ac_, (b).

By 1), |[(n + Acoo(b))_lllOCHOO < u !, s0 —Ac, (D) is the generator of a
contraction Cg semigroup e *Acx®)  Clearly, e "Ac®) js positivity preserving,
so we have proved (7). Now (ii) follows from Theorem 5.5(iv). The proof of (iii) is
standard.

(iv) Note that
H+Ac G 1S=0,(u,by) [S, n=1,2,..., u=«ah,
The latter, combined with
Or (. ba) f = O, (1, b) f in Coo, 1> kah, [ €S, (*)
yields (1t + Acy, ()™ > (1 + Acy (1) 7! in Coo, st > kgh = (iv).

Proof of (x). It suffices to prove that

% 0 (q. by)(1 + T (bn) ™' G, (by)
% Q,(q. b)(1 + T, (0) "' G, (b) on S in Coo.

(u—A)?
S (u— A2

1 1
We choose ¢ close to d — 1 so that (u — A) 2" 2 L" C Cs. Thus it suffices to
prove that

Gr(by) > Gr(b), (14T, (b))~ > (I4+T,B) 7, 0r(q, b)) > O, (g, b)in L".

In turn, since (1475 (b)) ™' = (A+T(0) " = A+T, (b))~ (T, (B) =T, (bn)) (1 +
T (b))~ !, it suffices to prove that 7} (by,) 2 T (b). Finally,

1 1 1 _ 1
Ty (by) — Ty (b) = Ty (by) — bjy - V(u— A) b7 +byy - V(w— A)7b|7 — T, (b),

and hence we have to prove that

1 1 1 1L
b - V(w— 8)" b7 = T.(b) := J" > 0and Tp(by) — by - V(i — A) ||

=1 %0,
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Now, by the Dominated Convergence Theorem, G, (by,) = G, (D), J,f])|g = 0.
Also

@ _ & L
17,7 fllr =I1Gr(bn)(Ubul” — |BI7) flIr
1 1
< NGB lr=rIUbnl” —1bI7) f
_ 1 1 1
<mg(L+8)u 2 ||(1bp|” = 16I7) I, (f €&).

Thus, /2| 0. Since || 12y o, 110, < ma8, we conclude that T, (b,) —>

T, (b). It is clear now that O, (q, by) — 0,(q. b).
The proof of (x) is completed. O

The proof of Theorem 5.6 is completed. O

Remarks. 1. The assertion (iv) of Theorem 5.6 holds for any {,} C C LR, RN
F(ls/ ’ b, —> b L% ae., in particular, for the b,’s given by (5.4), but not for b,,’s as
in Theorem 4.12.

2. Theorem 5.5 allows us to transfer the proof of convergence in Co to L, r >
d — 1, a space having much weaker topology (locally). The same idea has been re-
alized in the proof of Theorem 4.12.

3. In comparison with the construction of a Feller semigroup in Section 4.6,
here the relative ease of the construction stems from the fact that one already has
the limiting object, i.e., ®,(u, b), p > d — 1, while in Section 4.6 one has to work
with Cauchy’s sequences.

4. Theorem 5.5 and Theorem 5.6 admit generalization (a) to the operator
(—A)% +b-V,1 < a < 2,and (b) to the operator —V - a - V 4+ b - V with
a € (Hy) uniformly Holder continuous.

Appendix
A. Monotone convergence theorem for sesquilinear forms

Let H be a (complex) Hilbert space with the inner product { f, g) and norm || f|| =

(f, f )%. Let 7 denote the family of all closed, symmetric, non-negative, densely
defined sesquilinear forms in H. If + € 7, then there exist a unique self-adjoint
operator 7 > 0 such that

tlu,vl=(Tu,v), weDT) (CD®), veDQ.

Then 1 1 1
tlu,v]=(T2u,T2v), D(T2) = D().

In this case we say that T is associated with ¢ and write T <> ¢ or/and ¢ = t7.
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Leta, b € T be such that D(a) N D(b) is dense in H. Thena +b € 7. Thus,
fora,b,a+b € 7T and A < a, B < b, we write A+B < a + b. A+B is
called the form sum of A and B. A+B, a self-adjoint extension of the algebraic
sum A 4 B, possesses some exclusive properties described below.

We endow 7 with a semi-order <:

a<b < D(a) D D) andalu] < blu] (u € D(b)).

Here and below a[u] = a[u, u]. Ifa,b € 7 and A <> a, B <> b, we write A < B
if and only if @ < b. In this case (A + B)™' < (A + A)~! (A > 0) in the sense that

1G4+ B2 fI < I+ A2If (f € M.

Theorem A.1. (Convergence from below, see, e.g.,[11, Chapter VIII, Section 3]
or [4]). Let {a,}>2 , C T be such that

ap <ay <....
Define a by

alu] .= lilgna,,[u], D(a) := {u € ﬂ D(ay) | the finite lirrlna,,[u] exists }

n=1
Suppose that D(a) is dense in H. Then a € T and, for all u, v € D(a),
aylu, vl — alu, v].
Let A <> aand A, < a,. Then
A+Aa)T S 0+ATT (Rer>0),
G+ AN > o+ A)2u  (ue D), A > 0).

Remark. This theorem is extremely useful for constructing operator realizations
of formal differential expressions. See, e.g., Section 2. Also, it is a proper tool for
perturbation theory of self-adjoint operators.

B. The criteria of Phillips and Stampacchia

There is a characterization of Markov semigroups in terms of their generators.
Let X be a set and y« a measure on X. Recall that a Co semigroup 77, ¢ > 0, of
contractions on L” = L?(X, u), p € [1, oo[, is called Markov if, for each ¢ > 0,

T'LY c LY, )

(fellIfl=h=IT"fl<1 (ii)
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Let — A denote the generator of T". Let us introduce the following conditions:
[Af, ff1>0 (f e D(A)NReLP) (R.Phillips), i)
Re[Af, f — fA]l >0 (f € D(A)) (G.Stampacchia). (ii")
Here sgnz :=z/|z| if z # 0,and sgn0 := 0; f* := f Vv 0; fua:= (| f| A Dsgn f;

Lf, gl := ([, Iglp_lsgng)||g||i_p, f, g € L?, the semi-inner product in L”. Here

and elsewhere f A g = inf{f, g}, f VvV g = sup{/f, g}.
It follows from Proposition 1 and Proposition 2 below (see [22, Section 1]) that

(1) + (i) & (1) + (@i

This equivalence is useful first of all for actual verification of (i),(ii) in the case
when A is an operator realization of a formal partial differential expression.

Proposition B.1. Let e™! At >0, be a contraction C semigroup in LP such that
e ""Re L? c Re L?. Then

i) & @@).
Proposition B.2. Let e~'4,t > 0, be a contraction Cy semigroup in LP . Then
le™*vlloe < vl (e LPNL® 1 20)

if and only if
Re[Af, f = fAl =0 (f € D(A)).

C. Trotter’s approximation theorem

Consider a sequence {e "4 }ee, of Co semigroups on a (complex) Banach space Y.

Theorem C.1 (H. F. Trotter [11, Chapter IX, Section 2]). Let
sup [(w+ Ap) " lysy < Mp—o) ™ m=1,2,...,u > o,
k

and
s- lim p(u+ A~ =1
—> 00

uniformly in k, and let s-limg (¢ + Ax) ! exist for some ¢ with Re¢ > w. Then
there is a Cq semigroup e~'* such that
z+ A0 'S @+ A" foreveryRez > w,

and
tA

e Mk S o
uniformly in any finite interval of t > 0.

The first condition of the theorem is satisfied if, e.g., sup, [|(z + A ysy <
Clz—w|™",Rez > w.
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D. Hille’s theorems on pseudo-resolvents

Let Y be a (complex) Banach space. A pseudo-resolvent R; is a function defined
on a subset O of the complex ¢ -plane with values in B(Y) such that

Re—Ry=m—0RRy, ¢ne0.
Clearly, R; have common null-set.

Theorem D.1. Ifthe null-set of R; is {0}, then R; is the resolvent of a closed linear
operator A, the range of R; coincides with D(A), and A = R;l —Z.

Proof. Put A := R;_1 — ¢. Since R; is closed, so is R;l and A. A straightforward
calculation shows that ({ + A)R; f = f, f € Y,and R, (¢ + A)g = g, g € D(A),
as needed. O

Theorem D.2. If there exists a sequence of numbers { i} C O such that limy, |y | =
0o and supy ||k Ry, ly—y < oo, then the set {y € Y : limg ux Ry y = y}is
contained in the closure of the range of R;.

Proof. Indeed, let limy ug R,y = y. That is, for every ¢ > 0, there exists k such
that ||y — ux Ry, yll < &, 50 y belongs to the closure of the range of R;. L

See [10, Section 5.2], [36, Chapter VIII, Section 4].

E. L"-inequalities for symmetric Markov generators

Let X be a set and p a o-finite measure on X. Let 7! = e"A, t > 0, be a symmetric
Markov semigroup in L3(X, w).

Theorem E.1 ([22, Theorem 2.1]). If f € D(A,) for somer €]l, ool, then f(,):=
|f15sgn £, 1f15 € D(A?) and

4 1 _ 1 .
;umf(r)n% <Re (A f, | fI" 'sgn f) < 3()IA2 fir)lI3, (i)

1
where »(r) := sup,cjo 1 {(1 + s%)(l +s7)(1 + s%)_z}, r=rr—1"1

Ir =2

————_Re (A, f, |fI" 'sgn f); (ii)
2r — 1

[Im (A, f, | 1" 'sgn f)] <

If0 < f € D(A,), then

4 L r - r—1 L r
AR = {Af ) = 1A f2 s (iit)
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Ifr € [2, 00l and f € D(A) N L, then |f|%, fi) € D(A?) and

4 1 1

143 fi I < Re (AL If1'sen £) = #OIAS fi I3 G
r—1 Ir —2| r—1 .

Im (AF, 171" sgn )] = 3T —=Re (AF 171 sgn ) V)

Ifr €2, 00l and0 < f € D(A) N L™, then f> € D(A?) and

4 1 r _ 1 r .
WIIA2f2II§§<Af,f’ <Az f2)3. (vi)

(The proof of (iii) works in the assumptions of (vi); the proof of (i), (ii) works in
the assumptions of (iv), (v).)

F. Extrapolation theorem

Let X be a set and  be a measure on X. Set L? = LP(X, u), p € [1, o0].

Theorem F.1. (T. Coulhon-Y. Raynaud [34, Proposition I1.2.1, Proposition
I1.2.2]). Let U"* : L' N L>® — L' 4 L* be a two-parameter evolution family
of operators:

U™ =UU", 0<s<t<t<oo.

Suppose that, for some 1 < p <q <r <00, v >0, M| and M, the inequalities
U™ fllp, < Millfll, and U fll, < Ma(t — )7V fll
are valid for all (t, s) and f € L' N L*. Then
U™ Flly < M@= )77,

9=P and M = 2087 py M)/ P

r
qr—

where 8 =

<

Proof. Set 2t; =t 4 s. The hypotheses and Holder’s inequality imply
IU" flir < Ma(t — 1)U fllg
< My(t — 1) NUSS FIE WU £ P
< MoM P — 1)U FIE N FILE,
and hence
= )P £/ D
< Mymy P2 0=P (1 — ) /PSS £, /1 £ )P

Setting Ry7 := sup,_;c10.7] [(t — s)”/(l_ﬂ)||Ut’sf||r/||f||p], we obtain from the
last inequality that Ry7 < M'=P(R7)P.But Ry < Rar,and so Ryp < M. ]
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Corollary F.2. Let ju be a o-finite measure on X. Let U : L'NL>® — L1 4 L®
be an evolution family of operators. Suppose that, for some 1 < p < g <r < 00,
v > 0, M| and M>, the inequalities

U™ fllr < Millfll:  and U fllg < M2t =) 1 f 1l
are valid for all (t,s) and f € L' N L. Then
WU fll, < M@ =)~/ £l
where B = gﬂ and M = 2"/(1_/3)2M1M21/(1_ﬂ).

r—p

G. N. Meyers embedding theorem

Theorem G.1 (See [28, Theorem 2]). Leta € (Hy), 0l < a(x) < &I L% a.e.on
Re. In L?> = L*(R?, £%) define A, the Dirichlet extension of —=V - a - V. Then

there exists p > 2 determined by the condition ||V(1 — A)_% ||f,ﬁp < S% such

that (1 + A,)~! extends to
(1+ Ay~ e B whpy,
Proof. First, leta € (H,) N[C*®19*4. Set T := £] — a. Then
A+ f=0-6A)""f—(1-E0)T'V-T-VA+A)'f, feC.,
IVA+A) 7 fll, < IVA =N £,
FIVA=ED) 2y pl (1= EA) T2V - - V(A+A) 7 £ .

Let ¢ € LP/, p>1,F :=V{d - SA)_%q), G =V{+ A)_lf. Then, using
v-7T-0 < (£ —0)|v|?, we obtain
o, (1 —£A) 2V -7 - V(1 + 4) 7' £)|
<E=-o)XIFLIG) = E=)FIlplIGlp

< v = A e el IV + A7 F
JE

Therefore,
E—o

G IVA=A) 2]y p [V (A+ A £ .

I(1—EA) 2V T-VA+A) " f]l, <

We arrive at

IV + Al < VA =60 Fllytoes oyt
4 5%””% — AR IVA + A,
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ie.,

where k (p) == £32(|V(1 — A) 72|}

IVA+ A7 I, < IVA = EA) ™ Fllyp-ron 2o (1 = ()~ 1 F -1,

p—>p°
Leta, :=ena. Using that (1 + Ap(ax)) "' — (1 + Ap(a))~! strongly in L?

and that V is closed, we arrive at the required estimate. U
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