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Enriques involutions on singular K3 surfaces
of small discriminants

ICHIRO SHIMADA AND DAVIDE CESARE VENIANI

Abstract. We classify Enriques involutions on a K3 surface, up to conjugation
in the automorphism group, in terms of lattice theory. We enumerate such involu-
tions on singular K3 surfaces with transcendental lattice of discriminant smaller
than or equal to 36. For 11 of these K3 surfaces, we apply Borcherds” method
to compute the automorphism group of the Enriques surfaces covered by them.
In particular, we investigate the structure of the two most algebraic Enriques sur-
faces.

Mathematics Subject Classification (2010): 14J28 (primary).

1. Introduction

1.1. Background

Let X be a complex K3 surface. We denote by Sy = H?*(X,7Z) N H1(X) the
lattice of numerical equivalence classes of divisors on X, and by Tx the orthogo-
nal complement of Sy in H 2(X, Z), which we call the franscendental lattice of X .
Suppose that X is singular, that is, the Picard number rank Sy attains the possible
maximum A1 (X) = 20. The discriminant of a singular K3 surface X is the de-
terminant of a Gram matrix of Tx. Since Ty is an even positive definite lattice of
rank 2, the discriminant d of X is a positive integer satisfying d = 0 or 3 mod 4.
Note that Ty is naturally oriented by the Hodge structure. By the classical work of
Shioda-Inose [32], we know that the isomorphism class of the oriented lattice Ty
determines X up to C-isomorphism.

An involution £: X — X of a K3 surface X is called an Enrigues involution
if € acts freely on X. Sertoz [25] gave a simple criterion to determine whether
a singular K3 surface has an Enriques involution or not (see Theorem 3.13 and
also Lee [18]). On the other hand, Ohashi [22] showed that each complex K3
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surface X (not necessarily singular) has only finitely many Enriques involutions up
to conjugation in the automorphism group Aut(X) of X, and that there exists no
universal bound for the number of conjugacy classes of Enriques involutions.

Ohashi also gave a lattice theoretic method to enumerate Enriques involutions
on certain K3 surfaces. In a subsequent paper [23] he classified all Enriques invo-
lutions on the Kummer surface Km(Jac(C)) associated with the jacobian variety of
a generic curve C of genus 2.

For some K3 surfaces X, the group Aut(X) can be calculated by Borcherds’
method [3, 4]; for instance, Kondo [16] implemented it in order to compute
Aut(Km(Jac(C))).

1.2. Main results

In this paper, we classify, up to conjugation in Aut(X), all Enriques involutions & on
the singular K3 surfaces X whose discriminant d satisfies d < 36. The classification
is given in Table 3.1 and builds on a refinement and generalization of Ohashi’s
method. Our main result, namely Theorem 3.10, applies to any K3 surface.

We then concentrate on 11 of these singular K3 surfaces, listed in Table 4.1,
to which we can apply Borcherds’ method in order to compute the automorphism
group. We first write the action of Aut(X) on the nef chamber of X explicitly.
Building on this data, we re-enumerate all Enriques involutions up to conjugation.
Using also a result of the preprint [6] (see Section 2.9), we are able to calculate the
automorphism group of the Enriques surfaces covered by these K3 surfaces. The
results are given in Theorem 5.19 and Table 5.1.

Note that the enumeration of Enriques involutions by Ohashi’s method and
by Borcherds’ method are carried out independently. The results are, of course,
consistent. We hope that these methods will be applied to many other K3 surfaces
(with smaller Picard number) and Enriques surfaces covered by them, and that in
these works, our general results on a K3 surface admitting an Enriques involution
(Lemma 3.8 and Proposition 3.9) will be useful.

Recently, many studies on the automorphism groups Aut(Y) of Enriques sur-
faces Y have appeared [1,19,30]). Our result gives a description of Aut(Y) in terms
of its action on the lattice Sy of numerical equivalence classes of divisors on Y. We
expect that this description is helpful in the search for a more geometric description
of Aut(Y), that is, for writing elements of Aut(Y) as birational self-maps on some
projective model of Y.

Computations were carried out using GAP [9] and sage on SageMath [33].
Further computational data is provided on the web page [31].

As a corollary of our calculations, we obtain the following. For d = 3, 4
or 7, there exists exactly one singular K3 surface X4 of discriminant d up to C-
isomorphism. The K3 surfaces X3, X4, also known as “the two most algebraic K3
surfaces”, were studied by Vinberg [37]. Neither X3 nor X4 admits any Enriques
involution, but X7 does; following Vinberg, we call the Enriques surfaces covered
by X7 the most algebraic Enriques surfaces.
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Theorem 1.1. The singular K3 surface X7 of discriminant 7 has exactly two En-
riques involutions &y and &1 up to conjugation in Aut(X7). Let Y1 and Yyy be the
quotient Enriques surfaces corresponding to €1 and €y, respectively. Then Aut(Yy)
is finite of order 8, and Aut(Y1) is finite of order 24.

Nikulin [21] and Kondo [15] classified all complex Enriques surfaces whose auto-
morphism group is finite. It turns out that these Enriques surfaces are divided into
7 classes I, I1, ..., VII, which we call Nikulin-Kondo type. See Kondo [15] for the
properties of these Enriques surfaces.

Corollary 1.2. The most algebraic Enriques surfaces have finite automorphism
groups and their Nikulin-Kondo types are 1 and 11.

Mukai (private communication) had already realized this result previously. An-
swering a question by G. Kapustka, in Section 6 we give explicit models of the
most algebraic Enriques surfaces Y1 and Yy as Enriques sextic surfaces.

1.3. Contents

This paper is organized as follows. In Section 2 we recall basic facts about lattices,
K3 surfaces and Enriques surfaces, and fix notions and notation. In Section 3 we
classify all Enriques involutions on singular K3 surfaces with discriminant < 36
by a generalization of Ohashi’s method. In Section 4 we recall Borcherds’ method,
and apply it to the 11 singular K3 surfaces whose transcendental lattices are listed
in Table 4.1. Recently, many geometric studies of singular K3 surfaces of small
discriminant have appeared (see, for example, [2,10,17,35]). We summarize the
computational data for these 11 singular K3 surfaces in Table 4.2. In Section 5
we explain an algorithm to calculate Enriques involutions and the automorphism
groups of the Enriques surfaces from the data obtained by Borcherds’ method, and
apply this method to the 11 singular K3 surfaces. In Section 6 we study the most
algebraic Enriques surfaces Y1 and Y7y.
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2. Preliminaries

2.1. Lattices

A lattice is a free Z-module L of finite rank with a Z-valued non-degenerate sym-
metric form ( , ). The determinant det L of L is the determinant of any Gram matrix
of L. A lattice L is unimodular if det L = £1. A lattice with the same underly-
ing Z-module as L and symmetric form n - ( , ) is denoted by L(n). The group of
isometries of L is denoted O(L). We let O(L) act on L from the right. A vector
v of a lattice L is called an n-vector if (v, v) = n. We denote by R the set of
(—2)-vectors of a lattice L.

A lattice L is even if (v,v) € 2Z for all v € L; otherwise, it is odd. The
signature of a lattice L is the signature of L ® R. Analogously, we say that L
is positive definite, negative definite or indefinite if L ® R is. A lattice L of rank
n > 11is hyperbolic if the signature is (1, n — 1). A positive cone of a hyperbolic
lattice L is one of the two connected components of {v € L ® R| (v, v) > 0}. Fora
hyperbolic lattice L and a positive cone Py, of L, we denote by O(L, Py ) the group
of isometries of L that preserves Py .

The standard positive definite lattices associated to Dynkin graphs will be de-
notedby A, (n > 1), D, (n > 4), Eg, E7, Eg.

2.2. Surfaces

Let Z be a K3 surface or an Enriques surface. We denote by Sz the lattice of
numerical equivalence classes of divisors on Z, and call it the Néron-Severi lattice
of Z. Then Sz is an even hyperbolic lattice, provided that rank Sz > 1. Let Pz
denote the positive cone of Sz that contains an ample class, and let R z be the set
of (—2)-vectors of Sz. For simplicity, we denote by aut(Z) the the image of the
natural representation

pz: Aut(Z) — O(Sz, Pz). (2.1)

We put
Nz :={x € Pz|(x,[']) =0 forall curves I" on Z},

and call it the nef chamber of Z. It is obvious that the action of aut(Z) on Py
preserves Nz.
2.3. Finite bilinear and quadratic forms

A finite quadratic form is a finite Abelian group G together with a function ¢ : G —
Q/27 which satisfies

q(na) = nzq(oz) foreverya € Gandn € Z
such that the function b(q): G x G — Q/Z defined by

qla+B) —q(a) —q(B)
i 2

(o, B)
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is a finite symmetric bilinear form. For the sake of simplicity, we will denote by ¢
also the underlying finite Abelian group G. The length, i.e., the minimal number
of generators, of G (respectively of the p-torsion part of G) is denoted by £(G)
(respectively £,(G)). A subgroup I' C G is called isotropic if g|I" = 0, where g|I"
denotes the restriction of g to I'. Given an isotropic subgroup I', the quadratic form
g descends to the quotient group '/ ", where

't :={a eG|bg)(a,y) =0forevery y € T'};

we denote the resulting finite quadratic form by ¢|T"*/T.

If L is a lattice, then the group LY /L, where LY := Hom(L,Z) C L ® Q, is
a finite Abelian group of order | det L|. The discriminant bilinear form of a lattice
L is the finite symmetric bilinear form induced by ¢ , )

b(L): LY/L x LY /L — Q/Z.

If L is even, the discriminant quadratic form of L is the finite quadratic form in-
duced by (, )
g(L): LY/L — Q/2Z.

Let O(g(L)) denote the automorphism group of the finite quadratic form g(L),
which we let act on g (L) from the right. There is a natural homomorphism

O(L) — O(g(L)), g q(g).

Let C,, (e) be the cyclic group of order n generated by e. For k > 1, we denote by uy
(respectively vy) the finite quadratic form with underlying group Cok(€) X Co (f)
such that (e, e) = (f, f) = 0 (respectively (e, e) = (f, f) = 1) and (e, f) = zlk
For a, b € Z prime to each other, we denote by (%) the finite quadratic form with
underlying group Cj(e) such that (e, e) = 7.

24. Genera

Given a pair of non-negative integers (s, s—) and a non-degenerate finite quadratic
(respectively bilinear) form £, the genus g(s, s—, h) is the set of isometry classes
of even (respectively odd) lattices of signature (s, s—) with discriminant quadratic
(respectively bilinear) form isomorphic to 4. If a genus contains only the isometry
class of a lattice L, we say that L is unique in its genus.

In general, enumerating all isometry classes in a given genus is a non-trivial
problem. It is computationally easier to find lattices of smaller determinant, so the
following elementary lemma can be very useful.

Lemma 2.1. Given a lattice L and a prime number p, then £,(L" /L) = rank L if
and only if L = L'(p) for some lattice L’. In this case, and if moreover L is even

and p = 2, then L' is odd if and only if (L) = <%> ®q org(l) = <%> @ q’ for
some finite quadratic form q'.
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Remark 2.2. Suppose ¢ is a finite quadratic form admitting an isotropic subgroup
I". In order to enumerate all isometry classes of even lattices in g(s+, s—, g), we
can take advantage of [20, Proposition 1.4.1]: first we enumerate all lattices in
g(s4, s—, g|T'+/T), then we inspect all sublattices of index |I|.

Given a finite (bilinear or quadratic) form 4 and s € N, the following algorithm,
suggested by Degtyarev, finds all (odd or even) lattices in g(s, 0, #). If & is quadratic
we put b = b(h), otherwise we put b = h.

Algorithm 2.3. Let r be the smallest possible rank for which there exists an (odd
or even) positive definite lattice M of rank r and discriminant bilinear form —b. By
results of Nikulin [20], for each N € g(s, 0, h) there exists a primitive embedding
t: M — L into some positive definite unimodular lattice L of rank r + s such that
[t = N. Taking advantage of the classification of positive definite unimodular
lattices of small rank (see, for instance, in [7, Table 16.7]), we list all such lattices
L. Using GAP and the function ShortestVectors, we list all primitive embed-
dingst: M <~ L forall M € g’ and all L. Then, we compute the lattices [t]* and
select those ones which belong to g(s, 0, h). In order to eliminate pairs of isomor-
phic lattices, one can use the attribute is_globally equivalent_to of the
class QuadraticFormin sage.

The algorithm works provided that » + s is small enough and that we can find a
lattice M explicitly. In order to find M, we can apply the algorithm recursively to
g(r,0,—b). If r = 1 or 2, this genus can be enumerated a priori (see, for instance,
[7, Chapter 15]).

Remark 2.4. Another well-known way to enumerate lattices in a given genus is
Kneser’s neighboring method [14]. This method has been implemented in sage
by Brandhorst ([5] and private communication).

2.5. Primitive embeddings

Given an embedding of lattices t: M — S, we denote by [¢] its image and by
[(]* the orthogonal complement of [(] in S. An embedding ¢: M < § is called
primitive if §/[t] is a torsion-free group. All primitive embeddings are considered
up to the action of O(M).

Proposition 2.5 ([20, Proposition 1.15.1]). If c: M — S is a primitive embed-
ding of even lattices, then there exist a subgroup H C M /M and an isomorphism
of finite quadratic forms B: q([L))|H — q(S)|B(H) such that

g () = (=g (1)) ® 4($)ITF/ T,

where I'g is the push-out of B in (—q([t])) @ q(S).

Given a primitive embedding ¢: M < §, we put

O(S, [1]) = {g € OS) | []¥ =[]},
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and we denote by O(g(S), [t]) its image in O(g(S)) by the natural homomorphism
0(S) — 0(q(9)).

Fix now two even lattices M, N and consider the set (S, M, N) of primitive
embeddings ¢: M < § such that [(]* = N. The group O(S) acts on I(S, M, N)
in a natural way.

Consider also the set of pairs (H, y), where H C MY /M is a subgroup and
y:q(M)|H — —q(N)|y(H) is an isomorphism of finite quadratic forms such that

q(M) @ g(N)|T /T, = q(S), (2.2)

where I'y, is the push-out of y in g(M) @ g(N). We say that two such pairs (H, y)
and (H', y’) are equivalent if there exist ¢ € O(M) and ¥ € O(N) such that
HI%) = H' and

Y oq(@)=q{)oy. (2.3)

Proposition 2.6 ([20, Proposition 1.5.1]). In the above notation, there is a one-to-
one correspondence between the elements of I (S, M, N) modulo the action of O(S)
and the set of pairs (H, y) modulo equivalence.

Proposition 2.7 ([20, Proposition 1.5.2]). For a fixed pair (H, y) corresponding
to the orbit of a primitive embedding 1: M — S, the subgroup O(q(S), [t]) con-
sists of those elements & € O(q(S)) for which there exist ¢ € O(M) and v € O(N)
such that H1Y) = H, equation (2.3) holds, and & corresponds under the isomor-
phism (2.2) to the automorphism induced by ¢ and yr on F)J; /Ty,

2.6. Chambers and their faces

Let V be a Q-vector space of dimension n > 1 with a non-degenerate symmetric
bilinear form (, ): V x V — Q such that V ® R is of signature (1, n — 1). Let Py
be one of the two connected components of {x € VQ R | (x,x) > 0}. Forv € V
with (v, v) < 0, we put

(W)= {x € Py | (x,v) =0},

which is a hyperplane of Py. For a set V of vectors v € V with (v, v) < 0, we
denote by V' the family of hyperplanes {(v)* | v € V}.

Let V be a set of vectors v € V with (v,v) < O such that the family of
hyperplanes V- is locally finite. A V--chamber is the closure in Py of a connected
component of the complement

Py \ LJ H.

HeVt

Let Py be the closure of Py in VR, and 9 Py the boundary Py \ Py of Py. Let
C be a V+-chamber, and C the closure of C in V ® R. We say that C is quasi-finite
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if C N 3Py is contained in a union of at most countably many real half-lines of
VeR.

Let C be a quasi-finite V--chamber. Suppose that we are given a set Uc of
vectors v € V with (v, v) < 0 such that

C={xePy|{x,v) >0 forall veUc}

A wall of C is a closed subset w of C for which there exists a hyperplane H € V-
with w = C N H such that w contains a non-empty open subset of H. Let w be
a wall of C. A vector v € V with (v, v) < 0 is said to define w if w is equal to
C N (v)t and (x,v) > 0 holds for all interior points x of C. A vector v9 € Uc
defines a wall of C if and only if there exists a point y € Py such that (y, vg) < 0
and that (y, v') > 0 holds for all v’ € Uc with (v')* # (vg)*. Therefore, if Uc is
finite, we can calculate the set of walls of C by means of linear programming.

A face is a closed subset of C that is the intersection of a finite number of
walls of C. Let f be a face of C. We denote by ( f) the minimal linear subspace
of V containing f. The dimension of f is the dimension of (f). Suppose that
m = dim f is > 2. Since f contains a non-empty open subset of ( f), the linear
space ( f) contains a vector v with (v, v) > 0, and hence the restriction of { , ) to
(f) is of signature (1, m — 1). We denote by

up:(f) =V and pris: V —> (f)

the inclusion and the orthogonal projection, respectively, and let PP 7y be the positive
cone of (f) that is mapped into Py by ¢(r). We put

L’(kf)VL = {L<_fl>(H) |H € V- such that l<_fl> (H) is a hyperplane of P(f)},

which is a locally finite family of hyperplanes of P 7. Note that szﬂVl is equal to
(pr?‘f) V)1, where

prz‘ﬂV = [prm (v) v eV suchthat (pr s (v),pris(v)) < 0}.

Then the face f of C is an tTf)VJ‘—chamber in Py, and is equal to

{Z € Py |<z, pr<f>(v)) > 0 forall v € Uc with (pr<f>(v), pr<f>(v)) < 0}.

Therefore, if U¢ is finite, we can calculate the set of walls of the l><kf> VL _chamber f,
and hence we can calculate the set of all faces of C by descending induction on the
dimension of faces.

Let w be a wall of C. Then there exists a unique V*-chamber C’ such that
C N C’' = w. This V*-chamber C’ is said to be adjacent to C across the wall w.
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2.7. Induced chambers

Let L be an even hyperbolic lattice. We apply the above definitions to L ® Q. Let
P be a positive cone of L, and let V be a set of vectors v € L ® Q with (v, v) <0
such that the family V1 of hyperplanes of P;, is locally finite. Suppose that we
have a primitive embedding

ts: S— L

of an even hyperbolic lattice S of rank m < n, and let Ps be the positive cone of
S that is mapped into Py, by tg. We use the same letter ¢g to denote the inclusion
Ps < Pr. We denote the orthogonal projection by prg: L ® Q — S ® Q, and put

L’§VL = {LEI(H) | H € V* such that Lgl(H) is a hyperplane of 775},
prgV = {prs(v) |v €V with (prS(U), prS(v)> < O}.

Then L;VJ‘ = (prj;V)L is a locally finite family of hyperplanes of Pg. A V-
chamber C C Py is said to be non-degenerate with respect to ¢ if the closed subset
LEI(C) of Ps contains a non-empty open subset of Ps. Suppose that C is non-
degenerate with respect to t5. Then LEI (C)isan L’§VL—chamber, which we call the
chamber induced by C. If C is quasi-finite, then so is the induced chamber Lgl (©C).

2.8. Vinberg chambers and Conway chambers

Let L be as above. Note that the family Ri of hyperplanes is locally finite, where
R is the set of (—2)-vectors. Each r € R defines a reflection x — x + (x,r)r.
Let W(L) be the subgroup of O(L, Pr) generated by reflections with respect to
(—2)-vectors. Then each Ri‘—chamber is a standard fundamental domain of the
action of W(L) on Py..

For n = 10 and n = 26, let L,, be an even unimodular hyperbolic lattice of
rank 7, which is unique up to isomorphism. We denote by P, a positive cone of
L, ® R, and by R, the set of (—2)-vectors of L,,.

An Rllo-chamber in Pyg is called a Vinberg chamber. 1t is known that a Vinberg
chamber is quasi-finite.

Theorem 2.8 (Vinberg [36]). A Vinberg chamber has exactly 10 walls.

An R2l6-chamber in Poyg is called a Conway chamber. 1t is known that a Conway
chamber is quasi-finite. A non-zero primitive vector w € Lyg N 0 Ppg is called a
Weyl vector if the negative definite lattice [w]*/[w] is isomorphic to the negative
definite Leech lattice, where [w] := {v € Lyg | (v, w) = 0}.

Theorem 2.9 (Conway [36]). For each Conway chamber C, there exists a unique
Weyl vector we such that the walls of C are defined by (—2)-vectors r € Rog
satisfying (w,r) = 1.
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2.9. Primitive embeddings of L1¢(2) into Lyg

In [6], we classified all primitive embeddings of L0(2) into Log. It turns out that, up
to the action of O(L9(2)) = O(L19) and O(Ly¢), there exist exactly 17 primitive
embeddings, which are named as being of type

12A,12B, 20A,...,20A,...,20F, 40A,...,40E, 96A,...,96C, infty.

Let ¢: L19g(2) <> Ly be a primitive embedding. Identifying positive cones of
L10(2) with positive cones of L1 and replacing ¢ with —¢ if necessary, we assume
that ¢ maps Pjg into Pae. Then Pjg is covered by L*R%—chambers. Since Conway

chambers are quasi-finite, every L*R%—chambers are quasi-finite. In [6], we have
proved the following:
Theorem 2.10. Suppose that ¢ is not of type infty. Let D and D’ be L*Rj-é—

chambers. Then there exists an isometry g € OV (Lyo) that preserves the set of
L*Rj%—chambers and maps D to D'. Each L*Rfé-chamber has only a finite number

of walls, and each wall is defined by a (—2)-vector. If D N (r)* is a wall of D with
r € Ry, then the L*R%-chamber adjacent to D across the wall D N (r)* is the

image of the reflection of D into the hyperplane (r)*.

Remark 2.11. If a primitive embedding ¢: L1g(2) <> Lyg is of type infty, then
the L*RzLé—chamber has infinitely many walls. The embedding ¢ is of type infty if

and only if [¢]* contains no (—2)-vectors.

Let Y be an Enriques surface. Then the Néron-Severi lattice Sy is isomorphic
to L1o. It is known that the nef chamber Ny is bounded by hyperplanes ()" defined
by (—2)-vectors r € Ry. In [6], we have proved the following:

Theorem 2.12. Let [0, T] be one of the pairs
[12A,1], [12B,1I], [20A4, V], [20B, III],
[20c, VII], [20D, VII], [20E, VI], [20F, IV].
Then every L*R%—chamber D for a primitive embedding 1: L1o(2) < Log of type

o is equal to the nef chamber Ny of an Enriques surface Y with finite automorphism
group of Nikulin-Kondo type T under an isomorphism L1y = Sy.

2.10. K3 surfaces

Let X be a complex projective K3 surface with transcendental lattice Ty. Then the
nef chamber Ny is an R&-chamber, and each wall of Ny is defined by the class of
a smooth rational curve on X. We put

O(Sx, Nx) := {g € O(Sx) | Ny = Nx}.
Recall that Wy := W (Sy) is the subgroup of O(Sx, Px) generated by reflections
with respect to (—2)-vectors. The following relations hold (see [22]):
O(Sx, Px) = Wx x O(Sx, Nx), 24
Wx C ker(O(Sx) — O(g(Sx))). (2.5)
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Let O(Tx, wx) be the group of isometries of T that preserves the 1-dimensional
subspace H?*%(X) c Tx ® C, and let O(¢(Tx), wx) be the image of O(Tx, wy) by
the natural homomorphism O(Tx) — O(q(Tx)). The even unimodular overlattice
H?(X, Z) of the orthogonal direct sum Sy @ T induces an anti-isometry between
the discriminant forms of Sy and of Tx (see [20]), and hence induces an isomor-
phism O(q(Sx)) = O(¢g(Tx)). Let O(g(Sx), wx) be the image of O(¢(Tx), wx)
through this isomorphism. We say that an isometry g € O(Sx) satisfies the period
condition if g(g) € O(q(Sx), wx). Let O(Sx, wx) denote the group of isometries
satisfying the period condition. Recall that aut(X) C O(Sx, Pyx) is the image of
Aut(X) by (2.1). The Torelli theorem for complex K3 surfaces asserts that

aut(X) = O(Sx, Nx) N O(Sx, wx). (2.6)

In particular, if g € O(Sx, wx) maps an interior point of Ny to an interior point of
Ny, then g belongs to aut(X).

Remark 2.13. By the Torelli theorem, the kernel of px: Aut(X) — O(Sy) is
isomorphic to the kernel of the natural homomorphism O(Tyx, wy) — O(q(Tx)).

2.11. Singular K3 surfaces

Let X be a singular K3 surface. Its transcendental lattice Tx admits a basis with
respect to which the Gram matrix is of the form

__lab
la, b, c] = [b c]’

with 0 < 2b < a < c¢. We write X(T) for the K3 surface corresponding to
an oriented positive definite even lattice T of rank 2. The lattice T = [a, —b, c]
defines a distinct oriented isomorphism class if and only if 0 < 2b < a < c.

Remark 2.14. If X is a singular K3 surface, the subgroup O(Tx, wx) can be iden-
tified with the subgroup consisting of isometries of Tx of positive determinant. Its
image O(¢g(Tx), wx) depends only on the genus of Ty.

3. Classification of Enriques involutions up to conjugation

Let X be a complex projective K3 surface. We are interested in classifying the im-
ages ¢ of Enriques involutions € in aut(X) through the natural representation (2.1)
up to conjugation in aut(X). The image ¢ € aut(X) is also call an Enriques invo-
lution. This is essentially the same problem by the following observation due to
Ohashi.

Proposition 3.1 (Ohashi [22]). Let £1,82: X — X be two Enriques involutions.
Then the quotients Y; := X/(&;),i = 1,2, are isomorphic over C if and only if ¢,
& are conjugate in aut(X).

In this section, after recalling part of Ohashi’s work, we refine and generalize his
main in [22, Theorem 2.3].
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3.1. Main result

Given an Enriques involution ¢ € aut(X), we put
S = (v e Sx | v = v).
We have the following criterion by Keum.

Theorem 3.2 (Keum [12]). An involution ¢ € aut(X) is an Enriques involution if
and only if the following holds: the sublattice S;}Zl is isomorphic to L1p(2) and its
orthogonal complement in Sx contains no (—2)-vectors.

Let Ix be the set of primitive embeddings ¢: L19(2) <> Sx such that the orthogonal
complement [(]* of the image of ¢ in Sy contains no (—2)-vectors. The group
O(Sx) acts on Ix in a natural way.

Proposition 3.3 ([22, Proposition 2.2]). For every « € Ix and g € O(Sx) such
that [t]8 intersects the interior of Ny, there exists a unique ¢ € aut(X) such that
Se=t = 8.

Corollary 34. Let ¢y, &5 € aut(X) be two Enriques involutions. Then, there exists
y € aut(X) such that ¢ =y o &1 oy~ if and only if(S’;:l)V = S;Fl.

Proposition 3.5 ([22, Step 1 of Theorem 2.3]).  For every 1 € Ix there exists
h € O(Sx) such that [(]" intersects the interior of Nx.

Lemma 3.6 ([22, Step 2 of Theorem 2.3]). Suppose [t] intersects the interior of
Nx. If there exist an Enriques involution ¢ € aut(X) and g € O(Sx) such that
S§(=1 = [1]8, then there exists § € O(Sx, Nx) such that S§(=1 = [(]8.

Proposition 3.7. Given 1 € Iy, let 1, &, € aut(X) be two Enriques involutions
with S;}l:l = []8" and S;}Zzl = [1]%2 for some g1, g» € O(Sx, Nx). Then the
Enriques involutions €1 and e are conjugate in aut(X) if and only if the natural
images q(g1), q(g2) € O(q(Sx)) belong to the same double coset with respect to
O(q(Sx). [t]) and O(q(Sx), wx).

Proof. Let 1; == g ot fori = 1,2. Suppose there exists y € aut(X) with
& =y o€l o y_l. Let ¢ := gz_1 oy o gi,sothat ¢ € O(Sx, [¢]). Indeed, by
Corollary 34,

L = [y oul® =[a]% = [l

Asgr = pogroy  and y € O(Sx, wy), the automorphisms g(g1), g(g2) of
q(Sx) belong to the same double coset.

Conversely, assume that there exist ¢ € O(Sx, [t]) and ¥’ € O(Sx, wx) such
that g(g2) = q(p o g1 o y') in O(q(Sx)). Without loss of generality, we can
suppose ¢ € O(Sx, Nx). In fact, we can first exchange ¢ with —¢ if necessary
and suppose that ¢ € O(Sx, Px). By (2.4) and (2.5), we can write ¢ = wo¢’, with

1
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w € Wy and ¢’ € O(Sx, Nx) and exchange ¢ with ¢’ if necessary. Define now

y :=g10¢ ' og/!. Then y € O(Sx, Nx) and g(y) = q(y), 50 y € O(Sx, wx).
The Torelli Theorem (2.6) implies that ¥ € aut(X). Furthermore, we have

-1\ 82
[l = (17")" = leal,
so €1 and &; are conjugate in aut(X) by Corollary 3 4. U

Lemma 3.8. Ifa K3 surface X admits at least one Enriques involution, then the lat-
tice Sx is unique in its genus and the natural homomorphism O(Sxy) — O(g(Sx))
is surjective.

Proof. Let t: L1g(2) — Sx be a primitive embedding. Then ¢(Sx) = (g([t]) &
g([t]1)|T+/ T for some isotropic subgroup I" of ¢ ([¢]) @ ¢([¢]1). Since g([¢]) =
q(L10(2)) = u'®, this implies that

€y (SY/Sx) < rank[t]* = rank Sy — 10

for every odd prime p. Moreover, if EQ(S)V(/SX) = rank Sy, then ¢(Sx) = q([t]) &
q' for some finite quadratic form ¢’. Therefore, we can conclude by [20, Theorem
1.14.2]. O

Combining Lemma 3.8 and the same argument as in [22, Step 5 of Theo-
rem 2.3], we prove the following proposition.

Proposition 3.9. If a K3 surface X admits at least one Enriques involution, then
O(Sx, Nx) — O(q(Sx)) is surjective.

Our main result is the following theorem.

Theorem 3.10. Let X be a K3 surface and vy, ..., € Ix be a complete set of
representatives for the action of O(Sx) on Ix. Then there exists a bijection between
the set of Enriques involutions up to conjugation in aut(X) and the disjoint union
of the sets of double cosets

O(g(Sx), [tiD\O(g(Sx))/O(q(Sx), wx), i=1,...,r.

Proof. Let G = O(Sx), Hi = O(q(Sx), [t]) and K = O(q(Sx), wx). For each
i =1,...,r, fix hj € G such that [;]" intersects the interior of Ny (Proposi-
tion 3.5). As exchanging ¢; with &; o ¢ replaces H; with a conjugate subgroup, we
can suppose without loss of generality that [¢;] intersects the interior of Ny. For
each Enriques involution ¢ € aut(X) there exists a unique i € {1, ..., r} such that
there exists g € G with Sffl = [1;]8. Moreover, by Lemma 3.6, we can suppose
that g € O(Sx, Nx). We map such an ¢ to the double coset H;q(g)K € H;\G/K.
This function is trivially well-defined and injective by Proposition 3.7.

To show surjectivity, take i € {1,...,r}and H;(K € H;\G/K,with& € G.
By Proposition 3.9, £ = g(g) for some g € O(Sx, Nx). As [¢;]8 also intersects the
interior of Ny, by Proposition 3.3 there is an Enriques involution ¢ € aut(X) which
maps to H;€ K. This concludes the proof. O
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Corollary 3.11. The number of Enriques involutions of a singular K3 surface X up
to conjugation in aut(X) only depends on the genus of the transcendental lattice Ty .

Proof. The lattice Sy is unique in its genus by Lemma 3.8, so it is completely deter-
mined by the genus of Tx. The subgroup O(¢(Sx), wx) is also determined by the
genus of Tx when X is singular (see Remark 2.14). The subgroups O(q(Sx), [t])
for ¢ € Ix only depend on Sy, so in turn they depend only on the genus of Ty. [

Remark 3.12. Schiitt [24] described a relation of two singular K3 surfaces whose
transcendental lattices are in the same genus. See also [26].

3.2. Table 3.1

Table 3.1 contains the list of all singular K3 surfaces X of discriminant d with
d < 36, given by their respective transcendental lattices T, together with the list
of the Enriques involutions that they admit, up to conjugation in aut(X). We will
illustrate presently how this table was compiled.

The following theorem by Sertoz builds on work by Keum [12] and character-
izes singular K3 surfaces without Enriques quotients.

Theorem 3.13 (Sertoz [25]; see also [11]). Let X be a singular K3 surface of dis-
criminant d. Then X has no Enriques involution if and only if d = 3 (8) or
Tx €{12,0,2],[2,0,4],[2,0, 8]}.

In all other cases, we determined the set of conjugacy classes of all Enriques invo-
lutions in aut(X) by means of Theorem 3.10. The item |Enr| in Table 3.1 indicates
the number of such conjugacy classes.

First of all, one must determine a complete set of representatives for the action
of O(Sx) on Iy. Given a positive definite even lattice N of rank 10 without 2-
vectors (see Theorem 3.2), we put

(V) = fue I [t = N =D}

Clearly, the sets Ix (/) form a partition of Iy which respects the O(Sx)-action, so
we reduce the problem to computing a complete set of representatives for the action
of O(Sx) on Ix(N), for each N such that Ix(N) # .

We find all such lattices in the following way. Using Proposition 2.5, we list all
possible finite quadratic forms ¢, such that ¢ = ¢(N). For each form ¢, we deter-
mine all lattices N in the genus g(10, 0, g) without 2-vectors (see Algorithm 2.3).

All possible finite quadratic forms ¢ = ¢(N) and orthogonal complements
N have been listed in Table 3.1 in the items ¢(N) and N. The name Nf 204 (re-

spectively Mf é’p *) denotes a positive definite even (respectively odd) lattice of rank
r, determinant d, with p, 2-vectors and p4 4-vectors (p4 omitted if not needed to
distinguish two lattices). A Gram matrix for each of these lattices can be found
in [31].
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Table 3.1. Enriques involutions up to conjugation of singular K3 surfaces of discrimi-
nant d < 36 (see Section 3.2).

d Tx [Ent] q(N) N [1x (N)|
d T [Enr] q(N) N [1x (N)|
3 2,1,2] 0 - — -
4 [2,0,2] 0 - - -
7 214 2 o (3) NI @) 1
242

Nio5(2) 1

g 2,0, 4] 0 - — -

T [216] 0 - - -

2opoe 1 «Pe(fe(l) mMe

2 @24 3 wPMeve(]) M@ 3x1

15 121,81 5 Walk)  NOs@ 1
N335 1
Nighs@ 2
Nigds@ 1

15 [41,4] 4 WPalfk) MR 1
112
N10,15(2) 1
Niy3s@) 2

16 [20,8] 0 - - ~

4
16 4,04 9 u® @(ﬂ@(ﬂ Dio(2) 1

Nfgyz) 5x1

uf’ @ <%> ® (%> N?é??gm 1

9 [21,10] 0 = = =
20 o1 1 «Pe(He(s) Mz 1
20 @26 2 «Me(fe(d) MEs@ 1
M%)

—_

@5 2 74

23 [2,1,12, 7 uf @<g> NT§ 232)
84

[4, £1,6] NS 53

12
Nip23(2

1

1

1
Nllg?B ) 1
N}(‘)‘j‘23 ) 1
Nigps@ 1
N%‘% ) 1

(continued on next page)
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Table 3.1. (continued from previous page)
D4 1 1 90
# o2 1 «Pa(fe(h) M@ 1
B4 o [3\ o /11 242
2% 1oe 1 «Me(fle(l) Mo 1
27 [2.1,14 0 - - -
27 16.3.6] 0 = - -
®4 1 1 112
% o 1 «Ha(fe(h) Mo 1
% 428 4 «Pa(3) N#@)  3x144x2
N2 @) 4x1+4x2
o4 [2 0,274
Uy 69(7) Nio,1792 !
®5 2 60
3oiel 9 WP e(d) N, 1
72
[4, £1,8] N%%M(Z) 1
Mg @ 1
Vo™
Ve
R
Wile
e
N10,31(2) 1
D4 1 1 84
2 pote 1 aPHe(He(k) M 1

2 @os 3 «Me(fell) MO 2x1+4x2
NiJ&@ 3x1+2x2
N#2@2) 3x1+5x2

@3 1 1 0,210
Uy ®<Z>®<§> Ni6,2048 !
N0,250 1
074
N10.2048 !
2 6260 3 «Felie(d) MEo 1
144
e
M2 ) 1
35 2118 0 = = -
35 [6,1,6] 0 = - -
36 oas 3 wPa(be(k) Mo 1
90
i O
Ml 1

(continued on next page)
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Table 3.1. (continued from previous page)
36 [4,2,10] 2 u?4®(%>@(f—8> Mige@ 1
242
M10’9(2) 1
o4 1 1 60
36 6.0.61 3 ufte(fe(l) MI,o 1
MiFZ@ 1

M@ 1

Since Ix(N) = I(Sx, L10(2), N(—1)) as defined in Section 2.5, a complete set of
representatives tq, ..., (- up to the action of O(Sy) on Ix(N) can be enumerated
using Proposition 2.6. For each i € {1, ..., r}, the subgroup H; = O(q(Sx), [ti])
of G = O(g(Sx)) can be determined using Proposition 2.7. On the other hand, the
subgroup K = O(q(Sx), wx) can be computed using Remark 2.14.

Remark 3.14. In order to apply Proposition 2.6, it is worth mentioning that for
L = L1p(2) the natural homomorphism O(L) — O(g (L)) is surjective and that, up
to the action of O(g (L)), there are only two subgroups of L /L of order 2.

On the other hand, since N is positive definite, we can compute O(N) by
the attribute automorphism group of the class QuadraticForm in sage;
hence, we can compute its image in O(q(N)).

The item |Ix (N)| gives the cardinalities of the sets of double cosets H;\G/K . For
instance, the entry “3 x 1 +4 x 2” means thatr =7, |H;\G/K| = 1fori =1,2,3
and |H;\G/K| = 2 fori = 4,...,7. Note that the item |Enr| is the sum of the
items |Ix(N)| over the lattices N.

4. Automorphism groups of singular K3 surfaces

4.1. Borcherds’ method

We explain Borcherds’ method [3,4] to calculate aut(X) of a K3 surface X and its
action on Ny . The details of the algorithms in the computation below are explained
in [27]. Suppose that we have a primitive embedding

Lx: SX —> L26.

We assume that (x maps Py to the positive cone Pos of Lys, and consider the
decomposition of Py by t’}RzLé—chambers, that is, by chambers induced by Conway

chambers non-degenerate with respect to tx. Since tx maps R x to Rog, every R§
chamber is a union of L}}Ré—é-chambers. In particular, the nef chamber Ny is a

union of L}*(Rj%-chambers. Since a Conway chamber is quasi-finite, every L;}R%&-
chamber is quasi-finite.
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The orthogonal complement [tx]* of the image of tx is an even negative def-
inite lattice. The even unimodular overlattice Log of Sy @ [tx]* induces an anti-
isometry g(Sx) = —q([Lx]J‘), and hence an isomorphism O(g (Sx)) §O(q([tx]J‘)).
We assume the following condition:

the image of O(g(Sx), wx) by the isomorphism O(g(Sx)) = O(q([tx]J‘))
above is contained in the image of the natural homomorphism O([¢ X]L) - (A

O(q(lex]h)).

Since O([tx]+) and O(¢(Sx), wy) are finite, we can determine whether this condi-
tion is fulfilled or not. Suppose that Condition (A) is satisfied. Then every isometry
g € O(Sx, wx) N O(Sx, Px) extends to an isometry g € O(Lyg, P26), which pre-
serves the set of Conway chambers. Therefore every isometry of Sx satisfying the
period condition preserves the set of 1 Rj%-chambers.

We also assume the following condition:

[¢ X]l cannot be embedded into the negative definite Leech lattice. (B)

For example, if [: x ]+ contains a (—2)-vector, then this condition is fulfilled. Con-
dition (B) implies that each L*XRZ%—chamber D in Py has only a finite number of
walls (see [27]). More precisely, if D is induced by a Conway chamber C, then
the set of vectors defining walls of D can be calculated from the Weyl vector w¢
corresponding to C by Theorem 2.9. By this finiteness, we can calculate, for two
L}}Rfé-chambers D and D', the set of all isometries g € O(Sy) such that D8 = D’
In particular, the group

O(Sx, D) := {g € O(Sx) | D* = D}
is finite, and can be calculated explicitly. If D C Ny, then
aut(X, D) := O(Sx, D) N O(Sx, wx)

is contained in aut(X), and can be calculated explicitly.
Definition 4.1. Let D be an L}R%-Chamber contained in Nx. A wall D N (v)* of
D is called an outer wall if it is defined by a (—2)-vector, that is, if there exists a
rational number A such that —2/(v, v) = 22 and Av € Sy. Otherwise, we say that
D N (v)1 is an inner wall.
A wall D N (v)* is an outer wall if and only if Ny N (v)1 is a wall of Nx. The
L§R2l6-chamber D’adjacent to D across a wall D N (v)* of D is contained in Ny
if and only if D N (v)* is an inner wall.

Let D be an L}}R%—chamber, and let wc be the Weyl vector corresponding to
a Conway chamber C inducing D = L;l (C). Let DN (v) be awall of D, and let D’
be the L’}}R%—chamber adjacent to D across D N (v)*. Then we can calculate the
Weyl vector w¢r corresponding to a Conway chamber C’ inducing D' = L}l(c/ )
(see [27]), and hence we can calculate the set of walls of D’, which is again finite.
Therefore we can determine whether there exists an isometry g € O(Sy, wy) that
maps D to D’.
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Definition 4.2. Let D N (v)* be an inner wall of an L}*(Rj%-chamber D contained
in Nx. An isometry g € O(Sx, wy) is said to be an extra automorphism associated
with D N (v)* if g maps D to the L}}Rz%-chamber adjacent to D across D N (v)*.

Let g be an extra automorphism as above. Since g satisfies the period condition,
Condition (A) implies that g preserves the set of t“;(R%B—chambers. Moreover g
maps an interior point of Ny to the interior of Ny, and hence g € aut(X). We
consider the following condition:

There exists an L}Rzl6-chamber Dy contained in Ny such that every

IX
inner wall of Dy has an extra automorphism. (1%

Definition 4.3. We say that an embedding ¢x satisfying Conditions (A), (B) and
(IX) is of simple Borcherds’ type.

Theorem 4.4 ([27]). Suppose that tx is of simple Borcherds’ type. Then:

(1) For any point v of Nx, there exists an automorphism g of X such that v8 € Dy,

(2) Letoy, ..., on be the orbits of the action of aut(X, Dg) on the set of inner walls
of Do, and, fori = 1,...,m, let g(0;) be an extra automorphism associated
with an inner wall Dy N (v;)* belonging to o;. Then aut(X) is generated by
aut(X, Do) and the extra automorphisms g(01), ..., g(0n).

4.2. Application to certain singular K3 surfaces

We consider singular K3 surfaces with transcendental lattice Tx = [a, b, c] in
Table 4.1. These transcendental lattices are characterized among all even binary
positive definite lattices by the following properties: there exists a primitive em-
bedding tx: Sx <> Log of simple Borcherds’ type such that the orthogonal com-
plement [tx]* is generated by (—2)-vectors. In particular, Condition (B) is satis-
fied. The column root type in Table 4.1 indicates the ADE-type of the standard
fundamental root system of [t x]+. For these cases, the natural homomorphism
Oo(ix]H) — O(g([t xIH) is surjective and hence Condition (A) is satisfied.
The following data are also given in Table 4.1:

e m is the order of O(Tx), m» is the order of O(Tx, wx), m3 is the order of the
kernel K of the homomorphism O(Tx) — O(g(TY)), and m4 is the order of
O(Tx, wx) N K. Then my4 is the order of the kernel of px by Remark 2.13, and
the order of O(q¢(Tx), wx) = O(q(Sx), wyx) is my/my;

e k; is the order of O([tx]1), and k, is the order of O(g(Tx)) = O(g(Sx)) =
O(q([tx1H).

We have a Conway chamber Cy that induces an L}Rzlé-chamber Dy contained
in Nx. Let w € Lyg be the Weyl vector corresponding to Co, and let wg € Sy ® Q
be the image of w by the orthogonal projection prg: Ls ® Q — Sx ® Q. For
each of the 11 cases, we can confirm that wg belongs to the interior of Dy and that
Wy is invariant under the action of aut(X, Dg). Let o be an orbit of the action of
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Table 4.1. The 11 K3 surfaces to which we can apply Borcherds’ method (see Sec-
tion 4.2).

No. Tx root type m; my m3 my kq ko
1 [2,1,2] Eq 12 6 6 3 103680 2
2 [2,0,2] Dg 8 4 4 2 46080 2
3 [2,1,4] Ag 4 2 2 1 10080 2
4 [2,0,4] Ds + Ay 4 2 2 1 7680 2
5 [2,0,6] As + Ay 4 2 2 1 2880 2
6 [4,2,4] D4+ Ap 12 6 1 1 13824 12
7 [2,1,8] Ag+ Ar 4 2 2 1 2880 4
8 [4,0,4] 2A3 8 4 1 1 4608 8
9 [4,2,6] Ag +2A; 4 2 1 1 1920 4
10 [2,0,12] As3+A+ A 4 2 2 1 1152 4
11 [6,0, 6] 2A2 424 8 4 1 1 2304 16

aut(X, Do) on the set of walls of Dy, and let DoN(v)+ be a member of 0. We choose
the defining vector v of this wall in such a way that v is primitive in Sy. Then v is
unique. The values n := (v, v) and a := (v, wg) are independent of the choice of
the wall Dy N (v)" € 0. Suppose that the orbit o consists of inner walls. Then we
can find an extra automorphism g € aut(X) associated with Dy N (v)*+ by a direct
calculation. Hence ty is of simple Borcherds’ type. The degree d, := (wf;, ws)
is also independent of the choice of Dy N (v)* and g. Table 4.2 contains the data
of walls and extra automorphisms of Dg. If Dy N (v)* is an inner wall, the (—2)-
vectors r of Log such that (r)+ passes through tx (Do N (v)1) C Py form a root
system, whose ADE-type is also given below.

Remark 4.5. Almost all results in Table 4.2 have already appeared in previous
works. See Vinberg [37] for Nos.1 and 2 of Table 4.1, Ujikawa [34] for No.3,
Keum and Kondo [13] for Nos. 6 and 8, [27] for Nos.4, 5 and 6, [28] for Nos.7, 9
and 11.

Remark 4.6. In Table 4.2, the order of the finite group auty := aut(X, Dyg) is given.
The list of all elements of auty is given in [31].

Table 4.2. Walls and extra automorphisms of Dy.

Tx lauty| (wg,wg) No. |o] n a dg  TOOt type
[2,1,2] 72 78 6  outer -2 1
18  outer -2 1
1 12 inner -2/3 9 321 Eq
2,0, 2] 120 55 10  outer -2 1
15 outer -2 1
20 outer -—1/2 17/2
1 5 inner —1 6 127 D7
[2,1,4] 336 28 28  outer -2 1
1 14 inner —8/7 4 56 A7
2 28 inner —4/7 6 154 Dy
3 56 inner —2/7 7 371 Eq

(continued on next page)
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Table 4.2. (continued from previous page)
Tx lauty| (wg, wg) No. |o| n a dg root type
[2,0,4] 48 61/2 6 outer —2 1
8 outer —2 1
12 outer —2 1
2 outer —1/2 11/2
I 3 inner —-3/2 3/2 67/2 Ay + Ds
2 4 inner —1 5 161/2 A1+ Dg
3 6 inner —1 5 161/2 A1+ Dg
4 8 inner —-3/4 6 253/2 Al + Eg
5 24 inner -3/4 6 253/2 Al + Eq
6 8 inner —1/4 13/2 737/2 E7
[2,0,6] 144 18 12 outer -2 1
18 outer -2 1
12 outer —1/2 11/2
36 outer —1/2 11/2
I 4 inner -3/2 3/2 21 Ay + As
2 24 inner —-7/6 7/2 39 A1+ Ag
3 6 inner -—2/3 4 66 A7
4 24 inner —-2/3 5 93 A1 + Dg
5 36 inner —2/3 5 93 A1+ Dg
6 24 inner —1/6 11/2 381 Eq
[4,2,4] 1152 16 32 outer —2 1
I 8 inner —4/3 2 22 A3+ Dy
2 72 inner —1 4 48 Ay + Ds
3 96 inner —1/3 5 166 Dy
[2,1,8] 720 12 36 outer —2 1
I 12 inner —4/3 2 18 A3z + Ay
2 40 inner —6/5 3 27 Ay + As
3 90 inner —4/5 4 52 Ay + Ds
4,5 30 inner —8/15 4 72 A7
6,7 120 inner —2/15 5 387 E;
[4,0,4] 3840 10 40 outer 2 1
1 64 inner —5/4 5/2 20 A3+ Ay
2 40 inner —1 3 28 A3+ Dy
3 160 inner —1/2 4 74 A7
4 320 inner —1/4 9/2 172 Dy
[4,2,6] 120 11 5 outer -2 1
30 outer —2 1
1,2 6 inner —3/2 3/2 14 A1+ Ary+ Ay
3 20 inner —6/5 3 26 2A1 + As
4 30 inner —6/5 3 26 2A1 + As
5 1 inner —1 2 19 A3+ Ay
6 30 inner —4/5 4 51 2A1 + Ds
7 40 inner —4/5 4 51 2A1 + Ds
8 60 inner —4/5 4 51 2A1 + Ds
9,10 20 inner —7/10 7/2 46 A1+ Ag
11,12 20 inner —3/10 9/2 146 A1+ Eg
13,14 60 inner —3/10 9/2 146 A1+ Eg
15 10 inner —1/5 4 171 D7

(continued on next page)
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Table 4.2. (continued from previous page)
Tx lauty| (wg, wg) No. |o| n a dyg root type
[2,0,12] 720 15/2 45 outer -2 1

45 outer —1/2 7)2
10 inner —-3/2 3/2 21/2 24, + A3

1
2 30 inner —4/3 2 27/2 A1+ 243
3 72 inner —5/4 5/2 35/2 A1+ Ay+ A4
4 60 inner —1 3 51/2 A1+ Ay+ Dy
5 12 inner —5/6 5/2 45/2 Az + Ay
6 40 inner —-3/4 3 63/2 Ay + As
7,8 120 inner —7/12 7/2 99/2 Al + Ag
9 120 inner —1/3 4 207/2 A1+ Dg
10 180 inner —1/3 4 207/2 A1+ D¢
11,12 120 inner —1/12 4 783/2 E;
[6,0,6] 1440 5 60 outer —2 1
I 40 inner —-3/2 3/2 8 Al +34;
2 180 inner —4/3 2 11 2A1+ Ay + A3
3 10 inner —1 2 13 2A7 + A3
4,5 144 inner —5/6 5/2 20 Aj+Ay+ Ay
6 240 inner —2/3 3 32 2A1 + As
7 360 inner —-2/3 3 32 2A1 + As
8 180 inner —1/3 3 59 Ay + Ds
9,10 240 inner —1/6 7/2 152 A1+ Eg

5. Enriques involutions and Borcherds’ method

In this section, we assume that X is a complex K3 surface admitting a primitive
embedding tx : Sx <> Ly of simple Borcherds’ type and, in addition, that

the natural homomorphism py : Aut(X) — O(Sx, Px) is injective.  (C)

5.1. Inner faces

Let Dy be an L’)‘(Rjé—chamber contained in Nx. Let wq, ..., wy be the inner walls
of Dy. For each w;, we calculate an extra automorphism g; € aut(X) associated
with w; (see Definition 4.2).

Definition 5.1. A face f of Dy is said to be Dg-inner if f is not contained in any
outer wall of Dy, whereas f is said to be Nx-inner if f is not contained in any wall
of N X.

Remark 5.2. An Nyx-inner face is always Dp-inner. The converse is, however, not
true in general as illustrated in Figure 5.1, in which a black circle indicates a Dy-
inner face of codimension 2 that is not Ny-inner.
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an inner wall of Dg an inner wall of Dg

8 4
DO DO

a wall of Ny
Figure 5.1. A Dg-inner face that is not Nx-inner.
Let f be a Dp-inner face of dimension > 0. We put
D(f) = {D | D is an t}?’\’,é%—chamber contained in Ny and containing f },
AKX, f) = {g € aut(X) | Df € D(f)} - {g caut(X)| f C Dg’},
aut(X, f) = {g € aut(X) | f¢ = f}.

The set D(f) is calculated by the following method.

Algorithm 5.3. We set D = [Dyl, yo = id, I' = [w], and i = 0. During the
calculation, the ordered set D is a subset of D(f), and the (i + 1)st member y;
of I' is an element of aut(X) that maps Dq to the (i + 1)st member D; of D.

While i < |D|, we execute the following. We calculate the set {wy (1), ..., Wyum)}
of inner walls w,(jy of Do such that f C wl}:"(j). Let g,(j) € aut(X) be an extra

automorphism associated with w, ;. For each j = 1,...,m, we calculate the
induced chamber D' := Dg”(" "t \which is adjacent to D; = Dgi across w]’:’( j and

contains f. If D" has not yet been added to D, we add D' to D and g,jyy; to I'.
Then we increment i toi + 1.

When this algorithm terminates, the list D is equal to D(f). Moreover, we have
calculated I = {gp | D € D(f)}, where gp € aut(X) maps Dy to D € D(f).
Note that the action of gp € I" preserves the walls of Ny . The following is obvious
from the definition.

Criterion 5.4. The Dp-inner face f is Nx-inner if and only if, for any gp € I”
and any outer wall Dg N (r)* of Do, the wall (Dg N (r)+)82 of D = D§D does not
contain f.

Suppose that f is Nx-inner and D is an element of D(f). Note that the set of all
elements g € aut(X) that maps Dy to D is equal to aut(X, Dg) - gp. Therefore we
can calculate A(X, f) by

AX, f)y= || aut(X.Do)-gp.
DeD(f)

The subgroup aut(X, f) of aut(X) is contained in the finite set A(X, f), and thus
we can calculate aut(X, f).
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Definition 5.5. Let f and f/ be Nx-inner faces of Dy. We say that f and f’ are
aut(X)-equivalent (respectively aut(X, Dg)-equivalent) if there exists an element
g € aut(X) (respectively g € aut(X, Dy)) such that f$ = f’.

Even though aut(X) is infinite in general, we can calculate the aut(X)-equivalence
classes by the following:

Criterion 5.6. The faces f and f’ are aut(X)-equivalent if and only if there exists
an element g € A(X, f’) such that f8 = f’.

5.2. An algorithm to classify all Enriques involutions

Let £: X — X be an Enriques involution, and 7: X — Y := X/(&) the quo-
tient morphism to the Enriques surface Y. Let ¢ € aut(X) denote the image of
£ by the natural homomorphism (2.1). Then m induces a primitive embedding
7*: Sy(2) — Sx. We have canonical identifications Sy (2) ® R = Sy ® R and
O(Sy(2)) = O(Sy). In particular, we regard the positive cone Py of Sy as a positive
cone of Sy(2). The embedding 7* induces an embedding

¥ PY —> Px.

Henceforth, we regard Sy (2) as a primitive sublattice of Sy and Py as a subspace
of Px by n*. Note that Sy(2) is equal to {v € Sy | v® = v}, and Py is equal to
{x € Px|x% =x}.

Proposition 5.7. We have Ny = Nx N Py. Let y be a point of Ny. Then y is an
interior point of Ny if and only if y is an interior point of Nx.

Proof. The first equality is obvious. By Theorem 3.2, the orthogonal complement
of Sy(2) in Sy contains no (—2)-vectors, and a line bundle of Y is ample if and
only if its pull-back to X is ample. O

Let y be a sufficiently general point of Ny. By Theorem 4.4, there exists an
automorphism g € aut(X) such that y¢ € Dy, and hence Dy N Nf,' contains a

non-empty open subset of Pf,. Therefore, replacing ¢ by g~ 'eg, we can assume
that
Ey := Do N Ny

contains a non-empty open subset of Py . Consider the composite
ty ;=txom™: Sy(2) < Lyg

of primitive embeddings. Then Py is decomposed into the union of L’{,Ré%—
chambers. Since every wall of Ny is defined by a (—2)-vector, it follows that
Ny is decomposed into a union of L";R%-chambers. Note that Eq is one of the
L’;Ré%—chambers in Ny.

Definition 5.8. For a closed subset A of Dy, the minimal face of Dy for A is the
face of Dy containing A with the minimal dimension.
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Let f: be the minimal face of Dy for Ey. Since the orthogonal complement of Sy (2)
in Sy contains no (—2)-vector, the face f, is Nx-inner. Moreover, the involution
¢ € aut(X) belongs to aut(X, f:). Let &’ be an Enriques involution such that f,/ is
a face of Dy. If &’ is conjugate to &, then f; is aut(X)-equivalent to for. If f, = f3,
then ¢ and &’ are conjugate if and only if ¢ and & are conjugate in aut(X, f).

We calculate all Nx-inner faces of Dy of dimension > 10 by descending in-
duction of the dimension of faces (see Section 2.6), and compute a complete set
of representatives of the aut(X)-equivalence classes. For each representative f, we
calculate aut(X, f). We then calculate the set of Enriques involutions ¢ contained
in aut(X, f) such that f; = f by Keum’s criterion (Theorem 3.2), and thus we
obtain a set of complete representatives of Enriques involutions in aut(X) modulo
conjugation.

5.3. Computation of Aut(Y)

Let ¢ be a representative of aut(X)-conjugacy classes of Enriques involutions ob-
tained by the method above. In particular, we have an L?R%-chamber Ey=DgN
Ny, the minimal face f, of Dy for Ep, and the associated data D(f.), A(X, fe),
aut(X, f.). We put

aut(X, ¢) := {gx € aut(X) |egx = gxe} = {gx € aut(X) | Sy (2)** = Sy(2)},

where the second equality follows from Sy(2) = {v € Sx | v® = v}. We have a
natural restriction homomorphism aut(X, €) — O(Sy), which is denoted by gx +—>
gx|Sy. By Condition (C), we have a natural identification

Aut(Y) = aut(X, £)/(e). (5.1)

Under the identification (5.1), the homomorphism py: Aut(Y) — O(Sy, Py) is
identified with the homomorphism gx mod (¢) +— gx|Sy. The method below,
when it works, gives us a finite set of generators of aut(X, €), and hence a finite set
of generators of Aut(Y).

Recall that aut(Y) is the image of Aut(Y) by py. We put

aut(Y, Eo) := {g € aut(Y) | ES = Eo},

and let Aut(Y, Ep) denote the inverse image of aut(Y, Ep) by py.

Proposition 5.9. The action of aut(Y) on Ny preserves the set of L?R%G-chambers
contained in Ny .

Proof. Let g be an element of aut(Y). Then g extends to gy € aut(X, ¢). By
Condition (A), this isometry gx € O(Sx, wx) N O(Sx, Px) extends to an isometry
gx of Log, which preserves the set of Conway chambers. Hence its restriction g to
Sy (2) preserves the set of chambers induced by Conway chambers. O
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We put
aut(X, ¢, fo) := aut(X, ¢) Naut(X, fe).

Proposition 5.10. The identification (5.1) induces Aut(Y, Eg) = aut(X, &, f:)/(e).

Proof. Note that Eg = f, N Ny. Since E( contains an interior point of the face f,
an element gy of aut(X, ¢) fixes Ep if and only if gx fixes f. O

Corollary 5.11. By the identification (5.1), the kernel of py : Aut(Y) — O(Sy, Py)
is equal to
{gx € aut(X, ¢, fe) | gx|Sy = id}/(e).

Recall from Section 2.9 that we have classified primitive embeddings of Sy (2) =
Lio(2) into Lyg. The L’)“,Rj%-chamber Ep has only finitely many walls. By Re-
mark 2.11, the primitive embedding ¢y : Sy(2) <> Lo is not of type infty. By
Theorem 2.10, every L;}Ré%—chamber E has only a finite number of walls, and each
wall of E is defined by a (—2)-vector r € Ry.

Definition 5.12. A wall w of Ej is said to be outer if w is contained in a wall
of Ny. Otherwise w is said to be inner.

There are several criteria to determine whether a given wall w of Eg is outer or
inner.

Criterion 5.13. Suppose that the wall w of Ej is defined by r € Ry. Then w
is outer if and only if there exists a (—2)-vector u in the orthogonal complement
[7r*]+ of Sy (2) in Sy such that (u + r)/2 € Sx.

Indeed, the condition in the statement is equivalent to the condition that r is the
class of an effective divisor of Y (see [21]).

Criterion 5.14. Let f,(w) be the minimal face of Dy for the closed subset w of Dy.
Then w is inner if and only if f.(w) is Nx-inner.

Indeed, by minimality of f;(w), there exists an interior point y of w that is an
interior point of f;(w). Then the statement follows from Proposition 5.7.

When Eg has no inner walls, we have Ey = Ny and | Aut(Y)| < oo, and
the Nikulin-Kondo type of Y is obtained by comparing the configuration of (—2)-
vectors defining the walls of Eg with the dual graphs of smooth rational curves
given in [15].

We consider Aut(Y) when Eq has an inner wall. Let Iy denote the set of inner
walls of Eg. For each w = Eg N (r)* € I withr € Ry, we put E(w) := E(S)",
where s,: Py — Py is the reflection into the hyperplane (r)* ¢ Py. Theo-
rem 2.10 implies that E(w) is the L”{,R%—chamber adjacent to Ep across w. Recall
that A(X, fe(w)) is the set of gx € aut(X) such that Dgx contains fg(w). If
the restriction gx|Sy to Sy(2) of gx € aut(X, ¢) maps Eg to E(w), then gy €
A(X, fe(w)) holds.

Definition 5.15. An element gx of aut(X, &) N A(X, f:(w)) is an extra automor-
phism for the inner wall w € Ij if the restriction gx|Sy of gx to Sy(2) maps Ey to
E(w).
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Since A(X, f.(w)) is finite, we can determine the existence of an extra automor-
phism for each inner wall of Ey.

Theorem 5.16. Suppose that Condition (C) is satisfied. Suppose also that the fol-
lowing holds:

there exists an extra automorphism gx (w) for each inner wall w € Iy. IY)

Then aut(X, ¢) is generated by the finite subgroup aut(X, €, f.) and the extra auto-
morphisms gx (w) (w € Ip).

Proof. Let T" denote the subgroup of aut(X, ¢) generated by the extra automor-
phisms gx(w) (w € Ip). First we prove the following claim. For any LT,R%%-
chamber E contained in Ny, there exists an element y € I" such that y|Sy maps Eg
to E. There exists a chain Eo, Ey, ..., E,, = E of L”I‘,R%—chambers contained in
Ny such that E;_| and E; is adjacent fori = 1, ..., m. We prove the claim by in-
duction on the length m of the chain with the case m = 0 being trivial. Suppose that
m > 0. There exists an element ” € I" such that y’|Sy maps Eg to E,,—1. Let E’ be
the ¢} Ry -chamber that is mapped to E,, by »’|Sy. Then E’ is adjacent to Eq. Note
that y’|Sy € aut(Y) preserves Ny. Therefore E’ is contained in Ny. In particular,
the wall w between Eo and E’ is inner, and hence there exists an extra automor-
phism gx(w) such that gx(w)|Sy maps Eo to E'. We put y := gx(w) -y’ € T.
Then y|Sy maps Eg to Ej,.

Next we show that I" and aut(X, ¢, f:) generate aut(X, ¢). Let g be an arbitrary
element of aut(X, ¢). We apply the claim above to the L“{,R%—chamber Eg lSY, and

obtain an element ¥ € I such that (gy_1)|Sy is an element of aut(Y, Ep). By
Proposition 5.10, we have gy~ € aut(X, ¢, f.). O

Definition 5.17. We say that a triple (X, tx, €) of a K3 surface X, a primitive em-
bedding tx : Sy <> Lo¢, and an Enriques involution ¢ of X is of simple Borcherds’
type if X satisfies Condition (C), (X, tx) is of simple Borcherds’ type in the sense
of Definition 4.3, and ¢ satisfies Condition (IY).

Remark 5.18. The notion of simple Borcherds’ type was introduced in [29] for K3
surfaces. We hope that we can find a bound on the degrees of polarizations similar
to that of [29] for Enriques surfaces.

54. Enriques involutions of the 11 singular K3 surfaces

We apply the method in the previous section to the singular K3 surfaces in Sec-
tion 4.2. First remark that Condition (C) holds for the 11 cases except for the cases
Tx = [2,1,2] and Tx = [2,0, 2] (see Remark 2.13 and Table 4.1). Note that
in these two cases, and also in the case Ty = [2, 0, 4], there exist no Enriques
involutions by Theorem 3.13.

Our main result is as follows.
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Theorem 5.19. Let X be one of the singular K3 surfaces of No. # 1,2, 4 in Ta-
ble 4.1, and let 1x : Sx <> Log be the primitive embedding given in Section 4.2.
Then the Enriques involutions of X modulo conjugation in Aut(X) = aut(X) are
given in Table 5.1. For each Enriques involution € on X, the triple (X, tx, €) is of
simple Borcherds’ type.

We explain the contents of Table 5.1. The item ty is the type of the primitive
embedding ty: Sy(2) <> Log given in [6]. The item NK is the Nikulin-Kondo
type of the L’{,Ré-é—chamber Ey (see Theorem 2.12). The item m4 is the number of
(—4)-vectors in the orthogonal complement of Sy(2) in Sy. The item |ws| is the
number of walls of Ey. The item |G| is the order of

G, :=aut(X, ¢, f;).

The item |[]| is the number of inner walls of Ej.

Remark 5.20. For the Enriques involution No.24 on X with Ty = [6, 0, 6], the
t’;Ré-é—chamber E( has 40 walls and the configuration of the walls is not of Nikulin-
Kondo type. The dual graph is too complicated to be presented here. See [31] for
the matrix presentation of this configuration.

Table 5.1. Enriques involutions of the 11 singular K3 surfaces (see Section 5.4).

No. Tx dim fe ly NK  md |ws| |Gel |lpl [|Kp|l Jaut]
1 [2,1,4] 19 12B  1I 144 12 48 0 1 24
2 18 12A I 242 12 16 0 2 4
3 [2,0, 6] 19 12 I 144 12 48 0 1 24
4 [4,2,4] 18 12a I 246 12 16 0 2 4
5 18 20B I 246 20 64 4 2 00
6 17 206 V246 20 96 0 2 24
7 [2,1,8] 19 20D VI 90 20 120 5 1 00
8 19 12 11 144 12 48 0 1 24
9 19 12B  1I 144 12 48 0 1 24
10 18 12A I 240 12 8 2 2 00
11 17 206 V. 132 20 48 4 1 00
12 [4,0,4] 20 20Fr IV 180 20 640 0 1 320
13 19 20D VI 180 20 120 5 1 00
14 19 12 I 180 12 48 0 1 24
15 18 12a I 244 12 16 0 2 4
16 18 12A I 244 12 16 2 4 00
17 18 20B III 244 20 64 8 2 00
18 18 20B I 244 20 64 4 2 00
19 18 20B III 308 20 256 0 2 64
20 17 206 V. 244 20 32 4 2 00
21 [4,2,6] 19 20D VI 92 20 240 0 1 120
22 18 12a I 242 12 16 0 2 4
23 [2,0,12] 19 20D VI 90 20 120 5 1 00
24 [6,0, 6] 20 40E 60 40 1440 10 1 00
25 18 12a I 240 12 16 2 4 00
26 17 206 V132 20 48 4 1 00
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The item |K,| is the order of the kernel of py: Aut(Y) — aut(Y), and the item
|aut| is the order of aut(Y). The fact that aut(Y) is infinite when Iy is non-empty
was confirmed by selecting elements of aut(Y) randomly by means of the finite
generating set of aut(Y) obtained by Theorem 5.16 and finding a matrix of infinite
order among these sample elements.

Remark 5.21. Consider the Enriques involutions of Nos. 10, 16 and 25, that is, the
cases where the Nikulin-Kondo type is I and Aut(Y) is infinite. In these cases, we
have |Ip| = 2. The configuration of Nikulin-Kondo type I is as in Figure 5.2, and
the inner walls are defined by the (—2)-vectors @) and ©@).

P
2 D 8
(1 )——(1——10
(3
4 ©) 6

Figure 5.2. Configuration of Nikulin-Kondo type I

See [31] for the inner walls of Ey for the other Enriques involutions. The finite
generating sets of aut(X, €) and of aut(Y') are also given explicitly in [31].

Table 5.2 is a list of Nx-inner faces of Dy that corresponds to Enriques involutions.
Note that an aut(X)-equivalence class of Ny-inner faces is a union of orbits of the
action of aut(X, Dy) on the set of Nx-inner faces.

The item numb gives the number of faces in the aut(X)-equivalence class. The
formula in this column shows the decomposition of the aut(X)-equivalence class
into a union of aut(X, Dp)-orbits. The item pws indicates the types of inner walls
of Dy passing through the face. The type of an inner wall of Dy is given by No. in
Table 4.2.

For example, take the case Tx = [2,1,4]. For a face f in the aut(X)-
equivalence class corresponding to the Enriques involution No. 2, there exist ex-
actly two inner walls of Dy passing through f, and they are both of type 1, whereas
for another face f’ in this aut(X)-equivalence class, there exist exactly two inner
walls of Dy passing through f’, and they are of type 1 and 2.

We explain how the data pws depends on the choice of a representative of an
aut(X)-equivalence class. Let f be a face in this aut(X)-equivalence class. Then
there exist exactly three members (v)t, (v’l)J-, (v2)T in the family L}?R% of hy-
perplanes that pass through f, where vy, v{, v2 are primitive vectors of Sy such that
(v, v1) = (v}, v]) = —8/7 and (v2, v2) = —4/7. See Figure 5.3. If Dy is located
in the region D™ then the data pws for f is 12, whereas if Dy is located in the
region D@2 or D& | then the data pws for f is 1'27.

The item |D| is the size of D(f) and |aut(X, f)| is the order of the group
aut(X, f). The item € shows the Nos. of the Enriques involutions given in Table 5.1.
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Table 5.2. Nx-inner faces corresponding to Enriques involutions.

Tx dim numb pws Dl Jaut(X, f)] e
2,1,4] 19 14 1! 2 48 No.1
18 42+84 12,1121 6 16 No.2
[2,0,6] 19 6 3! 2 48 No.3
[4,2,4] 18 288x2  1I2f 113l 8 16 No.4
18 12 12 6 576 No.5
17 144 122! 12 96 No.6
2,1,8] 19 12 1! 2 120 No.7
19 30 41 2 48 No.8
19 30 5! 2 48 No.9
18 180 x4  1l4l 1151 3141 3151 g 8 No. 10
17 90x2 1231 12 48 No. 11
[4,0,4] 20 1 1 3840 No.12
19 64 1! 2 120 No. 13
19 160 3l 2 48 No. 14
18 960 x2 1121 114! 8 16 No. 15
18 960 x2 2131 8 16 No. 16
18 60 22 4 256 Nos. 17, 18, 19
17 480+960 1221 1122 12 32 No.20
[4,2,6] 19 1 51 2 240 No.21
18 30 x2 4151 41151 8 16 No.22
[2,0,12] 19 12 51 2 120 No.23
[6,0,6] 20 1 1 1440 No.24
18 360x2 78! 8 16 No.25
17 180x2 228! 12 48 No.26
()t wpt
D®
e pM
(v)*
DD D3
D2

Figure 5.3. The Nx-inner face f.

6. The two most algebraic Enriques surfaces

In this section, we study the two most algebraic Enriques surfaces, that is, Enriques
surfaces covered by the singular K3 surface X7 of discriminant 7.
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We recall that the Néron-Severi lattice and the automorphism group of X7 were
determined by Ujikawa [34]. Elliptic fibrations on X7 were studied by Harrache-
Lecacheux [10] and Lecacheux [17].

6.1. Conjugagy classes of Enriques involutions

We exemplify Theorem 3.10 for the case X7. LetT = Tx, =[2,1,4]and S = Sx,.
Lett € Iy, and put N := [(E(=1). Letg :=¢q(T) = <%>, so that g(§) = —q =

<g> In the notation of Proposition 2.5, the subgroup H C ¢ ([t]) must be trivial, so

N is an even lattice of genus g(10, 0, u?s ®q). By Lemma 2.1, N = N’(2), with
N’ an even lattice of genus g(10, 0, g).

Lemma 6.1. The genus g(10,0, g) contains exactly two isomorphism classes,
namely N12327 and N11347 (see [31]).

Proof. Let N’ be a lattice in this genus. The smallest lattice with bilinear form
b = —b(q) is the odd lattice M3 7 :=[2, 1, 2, 1, 1, 3], which is unique in its genus.
Thus, by [20], N/ = [(]* for some primitive embedding ¢: M3 7 < L into a
unimodular lattice L of rank 13. Inspecting all such embeddings, we find exactly
two non-isomorphic even orthogonal complements. O

By Proposition 2.6, for both N = Ni%(2) and N = N{i%(2), the set Ix,(N)
has exactly one O(S)-orbit. Thus, r = 2 in Theorem 3.10. Since O(g(S), wx,) =
0(g(S)), there is exactly 1 double coset in both cases. Hence, X7 admits exactly
two Enriques involutions up to conjugation in aut(X). The two involutions can
be distinguished by the number of (—4)-vectors in the orthogonal complements of
their fixed lattices.

6.2. Models of the two Enriques quotients

By the results of Section 5 .4, the two quotients Y7 and Y71 of X7 have Nikulin-Kondo
type I and II. Kondo [15] gives two explicit 1-dimensional families containing all
Enriques surfaces of Nikulin-Kondo type I and II. Each family depend on one
parameter «; in this section we determine which values of o give Y1 and Yy1. We
first summarize Kondo’s construction.

Let ¢ be the involution on P! x P! defined by

([uo, u1l, [vo, vi]) = ([uo, —u1l, [vo, —v1]),

and consider the curves L1: ug = ui,Lo: ug = —uy, L3: vg = v1, Lg: v9g = —vy.
Let C be a curve of bidegree (2,2), defined by a polynomial f(ug, u;, vo, v1),
which is invariant with respect to ¢, and consider the divisor B = C + Z?:] L;.

Let 7: X — P! xP! be the minimal resolution of the double covering ramified
over B. In Kondo’s families, C is chosen so that X is a K3 surface and ¢ lifts to an
Enriques involution & of X. We let Y be the quotient of X by &.
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For i = 1,2, the composite morphism 7; = pr; o 7: X — P! is an elliptic
fibration on X, which induces an elliptic fibration 7; on Y. There is a third elliptic
fibration 73: X — P!, one of whose fiber is the strict transform of C on X. The
half pencils of 73: ¥ — P! correspond to the fibers over C and over > L.

Fori =1, 2, 3, we choose coordinates so that the half-pencils of ; are mapped
to [0, 11, [1,0] € P!. The image of the morphism 7y X my x73: X — P! x P! x P!
is then defined by the tridegree (2, 2, 2) polynomial

(ué — u%) (v% - vf)lv(z) = f(uo, u1, vo, vI)W}.
Consider the Segre embedding X : P! x P! x P! < P7, defined by

([uo, u1l, [vo, v1], [wo, wi]) = [x0, X1, X2, X3, X4, X5, X6, X7]
= [uovowo, UoV1 W1, U VoW1, U1 VIWO, UoUoW1, UoVI W0, U1 VW0, U1 VI W1].

The involution on P’ given by [xg, ..., x7] — [x0, ..., X3, —X4, ..., —x7] induces
the Enriques involution & on X. Hence, we have the following commuting diagram

T X7 XT3

TS bl oy pl X]PﬂcL)IPﬁ

X
i l PIo123
Y

IP)3

where pryjp3 is the projection [xp, x1, X2, X3, X4, X5, X6, X7] +— [X0, X1, X2, x3].
Note that the half-pencils on ¥ are mapped onto the coordinate tetrahedron in P3,
so the image of ¥ in IP? is defined by an Enriques sextic surface, i.e., a non-normal
surface of degree 6 in IP? that passes doubly through the edges of the coordinate
tetrahedron (see [8]).

6.2.1. Nikulin-Kondo type 1
Fora € C\ {1, % %}, let C be the curve defined by

C: <2u(2) - u%) (vg - vf) = <2av§ + (1 - 204)11%) (u% - u%) .

Put B = C + Z?Zl L;. Then, the minimal resolution of the double covering of
P! x P! ramified over B is a K3 surface X endowed with an Enriques involution &
such that the quotient X /(&) has Nikulin-Kondo type I.

Consider the curves

Q1:upvo +uovy =0;  Q2: ujvg — upvy = 0;
Z: (o +3u) vi + Buo 4 uy) v? =0.
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The curve Z intersects Q1 and Q> in one point with multiplicity 3, and intersects C
with even multiplicities if and only if

15 17
0=-— 0o o=—.
16 16

(The two cases differ only by a relabeling of the variables.)

In these cases, consider the sublattice S’ C Sy generated by the classes of
the strict transforms of C, L1, ..., L4, Q1, Q2, Z and of the exceptional divisors.
Then, rank S’ = 20 and det S’ = 7, hence the same holds for Sx. This implies that
X is isomorphic to X7, so the quotient X /(&) is isomorphic to 7.

An Enriques sextic model for Y7 is given by

Qa— 2)x§x12x§ + xg)clz)c32 + x&x%x% +Qa— 2)x12x§x§

= X0X1X2X3 (xg + Qo =37+ Qa—x3 + x32> .

6.2.2. Nikulin-Kondo type 11
Fora € C\ {0, —1}, let C be the curve defined by

C: (vg - v12> u(z) - (v(% +av12) u% =0.

Put B = C + Z?:l L;. Then, the minimal resolution of the double covering of
P! x P! ramified over B is a K3 surface X endowed with an Enriques involution &
such that the quotient X /() has Nikulin-Kondo type II.

Consider the curves

Fr:up =0, F:v=0;
Z: (uo —up)vyg + (uo +3uy)vy =0.

The curve Z intersects C in a third point of multiplicity 2 exactly when
o = 63.

In this case, consider the sublattice S’ C Sx generated by the classes of the strict
transforms of C, Ly, ..., L4, F1, F2, Z and of the exceptional divisors. Then,
rank S’ = 20 and det S’ = 7, hence the same holds for Sx. This implies that X
is isomorphic to X7, so the quotient X /(&) is isomorphic to Yij.

An Enriques sextic model for Y7y is given by

2,22, .2.2.2 222 2,2.2 2,2 .22
—XyX1 X5 + X(X]X5 + XGX5X5 + aX]X5X5 = XoX|X2X3 (xo —X] — X5 +x3> .
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