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Hermitian curvature flow
on complex homogeneous manifolds

YURY USTINOVSKIY

Abstract. In this paper we study a version of the Hermitian curvature flow (HCF)
considered by the author in [25]. We focus on complex homogeneous manifolds
equipped with submersion metrics. We prove that this finite-dimensional space
of metrics is invariant under the HCF and write down the corresponding ODE
on the space of Hermitian forms on the underlying Lie algebra. Using these
computations we construct HCF-Einstein metrics on G-homogeneous manifolds,
where G is a complexification of a compact simple Lie group. We conjecture that
under the HCF any submersion metric on such a manifold pinches towards the
HCF-Einstein metric. For a nilpotent or solvable complex Lie group equipped
with a right-invariant metric we investigate the blow-up behavior of the HCF.

Mathematics Subject Classification (2010): 53C44 (primary); 53C30, 53C55
(secondary).

1. Introduction

The striking success of the Hamilton’s Ricci flow demonstrates that parabolic met-
ric flows are a very powerful tool which helps constructing distinguished Rieman-
nian metrics and studying geometry/topology of manifolds admitting certain spe-
cial metrics. The Ricci flow has particularly nice long-time existence, convergence
properties on Kähler manifolds and we have a reasonably good understanding of
the singularity formation [16, 19, 21, 23]. However, on a general non-Kähler Her-
mitian complex manifold (M, g, J ) the Ricci flow does not interact nicely with the
complex geometry, since the Ricci form Ric(g) is not necessary invariant under the
operator of the almost complex structure J . Hence the evolved metric g(t) on M
might even not be Hermitian. To overcome this problem some natural modifica-
tions of the Ricci flow were suggested recently in the literature [7, 20, 22]. Any
non-Kähler manifold admits a one-parameter family of Hermitian connections [6],
among which the Chern and the Bismut connections are of a special interest. Given
a general complex Hermitian manifold it is natural to consider curvatures of these
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Hermitian connections instead of the Ricci form of the Levi-Civita connection to
define a Hermitian version of the Ricci flow.

In 2011 Streets and Tian [20] introduced a family of Hermitian curvature flows
(HCFs) on a Hermitian manifold (M, g, J ):

@t g = �S + Q(T ), (1.1)

where Si j = gmn�mni j is the second Chern-Ricci form of the Chern connection �

and Q is an arbitrary symmetric J -invariant quadratic term in torsion T of r. For
any choice of Q equation (1.1) defines a non-linear strongly parabolic equation for
the Hermitian metric g.

In this paper we study a version of the Hermitian curvature flow which was
first considered by the author in [25],

@t gi j = �Si j �
1
2
gmngpsTmp j Tnsi . (1.2)

In what follows we will refer to this flow as the HCF. It is proved in [25] that the
flow (1.2) preserves Griffiths positivity of the initial Hermitian metric (see Section 2
for the precise formulation). In the present paper we focus on the behavior of this
flow on a (not necessary compact) complex homogeneous manifold M = G/H
acted on by a complex-analytic group G with the isotropy subgroup H . There are
several reasons why these manifolds are of a special interest for us:

(i) Homogeneous manifolds form a rich family for which one can explicitly com-
pute certain metrics and analyze behavior of a metric flow. For example,
in [2, 8, 15] authors study the Ricci flow on Lie groups and homogeneous
manifolds; in [4, 5] authors consider the pluriclosed flow, on compact homo-
geneous surfaces and solvmanifolds, respectively. Recently, various version
of HCF on homogeneous manifolds were studied in [14, 17, 18]. We expect
that our computations will shed some extra light on the geometric nature of
the HCF (1.2);

(ii) Non-symmetric rational homogeneous manifolds G/P , where G is a reduc-
tive algebraic group and P is its parabolic subgroup, are projective manifolds,
however, there are ‘natural’ Hermitian metrics induced by the Killing metric
of the compact form of G, which are typically non-Kähler (see [27] for an ex-
plicit computation on a complete flag manifold F3). It is interesting to analyze
whether our metric flow distinguishes these special metrics;

(iii) In [25], we, in particular, proved that the HCF preserves Griffiths semipositiv-
ity of the initial metric. Homogeneous manifolds equipped with submersion
metrics (see Definition 1.2 below) are essentially the only abundant source of
such examples.

For an homogeneous manifold M = G/H we denote by g and h the complex Lie
algebras of G and H . LetM(M) be the infinite-dimensional space of Hermitian
metrics on M modulo isometry. There are two distinguished subspaces ofM(M).
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Definition 1.1 (Invariant metrics). DefineMinv(M) to be the space of G-invari-
ant Hermitian metrics on M . These metrics are in one-to-one correspondence with
AdH -invariant Hermitian metrics on the vector space g/h, see [13, X page 3]:

Minv(M) ! {AdH -invariant metrics on g/h} .

Clearly, the setMinv(M) is preserved by any metric flow of the form dg
dt = R(g),

where R is a tensor field, such that its value at m 2 M is determined by the germ of
g at m, provided that the solution to the flow is unique. Hence, any such ‘natural’
metric flow defines an ODE on the finite dimensional spaceMinv(M).

The study of invariant metrics on homogeneous manifolds is a classical sub-
ject of differential geometry [1]. These metrics provide a “hands-on” construction
of a multitude of explicit Riemannian manifolds with certain prescribed geomet-
ric properties. One can then translate the differential-geometric problems into the
questions of basic linear algebra and representation theory. However, on a general
homogeneous manifold,Minv(M) could be empty. Below we will be interested in a
different class of metrics, which is always nonempty for any complex homogeneous
manifold.
Definition 1.2 (Submersion metrics). Let h be a Hermitian metric on the Lie alge-
bra g of a complex Lie group G. Metric h defines a unique right-invariant Hermitian
metric on G, such that its restriction to T 1,0e G ' g coincides with h. Then there is
a unique submersion metric on G/H , which turns the projection G ! G/H into a
Hermitian submersion. We defineMsub(M) to be the space of submersion metrics.
We have a map

{Hermitian metrics on g} /AdG �!Msub(M).

There is an alternative description of submersion metrics. The holomorphic tan-
gent bundle of a complex homogeneous manifold M is globally generated by g ⇢
H0(M, T 1,0M) via the infinitesimal evaluation map. Hence, any Hermitian metric
h on the vector space g induces a metric on its quotient T 1,0M . Note that typically
the submersion Hermitian metrics are not G-homogeneous.
Remark 1.3. Often there is a compact subgroup K ⇢ G acting transitively on
G/H from the left, e.g., any rational homogeneous space admits such an action. If
we choose h 2 Sym1,1(g⇤) to be K -biinvariant, then the corresponding submersion
metric on G/H will be K -invariant.
In general, there is no reason for the setMsub(M) to be invariant under a metric
flow. However, it turns out that the HCF (1.2) preserves Msub(M) (see Theo-
rem 5.1 below). In some sense this is an expected result, since the HCF preserves
Griffiths/dual-Nakano semipositivity (see [24,25]) and the metrics inMsub(M) are
the only known dual-Nakano semipositive metrics on a general complex homoge-
neous manifold. What is somewhat less expected, is that there exists an ODE on
Sym1,1(g) – the set of Hermitian metrics on g⇤, which induces the HCF on all
G-homogeneous manifolds independently of the isotropy subgroup H .
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The evolution term of this ODE is given by a generalization of a familiar oper-
ation # and turns out to be very similar to the ODE defined by the zero-order part of
the evolution equation for the Riemannian curvature (respectively Chern curvature)
under the Ricci flow (respectively HCF). Namely, in the case of the Ricci flow the
curvature operator R 2 Sym2(so(n)) evolves (in the moving frame) according to
the equation

dR
dt

= 1R + R2 + R#

and the relevant ODE is
dR
dt

= R2 + R#.

For the HCF on the set of submersion metricsMsub(M), the ODE for B2Sym1,1(g)
takes form

dB
dt

= B#.

This is a Riccati-type system of equations, as the evolution term B# is quadratic
in B.

In a special case when G is the complexification of a compact simple Lie
group, we use the ODE for B 2 Sym1,1(g) to construct scale-static solutions to
the HCF on any homogeneous manifold of G. Such a metric corresponds to the
Killing metric of the compact real form of G and can be thought of as the HCF-
analogue of the Einstein metric. We explicitly solve the ODE in some simple ex-
amples (see Example 5.3 for the diagonal Hopf surface and Example 6.5 for the
Iwasawa threefold) and formulate conjectural pinching behavior of this differential
equation (Conjecture 5.4). It seems that at this point we need a better understand-
ing of the algebraic properties of the operation # to resolve the conjecture and to
understand the behavior of the HCF onMsub(G/H) for a general G.

In Section 6, we make the first step towards this understanding and study the
blow-up behavior of ODE dB

dt = B# on an arbitrary complex Lie group. Namely, we
analyze how the growth rate of a solution B(t) depends on the algebraic properties
of g (see Theorems 6.2 and 6.3).

ACKNOWLEDGEMENTS. I would like to thank my adviser Gang Tian for suggest-
ing me a circle of problems related to uniformization in complex geometry. I am
also grateful to Fabio Podestà for many useful conversations on complex homoge-
neous geometry.

2. Hermitian curvature flow

In this section we fix some notations and review the definition of the Hermitian
curvature flow.
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In what follows for a complex vector space V we denote by V the conjugate
vector space. We denote by Sym1,1(V ) ⇢ V ⌦V the real vector space of Hermitian
forms, i.e., the set of complex sesquilinear forms h on V ⇤ such that h(⇠, ⌘) =

h(⌘, ⇠). For h1, h2 2 Sym1,1(V ) we say that h1 > h2, if for any ⇠ 2 V ⇤ the
inequality h1(⇠, ⇠) > h2(⇠, ⇠) holds. A form h 2 Sym1,1(V ) is said to be positive,
if h(⇠, ⇠) > 0 for any nonzero ⇠ 2 V ⇤.

Let (M, g, J ) be a Hermitian manifold, where J is an integrable complex
structure and g is a Hermitian metric. Let T M ⌦ C = T 1,0M � T 0,1M be the
decomposition of the complexified tangent bundle into the ±i eigenspaces of J .
Denote by r the Hermitian connection on T M uniquely characterized by the prop-
erties:

(i) rg = 0;
(ii) r J = 0;
(iii) T (X, JY ) = T (J X,Y ) for any X,Y 2 T M , where T (X,Y ) := rXY �
rY X � [X,Y ] is the torsion tensor;

(iv) r0,1 = @ .

Remark 2.1. Given (i) and (ii) properties (iii) and (iv) are equivalent. It is useful
to think about (iii) as the vanishing of (1, 1)-type part of T , i.e., T (⇠, ⌘) = 0 for
⇠, ⌘ 2 T 1,0M .

Definition 2.2. The Chern curvature of a Hermitian manifold (M, g, J ) is the cur-
vature of r.

�(X,Y )Z :=
�
rXrY �rYrX �r[X,Y ]

�
Z ,

where X,Y, Z 2 T M . We also define a tensor with 4 vector arguments by lowering
one index.

�(X,Y, Z ,W ) := g
�
(rXrY �rYrX �r[X,Y ])Z ,W

�
.

Tensor � satisfies a number of symmetries.

Proposition 2.3. For any real vectors X,Y, Z ,W 2 T M one has

�(X,Y, Z ,W ) = ��(Y, X, Z ,W ), �(X,Y, Z ,W ) = ��(X,Y,W, Z);

�(J X, JY, Z ,W ) = �(X,Y, Z ,W ), �(X,Y, J Z , JW ) = �(X,Y, Z ,W ).

Symmetries of � imply that for ⇠, ⌘, ⇣, ⌫ 2 T 1,0M

�(⇠, ⌘, ·, ·) = �(·, ·, ⇣, ⌫) = 0, �(⇠, ⌘, ⇣, ⌫) = �(⌘, ⇠ , ⌫, ⇣ ),

in particular �(⇠, ⇠ , ⌘, ⌘) 2 R. It is easy to check that the values �(⇠, ⇠ , ⌘, ⌘) for
⇠, ⌘ 2 T 1,0M completely determine tensor�. In what follows, by abuse of notation
we sometimes write T M as a shorthand for the holomorphic tangent bundle T 1,0M .
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The main object of our study is the following version of a general Hermitian
curvature flow (1.1) (

@t gi j = �9i j (g(t)),
g(0) = g0,

(2.1)

where 9(g) 2 Sym1,1(T ⇤M) is given by

9(g)i j := gmn�mni j +
1
2
gmngpsTpm j Tsni

is the sum of the second Chern-Ricci curvature and a certain quadratic torsion
term for g = g(t). We refer to 9(g) as the torsion-twisted Chern-Ricci form.
By [20, Proposition 5.1] on a compact manifold there exists unique solution to equa-
tion (2.1) on some maximal time interval [0, ⌧ ). If the initial metric g0 is Kähler,
the HCF coincides with the Kähler-Ricci flow.

Important property of the flow (2.1) is preservation of the following curvature
positivity condition.
Definition 2.4. A complex Hermitian manifold (M, g, J ) hasGriffiths positive (re-
spectively non-negative) curvature, if its Chern curvature� for any non-zero ⇠, ⌘ 2
T 1,0M satisfies

�(⇠, ⇠ , ⌘, ⌘) > 0, (respectively > 0).

Theorem 2.5 ([25, Theorem0.1]). Let g(t), t 2 [0, ⌧ ) be the solution to the HCF
on a compact complex Hermitian manifold (M, g0, J ). Assume that the Chern
curvature �g0 at the initial moment t = 0 is Griffiths non-negative (respectively
positive). Then for t 2 [0, ⌧ ) the Chern curvature �(t) = �g(t) remains Griffiths
non-negative (respectively positive).

If, moreover, the Chern curvature �g0 is Griffiths positive at least at one point
x 2 M , then for any t 2 (0; ⌧ ) the Chern curvature is Griffiths positive everywhere
on M .

One of the main sources of complex manifolds admitting metrics of Griffiths non-
negative curvature is the set of manifolds with globally generated tangent bundle.
To be precise, if Cm ! T M is a surjective map from a trivial bundle over a com-
plex manifold M , then any constant metric on Cm induces a metric with dual-
Nakano/Griffiths non-negative curvature [9, Section 0.5]. In the next section we
investigate the behavior of HCF on such manifolds, equipped with a submersion
metric.

3. HCF on a globally generated tangent bundle

We start this section with deriving the coordinate expression for the torsion-twisted
Chern-Ricci form

9i j = gmn�mni j +
1
2
gmngpsTmp j Tnsi ,
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on (M, g, J ). To simplify subsequent applications of this computation we provide
a formula for the g-dual of 9i j

9i j := gingm j9mn,

i.e., we use the metric g to identify 9 with a section of Sym1,1(T M).

Proposition 3.1.
9i j = gmn@m@ngi j � @mgin@ngm j . (3.1)

Proof. Recall that for the Chern connection on (T M, g) we have:

0k
i j = gkl@i g jl .

Hence for the Chern curvature we have:

gml�k
i jm = �gml@ j

�
gkn@i gmn

�
= �gml@ j

⇣
�gkngmsgpn@i g ps

⌘

= gml@ j
⇣
gms@i gks

⌘
= gml@ j gms@i g

ks + @i@ j g
kl

= �gps@ j g
pl@i gks + @i@ j g

kl .

For the torsion tensor T imp we compute:

T imp = gil
�
@mgpl � @pgml

�
= gml@pg

il � gpl@mg
il .

Therefore
1
2
gmngpsT impT

j
ns =

1
2
gmngps

⇣
gml@pg

il � gpl@mg
il
⌘⇣
gkn@sgk j � gks@ngk j

⌘

=gpsgkl@pg
il@sgk j � @pgin@ng p j .

Using the above formulas together we get the expression for 9i j .

9i j = gmn@m@ngi j � @pgis@sg p j .

After relabeling indices we get the stated formula.

Combining Proposition 3.1 and the equation of the HCF flow (2.1) we get the
following corollary.

Corollary 3.2. Let (M, J, g0) be a Hermitian manifold. Assume that eg(t) 2
Sym1,1(T M) is a solution to the PDE on M ⇥ [0, ⌧ )

(
@tegi j = egmn@m@negi j � @megin@negm j ,

eg(0) = g�10 ,
(3.2)

such that egi j (t) is positive definite for t 2 [0, ⌧ ). Then g(t) := eg�1(t) is the
solution to the HCF on M .
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An interesting feature of equation (3.2) is that its right-hand side depends only oneg
and not oneg�1. In particular, there might exist a solutioneg(t) starting with a degen-
erate or indefinite form. It would be interesting to find a geometric interpretation of
such solution. However, in this case the equation is not elliptic anymore.

Now, we explicitly compute the HCF on a complex homogeneous manifold,
equipped with a submersion metric g = p⇤h, h 2 Sym1,1(g⇤) (see Definition 1.2).
Denote by {s↵} a basis of holomorphic vector fields induced by one-parameter sub-
groups of G, i.e., s↵ = p(e↵), where {e↵} is the basis of g, and

p : g! T 1,0M

is the evaluation map.
Let s↵ = ai↵ @/@zi be the local coordinate expression for the vector field s↵ , and

denote ai↵ := ai↵ . Functions ai↵ are holomorphic. In the coordinates, the submersion
metric g = gi j is given by the expression

gi j =
⇣
ai↵a

j
�
(h�1)↵�

⌘�1
. (3.3)

Indeed, ai↵a
j
�
(h�1)↵� is the Hermitian metric on 31,0(M) induced by the inclusion

p⇤ : 31,0(M)! g⇤, and the Hermitian metric gi j on T
1,0M is its inverse.

Proposition 3.3. Let (G/H, g, J ) be a complex homogeneous manifold, with a
submersion metric g = p⇤h, h 2 Sym1,1(g⇤). Let {e↵}m↵=1 be an h-orthonormal
frame of g, with s↵ := p⇤(e↵). Then the evolution term for the HCF considered as
a section of Sym1,1(T 1,0M) is given by

9(g) =
1
2

mX

↵,�=1
[s↵, s�]⌦ [s↵, s�],

where [ · , · ] is the commutator of vector fields on M = G/H .

Proof. First we note, that since vector fields s↵ = ai↵@/@zi are holomorphic, all the
derivatives @ai↵ , @a

j
�
vanish. Using this fact and equations (3.1) and (3.3) we find

9(g)i j = gmn@m@ngi j � @mgin@ngm j

=
�
h�1

�� �am� a
n
�

�
h�1

�↵�
@mai↵@na

j
� �

�
h�1

�� �
@mai� a

n
�
h↵�am↵ @na

j
�

=
�
h�1

�↵�h� �
⇣
am� @mai↵ · an

�
@na

j
�
� am↵ @mai� · an

�
@na

j
�

⌘

=
1
2
�
h�1

�↵��
h�1

�� �
⇣
am� @mai↵ � a

m
↵ @mai�

⌘
·
⇣
an
�
@na

j
�
� an

�
@na

j
�

⌘
.

(3.4)

In the last equality we used the fact that the whole expression is symmetric un-
der the change (↵�) $ (� �). The last two multiples in the last expressions
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are exactly the i and j coordinates of the Lie brackets [am� @/@zm, am↵ @/@zm] and
[an

�
@/@zn, an�@/@zn]. Since {e↵}m↵=1 is an h-orthonormal basis of g, we get the

stated formula.

The expression (3.4) for9(g) suggests that the HCFwith g0= p⇤h2Msub(M)
is governed by the Lie algebra structure on the space of holomorphic vector fields
H0(M, T 1,0M). In the next sections we study this relation.

4. Operation # on a Lie algebra

Before studying the HCF on complex homogeneous manifolds following Hamil-
ton [10] we define an algebraic operation on the second tensor power of a Lie alge-
bra and list its basic properties.
Definition 4.1 (Operation #). Let gR be a real Lie algebra. Define a symmetric
bilinear ad gR-invariant operation

# : g⌦2R ⌦ g⌦2R ! g⌦2R ,

by the formula

(v1 ⌦ v2)#(w1 ⌦w2) = [v1, w1]⌦ [v2, w2].

If we choose a basis {e↵} of gR and denote by c
�
↵� its structure constants, then for

B = {B↵�}, D = {D↵�}, B, D 2 g⌦2R

(B#D)↵� = c↵✏�c
�
� ✓ B

✏� D�✓ .

Clearly, the operation#preserves the parity of the decomposition g⌦2R =Sym2(gR)�
32(gR), i.e., defines the maps

# : Sym2(gR)⌦ Sym2(gR)! Sym2(gR),

# : 32(gR)⌦32(gR)! Sym2(gR),

# : 32(gR)⌦ Sym2(gR)! 32(gR).

Now, let g be a complex Lie algebra. Similarly to the real case, we denote by the
symbol # the map

# : (g⌦ g)⌦ (g⌦ g)! (g⌦ g),

(v1 ⌦ v2)#(w1 ⌦w2) = [v1, w1]⌦ [v2, w2].

As in the real case, # preserves the parity of g⌦g, in particular, it induces a bilinear
map on the set of Hermitian elements of g⌦ g

# : Sym1,1(g)⌦ Sym1,1(g)! Sym1,1(g).

We will write B# for 12 B#B.
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Remark 4.2. The #-operation was introduced by Hamilton in the context of the
Ricci flow, see [10]. Definition 4.1 differs from the one of Hamilton in several
aspects:

(i) Originally # was defined only for the real Lie algebra so(n), while our defini-
tion makes sense for any Lie algebra;

(ii) Hamilton used # only for the part of Sym2(so(n)) satisfying the first Bianchi
identity;

(iii) Hamilton used the Killing metric to interpret # as a bilinear operator on the
space self-adjoint operations.

This operation and its algebraic properties play the key role in the characterization
of compact manifolds with 2-positive curvature operator [3]. For an arbitrary real
metric Lie algebra this operation was also considered by Wilking in [26, Section 3].
Remark 4.3. Operation # is natural, i.e., if ⇢ : g ! h is a homomorphism of Lie
algebras, then ⇢(B)#⇢(D) = ⇢(B#D) for any B, D 2 Sym1,1(g).
The following lemma easily follows from the definition by considering a basis of g
which diagonalizes the two forms.

Lemma 4.4. Let g be a real (respectively complex) Lie algebra. Assume that forms
B, D 2 Sym2(g) (respectively B, D 2 Sym1,1(g)) are symmetric (respectively
Hermitian) positive definite. Then B#D is positive semidefinite with ker(B#D) =
Ann([g, g]) ⇢ g⇤.

Example 4.5. Let gR = su(2) and denote by h·, ·i the invariant metric on gR nor-
malized in such a way that h[e1, e2], e3i = ±1 for any orthonormal triple e1, e2, e3.
Take BR 2 Sym2(gR) and chose a h·, ·i-orthonormal basis e1, e2, e3, which diago-
nalizes BR with eigenvalues �1, �2, �3. Then

B#R =1/2(�1e1 ⌦ e1+�2e2 ⌦ e2+�3e3⌦e3)#(�1e1 ⌦ e1+�2e2 ⌦ e2+�3e3⌦e3)
=(�2�3e1 ⌦ e1 + �1�3e2 ⌦ e2 + �1�2e3 ⌦ e3)

is diagonalized in the same basis with the eigenvalues �2�3, �1�3, �1�2. In partic-
ular, if BR is proportional to the dual of the metric h·, ·i then so is B#R.
Example 4.6. Let gR be a compact simple Lie algebra with an invariant metric
h·, ·i. Let BR = h·, ·i�1 be the dual of h·, ·i, i.e., for an orthonormal basis e1, . . . , em
let BR =

P
ei ⌦ ei . Then B#R is proportional to BR with a positive factor.

Indeed, since gR is simple, [gR, gR] = gR, and by Lemma 4.4 both BR and B#R
are positive definite ad gR-invariant elements in Sym2(gR). As gR is simple, such
an element is unique up to multiplication by a positive constant, so B#R = �BR,
� > 0.
We expect that proportionality B# = �B characterizes the ad gR-invariant positive
definite forms on any compact simple Lie algebra.
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Question. Let gR be a compact simple real Lie algebra with an invariant metric
h·, ·i. Let B 2 Sym2(gR) be a positive definite form such that B# = �B. Is B�1
proportional to h·, ·i?
Remark 4.7. If gR is a real Lie algebra equipped with an invariant metric h·, ·i
extended in an obvious way to all tensor products of gR, then a trilinear form

P(B,C, D) := hB#C, Di, B,C, D 2 gR
⌦2,

is totally symmetric. It follows from the coordinate expression for B#C through
the structure constants and the fact that in any h·, ·i-orthonormal basis the structure
constants are totally skew-symmetric.
Remark 4.8. If g = gR⌦C is the complexification of a real Lie algebra, then a real
symmetric form BR 2 Sym2(gR) defines a Hermitian form '(BR) 2 Sym1,1(g):
in the basis {e↵} of gR and the corresponding basis of g this form is given by
'(BR)↵� := (BR)↵� . It is clear that '(BR)#'(BR) = '(BR#BR).

5. ODE for the submersion metrics on complex homogeneous manifolds

In this section we turn back to a complex homogeneous manifold M = G/H ,
equipped with a submersion metric g = p⇤h, h 2 Sym1,1(g⇤). Note that if a
group K acts on M = G/H and actions of G and K commute, then the metric g is
K -invariant. We will use this observation in Example 5.3 below.

With Proposition 3.3 and Definition 4.1 we can reduce the HCF on a complex
homogeneous manifold (M, g0, J ) to an ODE for h�1 = B 2 Sym1,1(g).

Theorem 5.1 (HCF of a submersion metric). Let M = G/H be a complex ho-
mogeneous manifold equipped with a submersion Hermitian metric g0 = p⇤h0 2
Msub(M), where h0 2 Sym1,1(g⇤). Let B(t) be the solution to the ODE

8
<

:

dB
dt

= B#,

B(0) = h�10 .

(5.1)

Then g(t) = p⇤(B(t)�1) solves the HCF on (M, g0, J ). In particular g(t) 2
Msub(M).

Proof. If B(t) solves (5.1), then by Proposition 3.3 the Hermitian metric eg(t) on
31,0(M), induced from B(t) 2 Sym1,1(g) via the map31,0(M)! g⇤, satisfies the
partial differential equation

8
<

:

deg
dt

= 9
�
eg�1

�
,

eg(0) = g�10 ,

where, as in Proposition 3.1, 9 is identified with a section of Sym1,1(T 1,0M).
Hence g(t) = eg(t)�1 is the solution to the HCF on (M, g0, J ).
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Surprising consequence of this theorem is that ODE (5.1) gives solutions to
the HCF on all G-homogeneous manifolds M = G/H equipped with a submersion
metric independently of the isotropy subgroup H .

Example 5.2. Let G = SL(2, C). The Lie algebra of G has the compact real form
su(2), i.e., sl(2, C) = su(2)⌦C. Assume that B0 2 Sym1,1(sl(2, C)) corresponds
to BR 2 Sym1,1(su(2)) (see Remark 4.8). Then ODE (5.1) reduces to the equation
for BR 2 Sym2(su(2))

dBR
dt

= B#R.

Let h·, ·i be a positive definite multiple of the Killing form of su(2). Assume that
h·, ·i is normalized in such way that for any orthonormal basis e1, e2, e3 we have
h[e1, e2], e3i = ±1.

Let e1, e2, e3 be an orthonormal basis of su(2) diagonalizing BR. Denote the
eigenvalues of BR with respect to h·, ·i by �1, �2, �3. In this basis the evolution
equation takes the form 8

>>>>>><

>>>>>>:

d�1

dt
= �2�3

d�2

dt
= �1�3

d�3

dt
= �1�2.

(5.2)

These equations imply that det BR = �1�2�3 satisfies

d det BR
dt

= (�2�3)
2 + (�1�3)

2 + (�1�2)
2 > 3(det BR)4/3.

So det BR(t) > 1/(C � t)3 for some C > 0, and the solution of (5.2) blows up as
t ! tmax <1. Moreover, for any i, j 2 {1, 2, 3}

d
dt

⇣
�2i � �2j

⌘
= 0,

hence all �i ! +1 as t ! tmax, i 2 {1, 2, 3} and �i/� j ! 1. It follows that
BR(t) pinches towards the (dual of the) Killing form:

BR(t)/|BR(t)|1 ! h·, ·i�1 = e1 ⌦ e1 + e2 ⌦ e2 + e3 ⌦ e3.

Example 5.3 (Diagonal Hopf surface). Diagonal Hopf surface is the quotient
M =

�
C2\(0, 0)

�
/0, where the generator of 0 ' Z acts as (z1, z2) 7! (µz1, µz2)

for some µ 2 C with |µ| > 1. M is a compact complex manifold diffeomorphic to
S3 ⇥ S1. Note that the natural action of SL(2, C) on C2 commutes with 0, hence
descends to the transitive action on M .
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As in Example 5.2, any element BR 2 Sym2(su(2)) defines a metric g0 on M .
By the computation of Example 5.2 and Theorem 5.1, under the HCF this metric
converges after normalization to the metric g1 = p⇤(h·, ·i).

In coordinates z1, z2 on C2\{0} ⇢ C2 this metric is given by

(g1)i j =
1

|z|4
�
�i j |z|2 + zi z j

�
.

Example 5.2 demonstrates the expected behavior of the ODE (5.1) for any complex
Lie group G with a simple compact real form. Namely, assume that g = gR ⌦ C
is the complexification of a simple compact real Lie algebra gR with an invariant
metric h·, ·i. Let us denote by

 2 Sym1,1(g)

the element corresponding to h·, ·i�1 2 Sym2(gR) (as in Remark 4.8). We refer to
 as the Killing form. For such G and  we propose the following conjecture.

Conjecture 5.4. Let B(t) be the solution to the ODE (5.1) on the maximal time
interval [0, tmax). Then there exists � 2 G, � 2 R such that B(t) pinches towards
�Ad� ():

B(t)/|B(t)|1 ! �Ad� (), t ! tmax.

Let complex Lie group G and  2 Sym1,1(g) be as above. The following result
demonstrates that the submersion metric induced by  on a G-homogeneous man-
ifold, is HCF-Einstein, i.e., scale-static under the flow. This observation provides
some evidence for Conjecture 5.4 to be true.

Theorem 5.5. Let G be the complexification of a simple compact Lie group. Let
M = G/H be a complex homogeneous manifold equipped with the Hermitian
metric g0 = p⇤(�1). Then g0 is scale-static under the HCF, i.e., 9(g0) = �g0 for
some positive constant �.

Proof. In Example 4.6 we observed that for BR = h·, ·i�1

B#R = �BR.

Hence for  = '(BR) (see Remark 4.8) we have # = � . This fact together with
Theorem 5.1 imply that g0 is scale static under the HCF.

6. Blow-up behavior of the ODE

In this section we study the HCF on a complex Lie group G, equipped with a
submersion (= right-invariant) metric g0 2 Msub(G) (g0 is identified with its
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restriction to g ' TidG). By Theorem 5.1 the HCF reduces to the ODE for
B(t) 2 Sym1,1(g) with B0 = g�10

8
<

:

dB
dt

= B#,

B(0) = B0.
(6.1)

It turns out, that the growth rate of a solution B(t) is completely determined by the
algebraic properties of the underlying Lie algebra. Namely, B(t) has polynomial,
exponential growth, or a finite time blow-up, depending on whether g is nilpotent,
solvable, or admits a semisimple quotient (see Theorem 6.2, Theorem 6.3 and Re-
mark 6.4).

Before we state and prove the results on the growth rate of a solution to (6.1)
let us make the following elementary observation.

Proposition 6.1. Let B(t), D(t) 2 Sym1,1(g) be the solutions to (6.1) with the
initial conditions B(0) = B0 and D(0) = D0 such that B0 > D0 > 0. Then for
t > 0

B(t) > D(t).

Proof. We claim that for B, D 2 Sym1,1(g) if B > D > 0, then B# > D#. Indeed,
let {ei } be a basis diagonalizing simultaneously B and D:

B =
X

ai ei ⌦ ei , k =
X

bi ei ⌦ ei

with ai > bi > 0. Then B# =
P

i, j aia j [ei , e j ] ⌦ [ei , e j ] >
P

i, j bi b j [ei , e j ] ⌦
[ei , e j ] = D#.

Now, fix a background positive-definite form I 2 Sym1,1(g), and define

⇢(t) = sup
⇠2g⇤, I (⇠,⇠)=1

�
D(t)(⇠, ⇠)� B(t)(⇠, ⇠)

�
. (6.2)

We have ⇢(0) 6 0, D(t) 6 B(t) + ⇢(t)I . In particular, by the claim above,
D#(t) 6 B#(t) + ⇢(t)I#B + ⇢2(t)I #. As in the proof of Hamilton’s maximum
principle,

d⇢
dt

6 sup
�
D#(t)(⇠, ⇠)� B#(t)(⇠, ⇠)

�
,

where the supremum is taken over all such ⇠ that in (6.2) the supremum is achieved.
Therefore, on any fixed time interval with |⇢(t)| bounded, we have

d⇢
dt

6 C1⇢(t) + C2⇢2(t) 6 C|⇢(t)|

for some constant C . Hence ⇢(t) 6 0, provided ⇢(0) 6 0.
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Theorem 6.2. For a complex Lie algebra g and a positive definite Hermitian form
B0 2 Sym1,1(g) let B(t) be the solution to the ODE (6.1) on the maximal time
interval [0; tmax), 0 < tmax 6 +1. Then the following are equivalent:

1. g is a nilpotent Lie algebra;
2. For any initial data B0, the solution B(t) has at most polynomial growth, i.e.,
tmax = +1, and there exists a polynomial p such that

B(t) < p(t)B0;

3. For some initial data B0 the solution B(t) has subexponential growth, i.e.,
tmax = +1, and for any ✏ > 0 there exists T✏ > 0 such that for t > T✏

B(t) < e✏t B0.

Proof. We prove implications 1) 2) 3) 1.
1) 2. By Ado’s theorem for nilpotent Lie algebras [11] there exits a faithful

representation of g into some gl(V ) such that g acts by nilpotent endomorphisms.
With the use of the basic theory of Lie algebras [12, Section 3.3] one can assume
that the image of this representation lies in n(n) – the Lie algebra of strictly upper-
triangular n ⇥ n matrices:

⇢ : g! n(n).
We extend ⇢ to a map ⇢ : Sym1,1(g)! Sym1,1(n(n)) in the obvious way.

Let {Ei, j |1 6 i < j 6 n} be the elementary matrices spanning n(n). We
fix a collection of positive real numbers { f (k)

0 }n�1k=1 such that the Hermitian form
f0 2 Sym1,1(n(n))

f0 :=
X

16i< j6n
f ( j�i)
0 Ei, j ⌦ Ei, j

is greater than ⇢(B0). Consider the solution f (t) 2 Sym1,1(n(n)) to the ODE

d f
dt

= f #

with the initial condition f (0) = f0. After expanding the definition of f # we see
that this ODE is equivalent to a system of n � 1 scalar equations

d f (k)

dt
=
1
2

k�1X

j=1
f ( j) f (k� j), k = 1, . . . , n � 1.

Solving these equations inductively for k = 1, . . . , n�1 we get f (k)(t) = pk�1(t),
where pk�1(t) is a polynomial of degree (k � 1).

Hermitian forms ⇢(B(t)) and f (t) satisfy the same ODE with the initial con-
ditions ⇢(B0) < f0. Therefore Proposition 6.1 implies that ⇢(B(t)) 6 f (t). Since
f (t) has polynomial growth, we get

⇢(B(t)) < p(t) f0
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for some polynomial p(t). Finally, using the fact that ⇢ is faithful and B0 2
Sym1,1(g) is positive definite, we find a constant C such that

B(t) < Cp(t)B0.

As B(t) is bounded on any interval [0, tmax), the solution extends to the whole
[0,+1).

2) 3. Is trivially true.
3 ) 1. Assume that 1 does not hold, and g is not nilpotent. Then by Engel’s

theorem for some x 2 g the operator adx is not nilpotent. Hence the map adx : g!
g has non-zero eigenvalue �:

[x, y] = �y, y 6= 0.

Consider f0 := a0x ⌦ x + b0y ⌦ y 2 Sym1,1(g). Note that f #0 = |�|2a0b0y ⌦ y,
hence for the functions a(t), b(t) with a(0) = a0, b(0) = b0 satisfying

da
dt

= 0,
db
dt

= |�|2ab

the form f (t) = a(t)x ⌦ x + b(t)y ⌦ y solves the ODE (6.1). Explicitly these
functions are given by a(t) = a0, b(t) = b0e|�|2a0t . If positive numbers a0, b0 are
small enough, one has f0 < B0, hence by Proposition 6.1 f (t) < B(t). Therefore
B(t) cannot have subexponential growth. Contradiction.

Theorem 6.3. For a complex Lie algebra g and a positive definite Hermitian form
B0 2 Sym1,1(g), let B(t) be the solution to the ODE (6.1) on the maximal time
interval [0; tmax), 0 < tmax 6 +1. Then the following are equivalent:

1. g is a solvable Lie algebra;
2. For any initial data B0, the solution B(t) has at most exponential growth, i.e.,
tmax = +1, and there exist constants C, K such that

B(t) < CeKt B0;

3. For some initial data B0, the solution B(t) exists on [0,+1), i.e., tmax = +1.

Proof. The proof is essentially analogous to Theorem 6.2. We prove implications
1) 2) 3) 1.

1 ) 2. By Ado’s theorem there exits a faithful representation of g into some
gl(V ), and by Lie’s theorem one can assume that the image of this representation
lies in b(n) – the Borel subalgebra of gl(V ), consisting of upper-triangular n ⇥ n
matrices:

⇢ : g! b(n).
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Let {Ei, j |1 6 i 6 j 6 n} be the elementary matrices spanning b(n). We fix a
collection of positive real numbers { f (k)

0 }n�1k=0 such that the Hermitian form f0 2
Sym1,1(b(n))

f0 :=
X

16i6 j6n
f ( j�i)
0 Ei, j ⌦ Ei, j

is greater than ⇢(B0). Consider the solution f (t) 2 Sym1,1(b(n)) to the ODE (6.1)
with the initial condition f (0) = f0. After expanding the definition of f # we see
that this ODE is equivalent to a system of n � 1 scalar equations

d f (k)

dt
=
1
2

kX

j=0
f ( j) f (k� j), k = 1, . . . , n � 1

with f (0)(t) ⌘ f (0)
0 . Solving these equations inductively for k = 1, . . . , n � 1 we

get f (k)(t) = qk(e f
(0)
0 t ), where qk(t) is a polynomial of degree k with qk(0) = 0.

Hermitian forms ⇢(B(t)) and f (t) solve the same ODE with the initial condi-
tions ⇢(B0) < f0. Therefore Proposition 6.1 implies that ⇢(B(t)) 6 f (t). Since
f (t) has exponential growth, we get

⇢(B(t)) < C0eKt f0

for some constants C0, K . Finally, using the fact that ⇢ is faithful and B0 2
Sym1,1(g) is positive definite, we find a constant C such that

B(t) < CeKt B0.

As B(t) is bounded on any interval [0, tmax), the solution extends to the whole
[0;+1).

2) 3. Is trivially true.
3) 1. Assume that 1 does not hold, and g is not solvable. Denote by Rad(g)

the maximal solvable ideal. Then the quotient g/Rad(g) is semisimple Lie algebra
and has a simple summand g0. So there is a surjective homomorphism onto a simple
Lie algebra.

⇢ : g! g0.

As in the set-up for Conjecture 5.4 let  2 Sym1,1(g0) be a positive-definite Hermi-
tian form corresponding to the Killing metric of the compact real form of g0. Then
according to Example 4.6 and Theorem 5.5 # = � for some � > 0.

Now, let B(t) 2 Sym1,1(g) be a solution to the ODE (6.1) defined on [0,+1).
Choose ✏0 > 0 such that ✏0 < ⇢(B(0)). If ✏(t) satisfies the equation

d✏

dt
= �✏2, ✏(0) = ✏0,
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then f (t) = ✏(t) solves the ODE (6.1) for f (t) 2 Sym1,1(g0) with the initial data
f (0) = ✏0 . Explicitly we have

✏(t) =
✏0

1� ✏0�t
.

On the one hand we have the solution f (t) to (6.1) blowing up at the finite time
t = (✏0�)�1, on the other hand f (0) < ⇢(B(0)), hence by Proposition 6.1 for any
t > 0

f (t) < ⇢(B(t)).

Contradiction with the finiteness of B(t) for all t 2 [0,+1).

Remark 6.4. Lie algebra g is not solvable if and only if it admits a (semi)simple
quotient g ! g0 ! 0. Hence, Theorem 6.3 implies that the following statements
about the solution B(t) to the ODE (6.1) are equivalent:

1. g admits a (semi)simple quotient;
2. There exists tmax < +1 such that limt!tmax ||B(t)||B0 = +1.

Example 6.5 (Iwasawa manifold). Let G be the 3-dimensional complex Heisen-
berg group

G :=

8
<

:

2

4
1 a b
0 1 c
0 0 1

3

5 a, b, c 2 C

9
=

;
.

and 0 ⇢ G its discrete subgroup, consisting of matrices with a, b, c 2 Z[i]. The
quotient M = G/0 is the Iwasawa manifold. M is a compact complex paralleliz-
able manifold. M does not admit any Kähler metric; in fact, since M is not formal,
there is no complex structure on M admitting a Kähler metric.

The Lie algebra of G is g = span(@a, @b, @c) ' n(3). Consider g0 = p⇤(B�10 ),
where B0 2 Sym1,1(g). Denote by B(t) the solution to the ODE (6.1). Theorem 6.2
provides an explicit expression for B(t) and, in particular, implies that B(t) poly-
nomially blows up as t ! 1. In fact, since B# is proportional to @b ⌦ @b for
any B 2 Sym1,1(g), we see that @b ⌦ @b is the only coordinate of B(t), which
blows up. For the solution g(t) = p⇤(B(t)�1) to the HCF this means that as
t !1

g(t)(@b, @b)! 0, g(t)|span(@a,@c) ⌘ g(0)|span(@a,@c).

To get a geometric picture, consider the Gromov-Hausdorff limit of (G/0, g(t)).
It is easy to see that the projection onto coordinates a and c defines a holomorphic
fibration

⇡ : G/0! C/Z[i]⇥C/Z[i].

The fibers of ⇡ are the orbits of the flow generated by C·@c. The limiting behavior
of g(t) implies that in the Gromov-Hausdorff limit, the fibers with the submersion



HCF ON COMPLEX HOMOGENEOUS MANIFOLDS 1571

metric uniformly collapse to a point as t ! +1 and G/0 collapses to the product
of elliptic curves:

(G/0, g(t)) !
GH

�
C/Z[i]⇥C/Z[i], g(0)|span(@a,@c)

�
.

Using the computations of Theorem 6.2 one can show that the HCF exhibits a sim-
ilar behavior on all complex nilmanifolds of the form G/0, where G is a complex
nilpotent group, and 0 ⇢ G is a cocompact lattice.
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