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Squeezing functions and Cantor sets

LEANDRO AROSIO, JOHN ERIK FORNÆSS, NIKOLAY SHCHERBINA
AND ERLEND F. WOLD

Abstract. We construct “large” Cantor sets whose complements resemble the
unit disk arbitrarily well from the point of view of the squeezing function, and we
construct “large” Cantor sets whose complements do not resemble the unit disk
from the point of view of the squeezing function. Finally we show that comple-
ments of Cantor sets arising as Julia sets of quadratic polynomials have degener-
ate squeezing functions, despite of having Hausdorff dimension arbitrarily close
to two.
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ondary).

1. Introduction

Recently there have been many studies of the boundary behaviour of the squeezing
function (see Section 2 for the definition and references) in one and several complex
variables. In one complex variable there are two extremes:

(1) if � ⇢ b� is an isolated boundary component of a domain � which is not a
point, then

lim
�3z!�

S�(z) = 1; (1.1)

(2) if � ⇢ b� is an isolated boundary component of a domain� which is a point,
then

lim
�3z!�

S�(z) = 0. (1.2)
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This suggests studying the boundary behaviour of S�(z) where� = P1 \ K , and K
is a Cantor set. In [1] Ahlfors and Beurling showed that there exist Cantor sets in P1
whose complements admit bounded injective holomorphic functions. In particular,
such complements admit a non-degenerate squeezing function, and so this class of
domains is nontrivial from the point of view of the squeezing function.

Our first result is the following:

Theorem 1.1. For any ✏ > 0 there exists a Cantor set Q ⇢ I 2 with 2-dimensional
Lebesgue measure greater than 1� ✏, such that

lim
�3z!Q

S�(z) = 1, (1.3)

and, moreover, S�(z) � 1� ✏ for all z 2 �, where � = P1 \ Q.

We also show that there exist Cantor sets with completely different behaviour.

Theorem 1.2. There exists a Cantor set Q ⇢ P1 such that the following hold:

(1) for any point x 2 Q and any neighbourhood U of x we have that U \ Q has
positive 2-dimensional Lebesgue measure;

(2) S� achieves any value between zero and one on U \�, where � = P1 \ Q.

Finally we show that certain Julia sets arising in one dimensional complex dynamics
are Cantor sets which are degenerate from the point of view of the squeezing func-
tion, although they can have Hausdorff dimension arbitrarily close to two and thus
their complements admit bounded holomorphic functions. Recall that a compact set
of Hausdorff dimension strictly larger than one has strictly positive analytic capac-
ity, hence its complement admits bounded holomorphic functions (see, e.g. [15, part
(B) of Theorem 64, page 74]).

Theorem 1.3. Let fc(z) = z2 + c with c /2 M. Then P1 \ Jc does not admit a
bounded injective holomorphic function.

Here, Jc denotes the Julia set for the function fc, andM denotes the Mandelbrot
set, so that Jc is a Cantor set if and only if c /2M.

Other Cantor sets of this type were constructed by Ahlfors and Beurling [1].

2. A “large” Cantor Set whose complement resembles the unit disk
Proof of Theorem 1.1

We give some definitions. Let 4 ⇢ C denote the unit disc, and let Br (p) ⇢ C
denote the disk of radius r centered at p. Let � ⇢ P1 be a domain and let x 2 �.
If ' : � ! 4 is an injective holomorphic function such that '(x) = 0, we set

S�,'(x) := sup{r > 0 : Br (0) ⇢ '(�)}, (2.1)
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and we set
S�(x) := sup

'
{S�,'(x)}, (2.2)

where the supremum is taken over all injective holomorphic functions ' : � ! 4
such that '(x) = 0. The function S� is called the squeezing function. If the domain
� does not admit any bounded injective holomorphic functions, then the squeez-
ing function is called degenerate. The concept of squeezing function goes back
to work by Liu-Sun-Yau, see [12, 13] and S.-K-Yeung [17]. More recently, Deng-
Guan-Zhang, see [2] initiated a basic study of the squeezing function. After that the
squeezing function has been investigated by several authors, among them, Fornæss-
Wold [7], Nikolov-Trybula-Andreev [14], Deng-Guan-Zhang [3], Joo-Kim [10],
Kim-Zhang [11], Zimmer [18], Fornæss-Rong [5], Fornæss-Shcherbina [6],
Diederich-Fornæss [4] and Fornæss-Wold [8]. We will introduce an auxiliary func-
tion R that will enable us to bound the squeezing function from below on the limit
of a certain increasing sequence of domains. Let� ⇢ P1 be a domain which admits
an injective holomorphic map  : � ,! 4. Then for any point x 2 � it is known
(see, for example, Theorem 1 in [16]) that � also admits a circular slit map, that is
an injective holomorphic map ' : � ,! 4 onto a circular slit domain S, such that
'(x) = 0. By definition, S is a circular slit domain if 4 \ S consists of arcs lying
on concentric circles centred at the origin (the arcs may degenerate to points). If
x 2 �, we let Slitx (�) denote the set of all circular slit maps that sends x to the
origin. For a domain � ⇢ P1 we define

R�(x) := sup
'2Slitx (�)

{S�,'(x)}. (2.3)

Notice that by definition R�  S�.
Definition 2.1. Let {� j } j2N be a sequence of domains in P1, and set K j := P1 \
� j . We say that� j converges strongly to a domain� ⇢ P1 with K := P1\�, if the
compact sets K j converge to K in the Hausdorff distance, and we write � j

s
! �.

If x j 2 � j and if x j ! x 2 � we write (� j , x j )
s

! (�, x).

Proposition 2.2. Let� ⇢ P1 be a finitely connected domain such that no boundary
component of � is a point. Let N 2 N, and let {� j } be a sequence of domains,
where each � j is m j -connected with m j  N . Assume that (� j , x j )

s
! (�, x).

Then R� j (x j ) ! R�(x).

Proof. Let K1, ..., Km denote the complementary components of �. Then for each
1  k  m there is a unique slit map 'k : � ! 4 such that 'k identifies Kk with
b4, 'k(x) = 0 and '0

k(x) > 0 (see, for example, Theorem 7 in [16]). In particular,
R�(x) is realised by one (or more) of these maps.

Similarly, each � j has complementary components K
j
k for 1  k  m j , and

for the K j
k ’s that are not points, there are unique slit maps '

j
k identifying K

j
k with

b4, ' jk (x j ) = 0 and ('
j
k )

0(x j ) > 0.
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After re-grouping to simplify notation, we may assume that there is a sequence
s j  m j such that the compact set K

j
1 [ · · · [ K j

s j converges in the Hausdorff
distance to a complementary component of �, say K1, and groups of the other
K j
i ’s converge to the other complementary components of�. Since the diameter of

K1 is strictly positive, we may assume that there is a lower bound for the diameters
of the sets {K j

1 }.
We first claim that there exists a constant c > 0 such that (' j1 )

0(x j ) > c for
all j . Notice that, in view of Koebe’s 14 -theorem, our claim implies that all slits are
bounded away from zero. Assume by contradiction that there is such a sequence
('

j
1 )

0(x j ) ! 0. For any convergent subsequence of the sequence ('
j
1 ), the limit

map is constantly equal to 0. Choose such a convergent subsequence and denote it
still by ('

j
1 ). After possibly having to pass to a subsequence, we may now choose

a nontrivial loop �̃ := bBr (0), where 0 < r < 1, which is contained in ' j1 (� j )

for all j , such that the Kobayashi length of �̃ in ' j1 (� j ) is uniformly bounded from
above.

Let U be any (small) open neighbourhood of K1. Then for j sufficiently
large, we have that ' j1 (� j \ U) is contained in the disk bounded by �̃ . Set �̃ j :=

('
j
1 )

�1(�̃ ). Then since ' j1 identifies K
j
1 with b4, we have that � j \ U is on one

side of �̃ j and K
j
1 is on the other. Then the spherical lengths of the �̃ j ’s are bounded

uniformly from below, since the diameters of the K j
1 ’s are bounded uniformly from

below. But then the Kobayashi length of �̃ j in � j goes to infinity, a contradic-
tion. So we may extract a subsequence from ' j1 converging uniformly on compact
subsets of � to an injective map '̃ : � ! 4.

We claim that '̃ maps � onto a slit domain. First we show that the slits cannot
close up to a circle of radius strictly less than one. Indeed, fix a compact set L in�.
Then we can assume that the sequence converges uniformly on L . This implies that
if there is a slit S of minimal radius r < 1 which closes up to a circle in the limit,
then eventually all the images of L must be contained in the disc of radius r. Then
arguing as above we can pick a circle of radius r < s < 1 so that on the preimages
of the circle, the Kobayashi length is arbitrarily large. This is impossible.

We can assume that the slits converge. The complement of the limiting slits
is connected. Pick any compact subset F of the complement of the limiting slits.
Consider the inverse maps of the ' jk . This is a normal family. Indeed, we can
remove a small disc around a point where the sequence ' jk is uniformly convergent.
After this removal the family of inverses is a normal family. The limit map of the
inverses is then the inverse of a slit map on �, which proves that the limit map '̃ is
a slit map.

So ' is, up to rotation, the unique slit map which identifies K1 with b4, and
by choosing other complementary components than K1 in the above construction,
all the possible slit maps 'k : � ! 4may be obtained as such limits. So we would
arrive at a contradiction if we did not have R� j (x j ) ! R�(x).
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Lemma 2.3. Let Q j = [a j , b j ] ⇥ [c j , d j ] ⇢ C be pairwise disjoint cubes for
j = 1, ...,m, and set

� := P1 \ (Q1 [ · · · [ Qm). (2.4)

For each j , set
0 j := {a j + (1/2)(b j � a j )} ⇥ [c j , d j ], (2.5)

and for k 2 N denote by 0 j (1/k) the open 1
k -neighborhood of 0 j , and by Ql

j,k and
Qr
j,k the left and right connected components of Q j \ 0 j (1/k) respectively. Set

�k := P1 \ (Ql
1,k [ Qr

1,k [ · · · [ Ql
m,k [ Qr

m,k). (2.6)

Then for any ✏ > 0 there exist � > 0 and N 2 N such that, for all k � N ,

R�k (z) � 1� ✏ if z 2 �k \ Q j (�) for some j, (2.7)

and
|R�k (z) � R�(z)| < ✏ if z /2 Q j (�) for all j, (2.8)

where Q j (�) denotes the �-neighborhood of Q j .

Proof. Since all cases are similar, to avoid notation, we prove (2.7) for j = 1. We
may also assume that Q1 = [�1, 1] [ [�1, 1].

For each k 2 N there is a unique conformal map �k : P1 \ Ql
1,k [ Qr

1,k ! P1
such that the image is the complement of two closed disks B1k and B

2
k , normalized

by the condition

�k(z) = z +
1X

j=1
akj (1/z)

j (2.9)

near infinity (see, e.g. [9, Theorem 2, page 237]). Then by uniqueness, �k(z) =
��k(�z), so the two disks have the same size. Moreover, since each �k is nor-
malized to have derivative one at infinity, the radii of the disks have to be bounded
from above and from below: we can assume that the centers and the radii (in the
spherical metric) converge. Indeed, by the Koebe 1/4-theorem the discs must all be
in a bounded region of C. Hence the radii are bounded above. Next we assume that
the radii converge to 0. Let p, q denote the limits of the centers. Then the inverses
are a normal family in the complement of the two points, hence the limit must be
constant. This is only possible if p, q = 1 contradicting the uniform boundedness
of the discs.

So by scaling and rotation, we may then assume that

B1k = B1(�1� �k) and B2k = B1(1+ �k), (2.10)

for some �k > 0, where in general Br (p) denotes the disk of radius r centered at p
(however, we have now possibly destroyed the normalization condition).

We now show that �k ! 0. Otherwise, consider the circles |z � (1 + �k)| =
1+ �k . These have uniformly bounded Kobayashi length. However their preimage
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goes around one of the rectangles and passes between the rectangles, where the
Kobayashi metric is arbitrarily large. Hence their Kobayashi length is unbounded,
contradiction.

Since we may assume that the sequence {�k} converges to a conformal map, we
get (2.7) from Lemma 2.4 below. And since all cases are similar, we conclude that
(2.7) holds for any j = 1, ...,m. Finally (2.8) follows from Proposition 2.2.

Lemma 2.4. Set� := P1 \ (B1(�1)[ B1(1)[ K ) be a domain, with K a compact
set with finitely many connected components, disjoint from B1(�1) [ B1(1). Let
� j & 0, and suppose that

� j := P1 \ (B1(�1� � j ) [ B1(1+ � j ) [ K j ) (2.11)

is a sequence of domains such that K j ! K with respect to Hausdorff distance,
and such that the number of connected components of K j is uniformly bounded.
Then for any ✏ > 0 there exists ⌘ > 1 such that R� j (z) � 1 � ✏ for all j large
enough such that B1(�1 � � j ) ⇢ B⌘(�1) and B1(1 + � j ) ⇢ B⌘(1), and for all
z 2 (B⌘(�1) [ B⌘(1)) \� j .

Proof. Assume to get a contradiction that there exist ✏ > 0 and sequences ⌘k & 1,
jk ! 1, such that

B1(�1� � jk ) ⇢ B⌘k (�1), B1(1+ � jk ) ⇢ B⌘k (1)

and a sequence zk 2 (B⌘k (�1) [ B⌘k (1)) \ � jk such that R� jk
(zk) < 1 � ✏. We

may assume that Re(zk) � 0 for all k.
Set fk(z) := z � (1+ � jk ), �0

jk := fk(� jk ), and z0k := fk(zk). Note that 1 <

|z0k |  2⌘k � 1 and that fk(�2� � jk ) = �3(1+ (2/3)� jk ). Next set gk(z) := 1/z,
�00
jk := gk(�0

jk ), and z
00
k := gk(z0k). Then |z00k | � 1

2⌘k�1 and |gk( fk(�2 � � jk ))| <

1/3.
To sum up: �00

jk is a domain obtained by removing a disk Dk and the compact
set gk( fk(K jk )) from the unit disk, the point qk on the boundary of Dk closest to
the origin is of modulus less than one third, and there is a point z00k 2 �00

jk with
|z00k | � 1

2⌘k�1 for which R�00
jk
(z00k ) < 1� ✏.

Clearly, the Poincaré distances between z00k and qk , and z
00
k and gk( fk(K jk )),

goes to infinity as k ! 1, so if we set  k(z) :=
z�z00k
1�z00k z

, after possibly having to
pass to a subsequence and in view of the following below sublemma, the domains
 k(�

00
jk ) converge to a simply connected domain with respect to strong conver-

gence. Applying Proposition 2.2 and using one more time the following sublemma,
this implies that R k(�00

jk
)(0) ! 1 as k ! 1 - a contradiction.

Sublemma 2.5. We have that lim infk!1 dP(z00k , Dk) > 0, where dP denotes the
Poincaré distance.
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Proof. Note that Re(z0k) � �1�� jk , so that if we set �k := {z 2 C : Re(z) = �1�
� jk }, then any curve connecting z00k and Dk will have to pass through �̃k = gk(�k).
So it is enough to find a lower bound for the Poincaré distance between Dk and �̃k
for large k. Now the real points on �̃k are 0 and 1

�1�� jk
, and the real points on bDk

are 1
�1�2� jk

and 1
�3(1+(2/3)� jk )

, and using the fact that Poincaré disks are Euclidean

disks, it suffices to control the distance between 1
�1�� jk

and 1
�1�2� jk

, and between

0 and 1
�3(1+(2/3)� jk )

. The last distance is clearly bounded away from zero, so we
compute the first. We have that

lim
k!1

log
1+ 1

1+� jk
1� 1

1+� jk

� log
1+ 1

1+2� jk
1� 1

1+2� jk

= lim
k!1

log
1� 1

1+2� jk
1� 1

1+� jk

= log 2.

Lemma 2.6. Let � ⇢ P1, x 2 �, and suppose that P1 \ � contains at least three
points. Suppose that � j

s
! �. Then
r := lim sup

j!1
S� j (x)  S�(x).

Proof. If r = 0 this is clear, so we assume that r > 0. Then, after possibly having
to pass to a subsequence, there exists a sequence ' j : � j ! 4 of embeddings,
' j (x) = 0, Br j (0) ⇢ ' j (� j ), r j ! r . Let a j 2 P1 be distinct points such that ai /2
� for i = 1, 2, 3. For any � > 0 the ball B�(ai ) is not contained in� j for all j large
enough. So we may fix 0 < � << 1, and assume that there exist points a ji 2 B�(ai )
such that a ji /2 � j for all j and for i = 1, 2, 3. Since there is a compact family of
Möbius transformations mapping the triples {a j1 , a

j
2 , a

j
3 } to the triple {a1, a2, a2},

and since the complement of three points is Kobayashi hyperbolic, we may assume
that for all 0 < r 0 < r the sequence '�1

j |Br 0 (0) is convergent. Hence the derivatives
of ' j (x) are uniformly bounded below and above. Therefore we can assume that
the ' j converge to an injective holomorphic map from� to4. Moreover the image
contains the disc of radius r.

Proof of Theorem 1.1. Set Q1 = I 2. By alternating Lemma 2.3 and its horizontal
analogue we obtain a decreasing sequence Q j of disjoint unions of cubes, such that
(1) Q := \ j�1Q j is a Cantor set with 2-dimensional Lebesgue measure arbitrar-

ily close to one,
(2) RP1\Q j � 1� ✏, and
(3) For any sequence (z j ) in P1 \Q converging to Q and any � > 0 there exists an

N 2 N such that RP1\Qi (z j ) > 1 � � whenever j � N and i is large enough
(depending on j).

By (1) the two-dimensional Lebesgue measure of Q can be arbitrarily close to one.
By (2) and by Lemma 2.6 it follows that SP1\Q(z) � 1� ✏.
By (3) and by Lemma 2.6 it follows that SP1\Q(z j ) � 1 � � for all j � N , and
hence limP1\Q3z!Q SP1\Q(z) = 1.
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3. A “large”Cantor Setwhose complement does not resemble the unit disk
Proof of Theorem 1.2

We modify the construction in the previous section. For an inductive construction,
assume that we have constructed a family Q j :={Q j

1, . . . , Q
j
m( j)} of m( j) disjoint

cubes. We may choose m( j) closed loops 0 j
i , each surrounding and being so close

to one of the cubes, that S� j (z)� 1 � 1/j if z 20 j
i for some 1  i m( j), where

� j =P1\[i Q j
i . Further wemay choose a finite number of points p

j
1 , ..., p

j
k( j) in� j

such that we find a point p j` in any 1/j-neighbourhood of any point in b� j , and such
that S�0

j
(z)�1�2/j if z2[1im( j)0

j
i , where we denote�

0
j :=� j \[1 ̀k( j){p

j
` }.

The reason is that the removal of a set sufficiently close to the boundary of a domain,
will essentially not disturb a lower bound for neither S nor R.

Then by Lemma 3.2 below and Proposition 2.2 we may choose an arbitrarily
small � j > 0 and arbitrarily small cubes Q̃ j

` ⇢ {|z � p j` | < � j } such that

(i) S�00
j
(z)  1/j if |z � p j` | = � j for some 1  `  k( j);

(ii) S�00
j
(z) � 1� 3/j if z 2 0 j

i for some 1  i  m( j),

where we denote �00
j := � j \ [` Q̃

j
` . By applying Lemma 2.3 twice we may divide

each cube in the collection

{Q j
1, . . . , Q

j
m( j), Q̃

j
1, . . . , Q̃

j
k( j)}

into four, creating a new collection of cubesQ j+1 such that

(i) S� j+1(z)  2/j if |z � p j` | = � j for some 1  `  k( j);
(ii) S� j+1(z) � 1� 4/j for z 2 0 j

i for some 1  i  m( j),

where� j+1 denotes the complement of the cubes inQ j+1. The inductive step may
be repeated indefinitely so as to ensure that for all k > 1 we still have that

(i0) S� j+k (z) < 3/j for |z � p j` | = � j for some `;
(ii0) S� j+k (z) > 1� 5/j for z 2 0 j

i for some i .

We now define
Q := lim sup

j!1

[

Q j
l 2Q j

Q j
l .

If in each step of the construction the points p ji were chosen close enough to each
of the previously constructed cubes, it follows that any connected component of Q
must be a point (since the diameters of the cubes go to zero), and no point will be
isolated. Hence Q is a Cantor set. It follows from Lemma 3.2 that we may arrange
that statement corresponding to (i’) holds in the limit. The statement corresponding
to (ii’) holds in the limit by Lemma 2.6 since � j converges strongly to P1 \ Q.
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Lemma 3.1. Let K ⇢ P1 be a compact set such that� = P1 \K admits a bounded
injective holomorphic function. Let p1, ..., pm 2 � be distinct points, and set
�0 = � \ {p1, ..., pm}. Then

lim
�03z j!p j

S�0(z) = 0, (3.1)

for j = 1, ...,m.
Proof. We consider p1. Assume to get a contradiction that there exists a sequence
�0 3 z j ! p1 and injective holomorphic maps ' j : �0 ! 4,' j (z j ) = 0,
and Br (0) ⇢ ' j (�

0) for some r > 0. All maps extend holomorphically across
p1, ...., pm , and we may extract a subsequence converging to a limit map ', with
'(p1) = 0. Since |'(p1)�'(z j )| ! 0 as j ! 1, this leads to a contradiction.

Lemma 3.2. Let K ⇢ P1 be a compact set such that� = P1 \K admits a bounded
injective holomorphic function. Let p1, ..., pm 2 � be distinct points, and let ✏ > 0.
Then there exist �1 > 0 (arbitrarily small) and 0 < �2 << �1, such that for
any domain 3 ⇢ P1 with P1 \ 3 ⇢ K (�2) [ ([m

j=1B�2(p j )) (with at least one
complementary component in each B�2(p j )), we have that S3(z) < ✏ for all z 2 3
with |z � p j | = �1 for some j . Here K (�2) denotes the �2-neighbourhood of K .
Proof. Let 0 < µ << 1 (to be determined). Fix �1 > 0 such that the Kobayashi
length in �0 = � \ {p1, ..., pm} of each loop |z � p j | = �1 is strictly less than µ.
Let f✓ : 4 ! �0 be a continuous family of universal covering maps with f✓ (0) =
p1 + �1ei✓ . Then the Kobayashi metric g�

0

K (p1 + �1ei✓ ) is equal to 1/| f 0
✓ (0)|. Fix

any 0 < r < 1. Then for any domain �00 ⇢ P1 that covers the union [✓ f✓ (4r ),
which is a compact subset of �0, we have that g�00

K (p1 + �1ei✓ ) is bounded from
above by 1/|r · f 0

✓ (0)|. So for r sufficiently close to 1 the Kobayashi length of the
loop |z � p1| = �1 in �00 is less than µ for any such domain. The same argument
may be applied to all points p j .

Now for any such domain �00 we estimate the squeezing function with respect
to µ. Write S�00(p j + �1ei✓ ) = s, let g : �00 ! 4 be a map that realises the
squeezing function at p j + �1ei✓ , and let 0 j denote the loop |z � p j | = �1. Then,
since g(0 j ) is a nontrivial loop in g(�00) we have that lK (0 j ) � log(1+s1�s ). Then
s  eµ�1

eµ+1 ! 0 as µ ! 0, and so the lemma follows.

4. Julia sets for quadratic polynomials – Proof of Theorem 1.3

Fix a quadratic polynomial fc(z) = z2 + c and assume that c /2 M, whereM
denotes the Mandelbrot set. Then the critical point 0 is in the basin of attraction of
infinity �1, and the Julia set Jc = P1 \ �1 is a Cantor set. We let Gc(z) denote
the negative Green’s function associated to fc. It satisfies the following properties:
(1) Gc is continuous on C and harmonic on C \ Jc;
(2) Gc(z) = � log |z| + O(1) near1;
(3) Gc( f n(z)) = 2nGc(z) for all z 2 C.
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We regard Gc as an exhaustion function of �1. Let t0 = Gc(0). The exhaustion
may be described as follows. For t < t0 the level sets 0t = {Gc = t} are smooth
connected embeddings of S1, shrinking around infinity as t decreases to�1. Con-
sidering the picture in C, as t increases to t0, the family 0t is a decreasing family
of embedded S1’s, decreasing to 0t0 , which is a figure eight, the origin being the
figure eight crossing point. In general, the level sets 02�nt0 consists of 2

n pairwise
disjoint figure eights, and for 2�nt0 < t < 2�n+1t0 the level set 0t consists of 2n+1
disjoint smoothly embedded copies of S1, one contained in each hole of a figure
eight in 02�nt0 .

We now assume to get a contradiction that there exists a bounded holomorphic
injection ' : �1 ! 4, and we may assume that '(1) = 0. We will first use the
exhaustion just described to get a description of '(�1) that will allow us to modify
' in a useful way. Set H = Gc � '�1, defined on '(�1).

Start by choosing s0 << 0 and let D0 be the disk bounded by �s0 = {H = s0},
a single closed loop. Increasing s between s0 and t0 we get an increasing family
of single loops �s , but when s crosses the critical value t0 it breaks into two loops,
say � 1s1, �

2
s1 , for s close to t0. One of these loops is going to enclose the other,

and we relabel it �s1 . Next, increasing s between s1 and 2t0 we follow a path of
loops starting from �s1 , until s crosses 2t0, and it again breaks into two loops, say
� 1s2 and �

2
s2 for s2 close to 2t0. Again, single out the one enclosing the other, and

relabel it �s2 . Continuing in this fashion, we obtain a family of loops �s j such that
�s j encloses �s j�1 , and such that the disk Dj bounded by �s j contains the whole
sublevel set {H < s j }. We have that {Dj } is an increasing family of disk, we
denote by D its increasing union, and we let  : D ! 4 be the Riemann map
satisfying  (0) = 0, 0(0) > 0. Our modified map will be '̃ :=  � '.

Next we will use the map fc to find some other loops �̃ j in�1, each one in the
same free homotopy class as '�1(�s j ). Start by defining �̃0 as the level set Gc = t
for some t < t0 close to t0. Then f �1

c (�̃0) consists of two disjoint loops, one of them
free homotopic to '�1(�s1). Single this out, and label it �̃1. Next f �1

c (�̃1) consists
of two disjoint loops, and one of them is free homotopic to '�1(�s2). Single it out,
and denote it by �̃2. Continue in this fashion indefinitely.

We are now ready to reach the contradiction. On the one hand, since the family
'̃(�̃ j ) will increase towards b4, it follows that the Kobayashi lengths of �̃ j in �1
will increase towards infinity. On the other hand, let C ⇢ �1 denote the forward
and backward orbit of the critical point 0. Then the Kobayashi length of each �̃ j in
�1 \ C is longer than the Kobayashi length in �1. But fc : �1 \ C ! �1 \ C
is a covering map, and so the Kobayashi lengths of all the �̃ j ’s in �1 \ C are the
same. A contradiction.
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