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Squeezing functions and Cantor sets

LEANDRO AROSIO, JOHN ERIK FORNZSS, NIKOLAY SHCHERBINA
AND ERLEND F. WOLD

Abstract. We construct “large” Cantor sets whose complements resemble the
unit disk arbitrarily well from the point of view of the squeezing function, and we
construct “large” Cantor sets whose complements do not resemble the unit disk
from the point of view of the squeezing function. Finally we show that comple-
ments of Cantor sets arising as Julia sets of quadratic polynomials have degener-
ate squeezing functions, despite of having Hausdorff dimension arbitrarily close
to two.

Mathematics Subject Classification (2010): 32H02 (primary); 32F45 (sec-
ondary).

1. Introduction

Recently there have been many studies of the boundary behaviour of the squeezing
function (see Section 2 for the definition and references) in one and several complex
variables. In one complex variable there are two extremes:

(1) if y C b2 is an isolated boundary component of a domain €2 which is not a
point, then
lim Sq(z) =1; (1.1)

Qoz—>y

(2) if y C b2 is an isolated boundary component of a domain €2 which is a point,
then
lim Sq(z) =0. (1.2)

Qoz—y
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This suggests studying the boundary behaviour of Sq(z) where @ = P!\ K, and K
is a Cantor set. In [1] Ahlfors and Beurling showed that there exist Cantor sets in P!
whose complements admit bounded injective holomorphic functions. In particular,
such complements admit a non-degenerate squeezing function, and so this class of
domains is nontrivial from the point of view of the squeezing function.

Our first result is the following:

Theorem 1.1. For any € > 0 there exists a Cantor set Q C I1* with 2-dimensional
Lebesgue measure greater than 1 — €, such that

li =1 1.3
QBérgQSQ(Z) , (1.3)

and, moreover, Sq(z) > 1 — € for all 7 € Q, where Q@ = P!\ Q.
We also show that there exist Cantor sets with completely different behaviour.
Theorem 1.2. There exists a Cantor set Q C P! such that the following hold:

(1) for any point x € Q and any neighbourhood U of x we have that U N Q has
positive 2-dimensional Lebesgue measure;
(2) Sq achieves any value between zero and one on U N Q, where Q =P\ Q.

Finally we show that certain Julia sets arising in one dimensional complex dynamics
are Cantor sets which are degenerate from the point of view of the squeezing func-
tion, although they can have Hausdorff dimension arbitrarily close to two and thus
their complements admit bounded holomorphic functions. Recall that a compact set
of Hausdorff dimension strictly larger than one has strictly positive analytic capac-
ity, hence its complement admits bounded holomorphic functions (see, e.g.[15, part
(B) of Theorem 64, page 74]).

Theorem 1.3. Let f.(z) = z> + ¢ with ¢ ¢ M. Then P!\ J. does not admit a
bounded injective holomorphic function.

Here, J. denotes the Julia set for the function f,, and M denotes the Mandelbrot
set, so that J, is a Cantor set if and only if ¢ ¢ M.
Other Cantor sets of this type were constructed by Ahlfors and Beurling [1].

2. A “large” Cantor Set whose complement resembles the unit disk
Proof of Theorem 1.1

We give some definitions. Let A C C denote the unit disc, and let B, (p) c C
denote the disk of radius r centered at p. Let @ C P! be a domain and let x € Q.
If ¢ : 2 — A is an injective holomorphic function such that ¢ (x) = 0, we set

Sq,0(x) :=sup{r > 0: B, (0) C ¢(£2)}, 2.1
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and we set
Sa(x) :=sup{Sq,,(x)}, (2.2)
®

where the supremum is taken over all injective holomorphic functions ¢ : Q — A
such that ¢ (x) = 0. The function Sg, is called the squeezing function. If the domain
2 does not admit any bounded injective holomorphic functions, then the squeez-
ing function is called degenerate. The concept of squeezing function goes back
to work by Liu-Sun-Yau, see [12,13] and S.-K-Yeung [17]. More recently, Deng-
Guan-Zhang, see [2] initiated a basic study of the squeezing function. After that the
squeezing function has been investigated by several authors, among them, Fornaess-
Wold [7], Nikolov-Trybula-Andreev [14], Deng-Guan-Zhang [3], Joo-Kim [10],
Kim-Zhang [11], Zimmer [18], Forn@ss-Rong [5], Fornass-Shcherbina [6],
Diederich-Forness [4] and Fornass-Wold [8]. We will introduce an auxiliary func-
tion R that will enable us to bound the squeezing function from below on the limit
of a certain increasing sequence of domains. Let 2 C P! be a domain which admits
an injective holomorphic map ¥ : Q2 <> A. Then for any point x € it is known
(see, for example, Theorem 1 in [16]) that €2 also admits a circular slit map, that is
an injective holomorphic map ¢ : & < A onto a circular slit domain S, such that
¢(x) = 0. By definition, S is a circular slit domain if A \ S consists of arcs lying
on concentric circles centred at the origin (the arcs may degenerate to points). If
x € Q, we let Slit, (22) denote the set of all circular slit maps that sends x to the
origin. For a domain @ C P! we define

Ro(x):= sup {Sq,(x)}. (2.3)
@eSlity ()

Notice that by definition R < Sq.
Definition 2.1. Let {2;};cn be a sequence of domains in P!, and set K; = P!\
;. We say that Q; converges strongly to a domain Q C P! with K := P!\ Q, if the
compact sets K ; converge to K in the Hausdorff distance, and we write €2 5 Q.
Ifx; € Qjandif x; — x € Q we write (Q;, x;) - (R, x).
Proposition 2.2. Let Q@ C P! be a finitely connected domain such that no boundary
component of Q is a point. Let N € N, and let {Q2;} be a sequence of domains,
where each 2 is m j-connected with m; < N. Assume that (2, x ;) = (L2, x).

Then RQ]- (Xj) — RQ()C).

Proof. Let K1, ..., K,;, denote the complementary components of 2. Then for each
1 < k < m there is a unique slit map ¢ : Q2 — A such that ¢y identifies K with
bA, g (x) =0 and ¢, (x) > 0 (see, for example, Theorem 7 in [16]). In particular,
Rgq(x) is realised by one (or more) of these maps.

Similarly, each €2; has complementary components K k’ for1 <k <mj,and
for the K ,f ’s that are not points, there are unique slit maps gu,i identifying K ,{ with
bA, go,f (x;) =0and ((p,i)/(xj) > 0.
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After re-grouping to simplify notation, we may assume that there is a sequence
sj < mj such that the compact set K 1’ Uu---UKk SJ ; converges in the Hausdorff
distance to a complementary component of 2, say K, and groups of the other
K l.j ’s converge to the other complementary components of 2. Since the diameter of
K is strictly positive, we may assume that there is a lower bound for the diameters
of the sets {Klj}.

We first claim that there exists a constant ¢ > 0 such that (<p{ ) (x j) > c for

all j. Notice that, in view of Koebe’s %—theorem our claim implies that all slits are
bounded away from zero. Assume by contradiction that there is such a sequence

(‘/’1) (x;) — 0. For any convergent subsequence of the sequence ((pl) the limit
map is constantly equal to 0. Choose such a convergent subsequence and denote it

still by (gaf ). After possibly having to pass to a subsequence, we may now choose
a nontrivial loop y := bB,(0), where 0 < r < 1, which is contained in (plj (£2;)

for all j, such that the Kobayashi length of y in go{ (€2;) is uniformly bounded from
above.
Let U be any (small) open neighbourhood of Kj. Then for j sufficiently

large we have that gal (£2; \ U) is contained in the disk bounded by 7. Set 7/ :=
((pl) L@). Then since ‘/’1 identifies K / with bA, we have that 2; \ U is on one
side of y; and K/ i is on the other. Then the spherical lengths of the y;’s are bounded

uniformly from below, since the diameters of the K 1] ’s are bounded uniformly from
below. But then the Kobayashi length of 7/ in Q j goes to infinity, a contradic-

tion. So we may extract a subsequence from (p{ converging uniformly on compact
subsets of €2 to an injective map ¢ : Q — A.

We claim that ¢ maps €2 onto a slit domain. First we show that the slits cannot
close up to a circle of radius strictly less than one. Indeed, fix a compact set L in €2.
Then we can assume that the sequence converges uniformly on L. This implies that
if there is a slit S of minimal radius » < 1 which closes up to a circle in the limit,
then eventually all the images of L must be contained in the disc of radius . Then
arguing as above we can pick a circle of radius » < s < 1 so that on the preimages
of the circle, the Kobayashi length is arbitrarily large. This is impossible.

We can assume that the slits converge. The complement of the limiting slits
is connected. Pick any compact subset F' of the complement of the limiting slits.

Consider the inverse maps of the <p,{ . This is a normal family. Indeed, we can

remove a small disc around a point where the sequence <p,ﬁ is uniformly convergent.
After this removal the family of inverses is a normal family. The limit map of the
inverses is then the inverse of a slit map on €2, which proves that the limit map ¢ is
a slit map.

So ¢ is, up to rotation, the unique slit map which identifies K| with bA, and
by choosing other complementary components than K in the above construction,
all the possible slit maps ¢ : € — A may be obtained as such limits. So we would
arrive at a contradiction if we did not have Rgq;(xj) = Rq(x). ]
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Lemma2.3. Let Q; = [aj,bj] x [cj,dj] C C be pairwise disjoint cubes for
j=1,..,m,and set

Q:=P'\(Q1U---UQn. (2.4)

For each j, set
[j:=A{a;+1/2)(bj —aj)} x [cj,d}], (2.5)

and for k € N denote by I"j(1/ k) the open %—neighborhood of T'j, and by Ql]-’k and
Q;’ « the left and right connected components of Q ; \ T j(1/k) respectively. Set

=P\ (Q},UQ U---UQ, U, L. (2.6)
Then for any € > 0 there exist § > 0 and N € N such that, for allk > N,
R (z) 2 1 —€ifz € QN Q;(8) for some j, 2.7

and
R, (2) — Ra(2)| < €ifz ¢ Q;(6) forall j, (2.8)

where Q ;(8) denotes the §-neighborhood of Q ;.

Proof. Since all cases are similar, to avoid notation, we prove (2.7) for j = 1. We
may also assume that O = [—1, 1JU[—1, 1].

For each k € N there is a unique conformal map ¢ : P! \ Ql1 (YO~ P!
such that the image is the complement of two closed disks B,: and B,f, normalized
by the condition

$r(@) =z+ Y al(1/z)! 29)
=1

J

near infinity (see, e.g. [9, Theorem 2, page 237]). Then by uniqueness, ¢ (z) =
—¢r(—2), so the two disks have the same size. Moreover, since each ¢ is nor-
malized to have derivative one at infinity, the radii of the disks have to be bounded
from above and from below: we can assume that the centers and the radii (in the
spherical metric) converge. Indeed, by the Koebe 1/4-theorem the discs must all be
in a bounded region of C. Hence the radii are bounded above. Next we assume that
the radii converge to 0. Let p, g denote the limits of the centers. Then the inverses
are a normal family in the complement of the two points, hence the limit must be
constant. This is only possible if p, ¢ = oo contradicting the uniform boundedness
of the discs.
So by scaling and rotation, we may then assume that

B} = Bi(—1— &) and Bf = Bi(1 + &), (2.10)

for some & > 0, where in general B, (p) denotes the disk of radius r centered at p
(however, we have now possibly destroyed the normalization condition).

We now show that §; — 0. Otherwise, consider the circles |z — (1 + )| =
1 4 dx. These have uniformly bounded Kobayashi length. However their preimage



1364 L. ArRosSIO, J. E. FORN&ASS, N. SHCHERBINA AND E. F. WOLD

goes around one of the rectangles and passes between the rectangles, where the
Kobayashi metric is arbitrarily large. Hence their Kobayashi length is unbounded,
contradiction.

Since we may assume that the sequence {¢} converges to a conformal map, we
get (2.7) from Lemma 2.4 below. And since all cases are similar, we conclude that
(2.7) holds for any j = 1, ..., m. Finally (2.8) follows from Proposition 2.2. ]

Lemma 2.4. Ser Q := P! \ (Bi(—=1)UB{(1)UK) be a domain, with K a compact
set with finitely many connected components, disjoint from B1(—1) U B1(1). Let
d; \( 0, and suppose that

Qj =P\ (Bi(—1-5,) UB(145;) UK)) 2.11)

is a sequence of domains such that K; — K with respect to Hausdorff distance,
and such that the number of connected components of K is uniformly bounded.
Then for any € > 0 there exists n > 1 such that Rq;(z) Z 1 — € for all j large
enough such that Bi(—1 — dj) C By(—1) and El(l +6;) C By(1), and for all
z € (By(=)UB,(1) NQ;.

Proof. Assume to get a contradiction that there exist € > 0 and sequences n; ~\ 1,
Jk — 00, such that

Bi(—=1—16;) C By (=), Bi(1+8;) C By (1)

and a sequence z; € (By,(—1) U By, (1)) N Qj, such that Rij (zr) <1 —€. We
may assume that Re(zx) > 0 for all k.

Set fi(z) ;=2 —(14+6), Q’jk = fx(Q},),and z; := fi(zx). Note that 1 <
23| <2k — 1 and that fi (=2 —38;) = —=3(1 + (2/3)8Jk) Next set gr(z) := 1/z,
Q= gr(), and zj| := gk(z}). Then |z}/| > 57— 7 and [gx(fi (2 — 8;))] <
1/3.

To sum up: Q' // is a domain obtained by removing a disk Dy and the compact
set g¢(fx(K,)) from the unit disk, the point g on the boundary of Dy closest to
the orlgln is of modulus less than one third, and there is a point z; € Q” with
|z 2 5T 7 for which RQ// (z N <1—e.

Clearly, the Poincaré dlstances between z ' and gy, and z " and gr(fi(K )
goes to infinity as k — o0, so if we set ¥ (z) := lz:—?,,z, after possibly having to

7z
pass to a subsequence and in view of the following below sublemma, the domains
wk(Q’j’k) converge to a simply connected domain with respect to strong conver-

gence. Applying Proposition 2.2 and using one more time the following sublemma,
this implies that R, @ y(0) — 1 as k — oo - a contradiction. ]
Jk

Sublemma 2.5. We have that liminf;_, oo dp (z;g , Dy) > 0, where dp denotes the
Poincaré distance.
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Proof. Note that Re(z,/() > —1—34j,,sothatifweset y; :={z € C:Re(z) = —1—
8.}, then any curve connecting z;’ and Dy will have to pass through 7 = g ().
So it is enough to find a lower bound for the Poincaré distance between Dy and
for large k. Now the real points on  are 0 and L and the real points on b Dy

1 1 . . JuT .
are —T-25;, and — T /5, and using the fact that Poincaré disks are Euclidean
disks, it suffices to control the distance between —; i 5— and — J25~ , and between
Jk Jk
1 . .
0 and ST RO TRE The last distance is clearly bounded away from zero, so we

compute the first. We have that

I+ 155 L+ I =
klim log = —log — = klim log —— % = log?2. N
BEEE Ralh e= 7 V=, o -

Lemma 2.6. Let @ C P!, x € Q, and suppose that P' \ Q contains at least three
points. Suppose that Q > Q. Then
r = limsup S, (x) < Sq(x).
Jj—00

Proof. If r = 0 this is clear, so we assume that r > 0. Then, after possibly having
to pass to a subsequence, there exists a sequence ¢; : £; — A of embeddings,
pjx) =0, Brj(O) Coi()),rj —>r.Letaj € P! be distinct points such that a; ¢
Qfori =1,2,3. Forany § > 0 the ball Bs(a;) is not contained in €2 for all j large
enough. So we may fix 0 < § << 1, and assume that there exist points al.j € Bs(a;)
such that aij ¢ Q; forall j and fori = 1, 2, 3. Since there is a compact family of
Mobbius transformations mapping the triples {a{ , aé, aé } to the triple {a1, az, a>},
and since the complement of three points is Kobayashi hyperbolic, we may assume
that for all 0 < r’ < r the sequence goj_l |B,/(0) is convergent. Hence the derivatives
of ¢;(x) are uniformly bounded below and above. Therefore we can assume that

the ¢; converge to an injective holomorphic map from €2 to A. Moreover the image
contains the disc of radius r. O

Proof of Theorem 1.1. Set Q' = I%. By alternating Lemma 2.3 and its horizontal
analogue we obtain a decreasing sequence Q7 of disjoint unions of cubes, such that

() 0 :=nNj> Q7 is a Cantor set with 2-dimensional Lebesgue measure arbitrar-
ily close to one,
2) RIP]\Qj >1—¢€,and
(3) For any sequence (z;) in P\ Q converging to Q and any § > 0 there exists an
N € N such that Rpi\gi(zj) > 1 — & whenever j > N and i is large enough
(depending on j).
By (1) the two-dimensional Lebesgue measure of Q can be arbitrarily close to one.
By (2) and by Lemma 2.6 it follows that Spig(z) = 1 —e€.
By (3) and by Lemma 2.6 it follows that SPI\Q(ZJ') >1—4forall j > N, and
hence limp1, 5., o Spi\p(2) = L. O



1366 L. ArRosSIO, J. E. FORN&ASS, N. SHCHERBINA AND E. F. WOLD

3. A“large” Cantor Set whose complement does not resemble the unit disk
Proof of Theorem 1.2

We modify the construction in the previous section. For an inductive construction,
assume that we have constructed a family QJ:={ {, e an(j)} of m(j) disjoint
cubes. We may choose m(j) closed loops F[.J , each surrounding and being so close
to one of the cubes, that SQj ()=1-1/jifze I‘ij for some 1 < i <m(j), where
Q= =P"\y; Qj Further we may choose a finite number of points pI’ - p,{(]) in Q;
such that we find a point p , inany 1/j- nelghbourhood of any point in b§2, and such
that SQ’ (z)=1-2/jifze U1<,<m(])r‘ where we denote Q/ =Q; \U1<g<k(]){pe 1.

The reason is that the removal of a set sufficiently close to the boundary of a domain,
will essentially not disturb a lower bound for neither S nor R.
Then by Lemma 3.2 below and Proposition 2.2 we may choose an arbitrarily

small §; > 0 and arbitrarily small cubes Qé C{lz— pé| < §;} such that
(D) Sey(2) < 1/jif |z = pll =6, for some 1 < £ < k(j);
(i) SQ/]{(Z) >1-3/jifz e Fij for some 1 <i < m(j),

where we denote Q/J/ =0\ Uy Qé By applying Lemma 2.3 twice we may divide
each cube in the collection

{Qja“ Qm(])’ Qjaﬁéljc(])}
into four, creating a new collection of cubes QJ+1 guch that

(1) SQ].H(z) <2/jif |z —pgl =4 forsome 1 < £ < k(j);

(i1) SQ/-_H(Z) >1—4/jforz e Fij for some 1 <i < m(j),
where €| denotes the complement of the cubes in Q/ *+1. The inductive step may
be repeated indefinitely so as to ensure that for all £ > 1 we still have that

(i) Sq,,.(2) < 3/j for [z — p]| = 8 for some £;
(ii') Sq;,,(z) > 1 —5/j forz € I'{ for some i.
We now define

QO = limsup U Q i
j—00 Q1 coi

If in each step of the construction the points pij were chosen close enough to each
of the previously constructed cubes, it follows that any connected component of Q
must be a point (since the diameters of the cubes go to zero), and no point will be
isolated. Hence Q is a Cantor set. It follows from Lemma 3.2 that we may arrange

that statement corresponding to (i’) holds in the limit. The statement corresponding
to (ii’) holds in the limit by Lemma 2.6 since £2; converges strongly to P!\ Q.
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Lemma 3.1. Let K C P! be a compact set such that Q@ = P'\ K admits a bounded
injective holomorphic function. Let p1, ..., pm € K2 be distinct points, and set
Q' =Q\{p1, ..., pm}. Then
lim Sqg/(z) =0, (3.1)
Q'szj—>pj

for j=1,..,m.

Proof. We consider p;. Assume to get a contradiction that there exists a sequence
Q' 5 z; — pi and injective holomorphic maps ¢; : Q" — A,¢;(z;) = 0,
and B,(0) C ¢;() for some r > 0. All maps extend holomorphically across
pi1, ..., Pm, and we may extract a subsequence converging to a limit map ¢, with
@(p1) = 0. Since |p(p1)—¢(z;)| — 0as j — oo, this leads to a contradiction. []

Lemma 3.2. Let K C P! be a compact set such that @ = P'\ K admits a bounded
injective holomorphic function. Let py, ..., pm € Q2 be distinct points, and let € > 0.
Then there exist 81 > 0 (arbitrarily small) and 0 < 8, << 81, such that for
any domain A C P! with P! \A C K(6) U (LJ’;’:IB,S2 (pj)) (with at least one
complementary component in each Bs,(p)), we have that Sx(z) < € forallz € A
with |z — pj| = &1 for some j. Here K (82) denotes the 53-neighbourhood of K .

Proof. Let 0 < u << 1 (to be determined). Fix §; > 0 such that the Kobayashi
length in Q" = @\ {p1, ..., pm} of each loop |z — p;| = 8 is strictly less than s.
Let fy : A — ' be a continuous family of universal covering maps with f5(0) =
p1 + 81€'?. Then the Kobayashi metric g%/ (p1 + 81€'%) is equal to 1/1f;(0)]. Fix
any 0 < r < 1. Then for any domain Q” C P! that covers the union Ug f5(A,),
which is a compact subset of @', we have that g%” (p1 + 81€'?) is bounded from
above by 1/|r - f;(0)|. So for r sufficiently close to 1 the Kobayashi length of the
loop |z — p1]| = 81 in Q” is less than u for any such domain. The same argument
may be applied to all points p;.

Now for any such domain ©2” we estimate the squeezing function with respect
to w. Write Sgr(p; + 81¢') = s,let g : Q" — A be a map that realises the

squeezing function at p; + & 1€? and let T j denote the loop |z — p;| =1 81. Then,
+s

since g(I";) is a nontrivial loop in g(2”) we have that [g (I";) > log(1=;). Then
s < Z’eri — 0 as u — 0, and so the lemma follows. O

4. Julia sets for quadratic polynomials — Proof of Theorem 1.3

Fix a quadratic polynomial f.(z) = z> + ¢ and assume that ¢ ¢ M, where M
denotes the Mandelbrot set. Then the critical point O is in the basin of attraction of
infinity Q4, and the Julia set J. = P! \ Qq is a Cantor set. We let G(z) denote
the negative Green’s function associated to f,. It satisfies the following properties:

(1) G, is continuous on C and harmonic on C \ 7;
(2) G:(z) = —log|z| + O(1) near oo;
(3) Ge(f"(2)) =2"Ge(z) forall z € C.
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We regard G as an exhaustion function of Q.. Let fo = G(0). The exhaustion
may be described as follows. For ¢ < tg the level sets I'; = {G. = ¢t} are smooth
connected embeddings of S!, shrinking around infinity as ¢ decreases to —oo. Con-
sidering the picture in C, as ¢ increases to fy, the family I'; is a decreasing family
of embedded S!’s, decreasing to I';,, which is a figure eight, the origin being the
figure eight crossing point. In general, the level sets I'y-n;, consists of 2" pairwise

disjoint figure eights, and for 27"y < t < 271y, the level set I'; consists of 27!
disjoint smoothly embedded copies of S', one contained in each hole of a figure
eight in I'y-ny, .

We now assume to get a contradiction that there exists a bounded holomorphic
injection ¢ : Qs — A, and we may assume that p(co) = 0. We will first use the
exhaustion just described to get a description of ¢(£24,) that will allow us to modify
¢ in a useful way. Set H = G o ¢!, defined on ¢(Q2).

Start by choosing so << 0 and let Dy be the disk bounded by y5, = {H = so},
a single closed loop. Increasing s between sp and 7y we get an increasing family
of single loops ys, but when s crosses the critical value 7y it breaks into two loops,
say ysll, yé, for s close to #5. One of these loops is going to enclose the other,
and we relabel it y;,. Next, increasing s between s; and 2¢y we follow a path of
loops starting from ys, , until s crosses 2#y, and it again breaks into two loops, say
ysl2 and )/522 for s, close to 279. Again, single out the one enclosing the other, and
relabel it yy,. Continuing in this fashion, we obtain a family of loops y;; such that
¥s; encloses yy; |, and such that the disk D; bounded by y;; contains the whole
sublevel set {H < s;}. We have that {D;} is an increasing family of disk, we
denote by D its increasing union, and we let ¥ : D — A be the Riemann map
satisfying ¥ (0) = 0, ¥'(0) > 0. Our modified map will be § := v o ¢.

Next we will use the map f, to find some other loops y; in ., each one in the
same free homotopy class as ¢! (ys ;). Start by defining yp as the level set G, = ¢
for some ¢t < 1y close to #y. Then fC_1 (y0) consists of two disjoint loops, one of them
free homotopic to ¢! (y;,). Single this out, and label it 7. Next £.~!(7)) consists
of two disjoint loops, and one of them is free homotopic to ¢! (¥s,). Single it out,
and denote it by 7. Continue in this fashion indefinitely.

We are now ready to reach the contradiction. On the one hand, since the family
@(y;) will increase towards bA, it follows that the Kobayashi lengths of y; in Q4
will increase towards infinity. On the other hand, let C C Q4 denote the forward
and backward orbit of the critical point 0. Then the Kobayashi length of each y; in
Q0 \ C is longer than the Kobayashi length in Q. But f. : Q5o \ C — Qoo \ C
is a covering map, and so the Kobayashi lengths of all the y;’s in Q \ C are the
same. A contradiction.
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