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Relative linear extensions of sextic del Pezzo fibrations over curves

TAKERU FUKUOKA

Abstract. In this paper, we study a sextic del Pezzo fibration over a curve com-
prehensively. We obtain certain formulae of several basic invariants of such a
fibration. We also establish the embedding theorem of such a fibration which as-
serts that every such a fibration is a relative linear section of a Mori fiber space
with a general fiber (P1)3 and that with a general fiber (P2)2. As an application
of this embedding theorem, we classify singular fibers of such a fibration and
answer a question of T. Fujita about the existence of non-normal fibers.

Mathematics Subject Classification (2010): 14E25 (primary); 14E30 (sec-
ondary).

1. Introduction

1.1. Motivations

A smooth del Pezzo surface S of degree d is defined to be a smooth projective sur-
face whose anti-canonical divisor �KS is ample with (�KS)

2 = d. It is a famous
result that for any integer d 2 {1, . . . , 9}, there exists a certain variety Vd such that
every del Pezzo surface S of degree d is a weighted complete intersection of Vd .
For example, when d = 3 (respectively d = 4), we take V3 = P3 (respectively
V4 = P4) and every del Pezzo surface of degree 3 (respectively 4) is a cubic hyper-
surface on P3 (respectively a complete intersection of two quadrics on P4). When
d = 6, we can take not only V6 = (P1)3 but also V6 = (P2)2. Then every del
Pezzo surface of degree 6 is a hyperplane section of (P1)3 and also a codimension
2 linear section of (P2)2 with respect to the Segre embeddings. These descriptions
are classic and useful to study del Pezzo surfaces.

In this paper, we mainly discuss how to relativize these descriptions for del
Pezzo fibrations. A relativization of these embeddings is important for the study of
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del Pezzo fibrations; such relativizations have been used by several researchers (e.g.
[28]). As we will see in the next subsection, relativizations of these descriptions for
del Pezzo fibrations of degree d have been established when d 6= 6. One of the
main results of this paper is to give a relativization when d = 6.

1.2. Known results

In this paper, we employ the following definition for del Pezzo fibrations as in the
context of Mori theory. Let X be a smooth projective 3-fold whose canonical divisor
KX is not nef. By virtue of Mori theory, X has an extremal contraction ' : X ! C ,
which is a surjective morphism onto a normal projective variety C with connected
fibers satisfying that ⇢(X/C) = 1 and �KX is '-ample. When dimC = 1, we
call ' a del Pezzo fibration, which is one of the final outputs of the minimal model
program. In this case, a general '-fiber F is a del Pezzo surface. Then the degree
of a del Pezzo fibration ' : X ! C is defined to be (�KF )2.

Let ' : X ! C be a del Pezzo fibration of degree d. In the paper [19], Mori
proved that 1  d  9 and d 6= 7. Moreover, he proved that if d = 9 then '
is P2-bundle, and if d = 8 then there exists an embedding of X into a P3-bundle
over C containing X as a quadric fibration [19, Theorem (3.5)]. When d = 1 or 2,
Fujita proved that there exists a weighted projective space bundle containing X as
a relative weighted hypersurface [9, (4.1),(4.2)].

Now we assume that 3  d  6. Then ' : X ! C has a natural embed-
ding into the Pd -bundle p ! PC('⇤O(�KX )) ! C . D’Souza [7, (2.2.1) and
(2.3.1)] and Fujita [9, (4.3) and (4.4)] proved that if d = 3 or 4, then X is a rel-
ative complete intersection in PC('⇤O(�KX )). More precisely, when d = 4 for
example, they proved that there is a rank 2 vector bundle E on C such that X is the
zero scheme of a global section of OPC ('⇤O(�KX ))(2) ⌦ p⇤E . When d = 5 or 6,
PC('⇤O(�KX )) does not contain X as a relative complete intersection and hence
it seems to be difficult to treat such an X as a submanifold of PC('⇤O(�KX )).
When d = 5 and C = P1, however, K. Takeuchi claimed that X is relatively de-
fined in PP1('⇤O(�KX )) by the Pfaffian of the 4 ⇥ 4 diagonal minors of a 5 ⇥ 5
skew-symmetric matrix [28, Theorem (3.3) (v)].

1.3. Main results

In this paper, we mainly treat a sextic del Pezzo fibration ' : X ! C , i.e., that of
degree 6.

1.3.1. Associated coverings

For every sextic del Pezzo fibration ' : X ! C , we will define smooth projective
curves B, T with a double covering structure 'B : B ! C and a triple covering
structure 'T : T ! C respectively associated to '. These coverings 'B and 'T
are deeply related to the relative Hilbert scheme of twisted cubics and conics re-
spectively (see Lemma 3.3). In particular, when all '-fibers are normal, the cov-
erings B and T coincide with the coverings Z3 and Z2 over C that are defined
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by Kuznetsov [16] (see Lemma 3.3 and the proof of Lemma 6.12). We refer to
Definition 3.4 for the precise definition.

1.3.2. Formulae for invariants (�KX )3 and h1,2(X)

For a sextic del Pezzo fibration X ! C , the associated coverings are closely related
to the invariants (�KX )3 and h1,2(X).
Theorem A. Let ' : X ! C be a sextic del Pezzo fibration. Let 'B : B ! C
be the double covering and 'T : T ! C the triple covering associated to ' (see
Definition 3.4). Then the following assertions hold:

(1) J (X) ⇥ Jac(C) is isomorphic to Jac(B) ⇥ Jac(T ) as complex tori, where
J (X) is the intermediate Jacobian of X . Moreover, if C = P1, then J (X)
is isomorphic to Jac(B) ⇥ Jac(T ) as principally polarized Abelian varieties,
where the polarization of J (X) is defined as in [5];

(2) It holds that (�KX )3 = 22� (6g(B) + 4g(T ) + 12g(C)).

This theorem shows that the invariants (�KX )3 and h1,2(X) can be interpreted by
the genera of three curves C , B, and T .

1.3.3. Relative linear extensions

Let us recall that a smooth sextic del Pezzo surface is a hyperplane section of (P1)3
and also a codimension 2 linear section of (P2)2 under the Segre embeddings. In the
following two theorems, we relativize these embeddings for every sextic del Pezzo
fibration.
Theorem B. Let ' : X ! C be a sextic del Pezzo fibration and 'B : B ! C the
double covering associated to '. Set L := Cok(OC ! 'B⇤OB)⌦O(�KC). Then
there exists a smooth projective 4-fold Y , an extremal contraction 'Y : Y ! C and
a divisor HY on Y satisfying the following conditions:

(1) Every smooth fiber of 'Y is isomorphic to (P1)3;
(2) OY (KY + 2HY ) = '⇤YL holds;
(3) Y contains X as a member of |O(HY )⌦ '⇤YL�1|.

Theorem C. Let ' : X ! C be a sextic del Pezzo fibration and 'T : T ! C the
triple covering associated to '. Set G := Cok(OC ! 'T ⇤OT )⌦O(�KC). Then
there exists a smooth projective 5-fold Z , an extremal contraction 'Z : Z ! C and
a divisor HZ on Z satisfying the following conditions:

(1) Every smooth fiber of 'Z is isomorphic to (P2)2;
(2) OZ (KZ + 3HZ ) = '⇤Z detG holds;
(3) There exists a section s 2 H0(Z ,OZ (HZ )⌦'⇤ZG_) such that X is isomorphic

to the zero scheme of s.

Remark 1.1. Note that the sheaf L (respectively G) in Theorem B (respectively
Theorem C) is invertible (respectively locally free of rank 2).
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One of the most different points from the case where the degree is not 6 is
that 'Y and 'Z in Theorems B and C may have singular fibers, and must have
when C = P1 by the invariant cycle theorem (cf. [29, II, Theorem 4.18]). We will
classify singular fibers of 'Y and 'Z in Theorem D. Moreover, as an application of
Theorems B and C, we will classify singular fibers of sextic del Pezzo fibrations in
Theorems D and F.

1.3.4. Classification of singular fibers of sextic del Pezzo fibrations

Let us recall Fujita’s result about singular fibers of del Pezzo fibrations [9].

Theorem 1.2 ([9, (4,10)]). Let ' : X ! C be a del Pezzo fibration. If ' is not of
degree 6, then every fiber of ' is normal.

However, singular fibers of sextic del Pezzo fibrations are yet to be classified. In-
deed, Fujita proposed the following question.
Question 1.3 ([9, (3,7)]). Do there exist sextic del Pezzo fibrations containing non-
normal fibers?

Another main result of this paper is a classification of singular fibers of sextic
del Pezzo fibrations ' : X ! C . For the proof, we will use the embeddings X ,! Y
and X ,! Z as in Theorems B and C. In summary, we will show the following
theorem.
Theorem D. Let ' : X ! C be a sextic del Pezzo fibration. Let 'B : B ! C and
'T : T ! C be the coverings associated to '. Let X ,! Y and X ,! Z be the
embeddings as in Theorems B and C respectively. For t 2 C , we set Bt := '�1B (t)
and Tt := '�1T (t).

Then for every t 2 C , the numbers (#(Bt )red, #(Tt )red) determine the isomor-
phism classes of Yt , Zt and the possibilities of those of Xt as in Table 1.1.

#(Bt )red #(Tt )red Xt Yt Zt
2 3 (2,3) (P1)3 (P2)2
2 2 (2,2) P1 ⇥Q2

0 (P2)2
2 1 (2,1) P1,1,1 (P2)2
1 3 (1,3) (P1)3 P2,2
1 2 (1,2) or (n2) P1 ⇥Q2

0 P2,2
1 1 (1,1) or (n4) P1,1,1 P2,2

Table 1.1. The singular fibers of ', 'Y , and 'Z .

For the definitions of (i,j), (n2), and (n4), we refer to Theorem 6.1. Q2
0 denotes

the quadric cone. For the definition of P1,1,1 (respectively P2,2), we refer to Defini-
tion 6.6 (respectively Definition 6.8).

In particular, if Xt is normal, then the isomorphism class of Xt is determined
by the pair (#(Bt )red, #(Tt )red) and the number of lines in Xt is equal to #(Bt )red ⇥
#(Tt )red.
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As applications of Theorems A and D, we have the following properties of a sextic
del Pezzo fibration ' : X ! C .
Corollary E. Let ' : X ! C be a sextic del Pezzo fibration.

(1) It holds that (�KX )3  22 and (�KX )3 6= 20;
(2) If (�KX )3 > 0, then C ' P1. In particular, X is rational since ' admits a

section (cf. [18, Theorem 4.2]);
(3) It holds that (�KX/C)3  0 and the equality holds if and only if ' is a smooth

morphism.

1.3.5. Existence of non-normal fibers

We will give an answer to Question 1.3 by presenting sextic del Pezzo fibrations
with non-normal fibers. More precisely, as a consequence of Examples 7.4, 7.5,
and 7.6, we will show the following theorem.
Theorem F. Let X0 be a sextic Gorenstein del Pezzo surface, which is possibly
non-normal. Suppose that X0 is not a cone over an irreducible curve of arithmetic
genus 1. Then there exists a sextic del Pezzo fibration ' : X ! C containing X0.
In particular, Theorem F gives an affirmative answer for Question 1.3.

1.3.6. Relative double projection

Our proof of the main results are based on the relative double projection from a
section of '. This is a relativization of the double projection from a general point
x of a sextic del Pezzo surface S, which is given as follows. Under the embedding
S ,! P6 given by the anti-canonical system, we consider the projection P6 99K P3
from the tangent plane Tx S = P2 ⇢ P6 of S at x . The proper image of S under this
birational map is a smooth quadric surface Q2 and the map S 99K Q2 is birational.
This birational map is what is called the double projection from the point x on S. In
Proposition 2.1, we will establish a relativization of this birational map S 99K Q2

for a sextic del Pezzo fibration.

1.4. Organization of this paper

We organize this paper as follows.
In Section 2, we will establish a relativization of the double projection from a

point on a sextic del Pezzo surface (=Proposition 2.1).
In Section 3, we will collect some preliminary results for quadric fibrations to

define the associated coverings and prove Theorem A. Furthermore, we will see
the following two statements: a characterization of a certain nef vector bundle of
rank 3 on a quadric surface (=Proposition 3.6), and a variant of the Hartshorne-Serre
correspondence on a family of surfaces with a multi-section (=Theorem 3.9). These
two statements will be necessary for our proving Theorem C. As Theorem 3.9 is
formulated in a slightly general form, we will postpone its proof to Appendix A.

In Section 4 and 5, we will prove Theorems B and C respectively.
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In Section 6, using Theorems B and C, we will classify the singular fibers of
the sextic del Pezzo fibrations and prove Theorem D and Corollary E.

In Section 7, we will prove Theorem F by using results in Section 6 and give
explicit examples.

1.5. Notation and definitions

Throughout this paper, we work over the complex number field C. We basically
adopt the terminology of [11,15]. Vector bundles and line bundles just mean locally
free sheaves and invertible sheaves. For a locally free sheaf E on X , PX (E) is
defined to be ProjSymE in this paper. Then the Hirzebruch surface Fn is defined
to be PP1(O � O(n)). On Fn , h denotes a tautological divisor, f a fiber, and
C0 2 |h � n f | the negative section.

Additionally, we use the following notation: Qn denotes the non-singular hy-
perquadric in Pn+1, andQ2

0 denotes a quadric surface in P3 with an ordinary double
point. Note that Q2

0 is given by contracting the (�2)-curve on F2.
Definition 1.4. For an irreducible and reduced quadric surface Q ⇢ P3, OQ(1)
denotes the very ample line bundle with respect to the embedding. Moreover, under
a fixed linear embedding Q ,! Q3, we define SQ := SQ3 |Q , where SQ3 is the
spinor bundle on Q3 in the sense of [24, Definiton 1.3].

In this paper, we employ the following definition for del Pezzo fibrations and
quadric fibrations.
Definition 1.5. We say that ' : X ! C is a del Pezzo fibration if ' is an extremal
contraction from a non-singular projective 3-fold X onto a smooth projective curve
C , i.e., �KX is '-ample and ⇢(X/C) = 1, as in Section 1.2.

q : Q ! C is called a quadric fibration if q is a del Pezzo fibration of degree
8. In particular, we assume that Q is a smooth projective 3-fold and ⇢(Q/C) = 1.
By [19, Theorem (3.5)], every smooth fiber of a quadric fibration q : Q ! C is
actually isomorphic to Q2.
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2. Relative double projections

For the proof of Theorems B and C, the relative double projection from a section of
a sextic del Pezzo fibration plays an important role. We devote this section to prove
Proposition 2.1 that establishes this technique.

2.1. Relativizations of double projections

The following proposition is a method of relativizing the double projection of a sex-
tic del Pezzo surface. The proof will be done by Takeuchi’s 2-ray game argument.
Before the statement of the proposition, we recall the fact that ' admits a section
by [18, Theorem 4.2].

Proposition 2.1. Let ' : X ! C be a sextic del Pezzo fibration. Let C0 be a '-
section. Let µ : eX = BlC0 X ! X be the blow-up of X along C0, E = Exc(µ),
and e' := ' � µ. Then the following assertions hold:

(1) O(�KeX ) is '-globally generated and the morphism eX ! PC('⇤O(�KeX ))

over C given byO(�KeX ) is a contraction onto its image X;
(2) The morphism  X : X ! X is an isomorphism or a flopping contraction.

When  X is flopping, every non-trivial fiber of  X is an isolated (�2)-curve
in the sense of [25, Definition 5.1];

(3) When  X is an isomorphism, let � : eX ! eQ denote the identity map. Then
there exists a unique contraction � : eQ! Q of another KeQ-negative ray over
C . When  X is a flopping contraction, let � : eX 99K eQ denote the flop of  X .
Then there exists the contraction � : eQ! Q of the KeQ-negative ray over C .
In both cases, we set the morphisms as in the following commutative diagram:
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C C;

(2.1)

(4) The following assertions hold:

(a) � is the blow-up along a non-singular curve T ⇢ Q;
(b) deg(q|T ) = 3 and q is a quadric fibration.
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Moreover, if we set G = Exc(� ), then there is a divisor ↵ on C such that
G ⇠ �KeQ � 2EeQ +eq⇤↵;

(5) The following equalities hold:

(�KQ)3 =
1
3
(4(�KX )3 � 16�(OT ) + 48�(OC)).

�KX .C0 + KQ .T =
1
6
(K 3X + 22�(OT )� 54�(OC)).

deg↵ + KQ .T =
1
3
(K 3X + 10�(OT )� 18�(OC));

(6) The proper transform EQ ⇢ Q of E = Exc(µ) contains T . Moreover, it holds
that �KQ = 2EQ � q⇤↵.

Proof. (1) Fix a point t 2 C . Then eXt = e'�1(t) is the blow-up of Xt = '�1(t) at
a smooth point. For each t 2 C , �KXt is very ample and hence �KeXt is globally
generated and big. Let  X : X ! X be as in the assertion (1). To show that the
morphism  X : eX ! X is a contraction, it suffices to prove that �KeXt is simply
generated, i.e., the section ring R(eXt ,O(�KeXt )) =

L
m�0 H0(eXt ,O(�mKeXt )) is

generated by H0(O(�KeXt )) for each t 2 C . Since eXt is an irreducible, a general
member C 2 |�KeXt | is integral. It is well-known that�KeXt |C is simply generated.
Moreover, for every m 2 Z�0, the relative Kawamata-Viehweg vanishing gives
R1e'⇤O(�mKeX ) = 0, which implies H1(eXt ,O(�mKeXt )) = 0. Thus �KeXt is
simply generated.
(2) Let l be an arbitrary non-trivial  -fiber. First, we prove that l is the proper
transform of a line in a '-fiber meetingC0 and thatNl/eX ' O(�1)2 orO�O(�2).
Set P := PC('⇤O(�KX )), eP := BlC0 P , and P := PC(e'⇤O(�KeX )). Then we
have a P1-bundle ⇡ : eP ! P . Now P contains X and hence eP contains eX . Then
the restriction ⇡ |eX coincides with  X by (1). Hence l is the proper transform of
a line in some '-fiber Xt which meets the point C0 \ Xt . Moreover, the normal
bundle Nl/eX is contained in Nl/eP ' O�6P1 . Hence we have Nl/eX ' O(�1)2 or
O �O(�2).

The remaining part we must show is that  X is a flopping contraction if  X
is not isomorphic. Assume that  X contracts a prime divisor G. Since Pic(eX) =
Z[�KeX ]�Z[E]�e'⇤ Pic(C), there exist x, y 2 Z such that G ⌘C x(�KeX )+ yE .
Note that  |eXt :

eXt ! ⌧ (eXt ) is the contraction of the (�2)-curves for a general t .
As shown in the above argument, the (�2)-curves are the proper transforms of

the lines passing through the point C0,t . Hence the (�2)-curves on eXt are disjoint.
Moreover, if n denotes the number of the (�2)-curves on eXt , then n  2 since Xt
is a del Pezzo surface of degree 6. Then we have 0 = �KeXt G|eXt = 5x+ y,�2n =

(G|eXt )
2 = 5x2 + 2xy � y2, and n 2 {1, 2}. These equalities gives x = ±

q
n
15 and

y = ⌥
q
5n
3 , which is a contradiction.
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(3) It follows from the construction of eQ that 2 = ⇢(eX/C) = ⇢(eQ/C). Hence
NE(eQ/C) ⇢ N1(eQ/C) = R2 is spanned by two rays. If � is identity, then�KeQ is
relatively ample over C and the assertion holds by the relative contraction theorem.
If � is a flop, then  Q is the contraction of an extremal ray, say R1. If R2 denotes
another ray, then we have KeQ .R2 < 0 since a generaleq-fiber is a del Pezzo surface.
Letting � be the contraction of R2, we complete the proof of (3).

(4) Since ⇢(eQ) = 3, it holds that ⇢(Q) = 2 and dim Q � 2. If dim Q = 2, then Q
is a P1-bundle over C . Let s ⇢ Q be a section of Q ! C and set G := q⇤s. Then
there exist x, y 2 Z such that G ⌘C x(�KeQ) + yEeQ . Then for a general eq-fiber
FeQ , we have G

2FeQ = 0 and �KeQGFeQ = 2, which implies 5x2 + 2xy � y2 = 0

and 5x + y = 2. Solving the above equalities, we get x = ±6+
p
6

15 and y = ⌥
q
2
3 ,

which contradicts x, y 2 Z.
Therefore, we obtain dim Q = 3 and hence � is divisorial. Set G = Exc(� ).

Since every e'-fiber is integral and � is isomorphic in codimension 1, everyeq-fiber
is integral. Hence T := � (G) is not contained in any q-fiber. By [19, Theo-
rem (3.3)], T is a non-singular curve, Q is smooth, and � is the blow-up of Q
along T . Set m := deg(q|T ). Then there exist x, y 2 Z and ↵ 2 Pic(C) such
that G ⇠ x(�KeQ) + yEeQ + eq⇤↵. For a general eq-fiber FeQ , � |FeQ

is a con-
traction of disjoint finitely many (�1)-curves. Hence we have G2.F = �m and
�KeQ .FeQ .G = m, which implies 5x2 + 2xy � y2 = �m and 5x + y = m. Hence

we obtain x = ±
p
6m2+30m+6m

30 and y = ⌥
q

m(m+5)
6 , which implies m 2 {1, 3}.

When m = 1, we have (x, y) = (0, 1) since x, y 2 Z. Then G|FeQ
⌘ E |FeQ

holds for a general FeQ and hence we obtain G = EeQ . If � is an identity, then it
is a contradiction since µ is the contraction of another ray. If � is a flop, then E is
relatively ample over X and hence �E is relatively ample over X . However, G is
relatively ample over X , which is a contradiction.

Therefore, we obtain m = 3 and hence q is a quadric fibration. In this case, we
have (x, y) = (1,�2) since x, y 2 Z.

(5) Using (4), we obtain the following equations:

(�KQ)3� 2(�KQ .T )�2�(OT )= (�KeQ)3 = (�KeX )3

= (�KX )3 � 2(�KX .C0)� 2�(OC),

�KQ .T + 2�(OT ) = (�KeQ)2.G = (�KeX )2.��1⇤ G

= ((�KX )3 � 2(�KX .C0)� 2�(OC))

� 2(�KX .C0 + 2�(OC)) + 5 deg↵, and
�2�(OT ) = �KeQ .G2 = �KeX .(��1⇤ G)2

= ((�KX )3 � 2(�KX .C0)� 2�(OC))

�8�(OC)�4(�KX .C0+2�(OC))+6 deg↵.
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The assertion directly follows from solving the above equations.

(6) By (4), we obtain �KQ ⇠ 2EQ � q⇤↵. For a general point t 2 C , EQ \ Qt
is a hyperplane section of Qt . Since EeQ \ eQt is a (�1)-curve in the eq-fiber eQt ,
EQ \ Qt passes through the three points T \ Qt . Thus EQ contains T .

Definition 2.2. For a sextic del Pezzo fibration ' : X ! C with a section C0, the
pair (q : Q ! C, T ) as in Proposition 2.1 is called the relative double projection
of the pair (' : X ! C,C0).

3. Preliminaries and proof of Theorem A

The main purpose of this section to prepare some facts about quadric fibrations
(=Lemma 3.1), nef vector bundles on quadric surfaces (=Proposition 3.6), and a
certain vector bundle on a family of surfaces with a multi-section (=Theorem 3.9).
In this section we will also prove Theorem A by using Lemma 3.1 and Proposi-
tion 2.1.

3.1. The double covers associated to quadric fibrations

In this section we confirm some basic properties of a quadric fibration q : Q ! C .
We refer to Definition 1.5 for the definition of a quadric fibration in this paper. The
following lemma should be well-known for experts.

Lemma 3.1. Let q : Q ! C be a quadric fibration and s a q-section (note that q
admits a section by [18, Theorem 4.2]). Let f : eQ = Bls Q! Q be the blow-up of
Q along s.

Then there exists a divisorial contraction g : eQ! P overC such that p : P !
C is a P2-bundle and g is the blow-up along a smooth irreducible curve B ⇢ P .
Moreover, the morphism qB := p|B : B ! C is a finite morphism of degree 2 with
the following conditions:

(1) The branched locus of qB coincides with the closed set 6 := {t 2 C | Qt =
q�1(t) is singular } with the reduced induced closed subscheme structure;

(2) J (Q) and Jac(B) are isomorphic as complex tori, where J (Q) denotes the
intermediate Jacobian of Q. If C = P1, then these are isomorphic as princi-
pally polarized Abelian varieties;

(3) It holds that (�KQ)3 = 40� (8g(B) + 32g(C)).

Proof. By [7, Theorem (2.7.3)] and its proof, we have the contraction eQ ! P ,
which is the blow-up along a bisection B of P . Thus it is easy to check (1). (2) and
(3) follow from similar arguments as in Proposition 2.1.
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Definition 3.2. Let q : Q ! C be a quadric fibration. Take a q-section C0. Then
we obtain the double covering qB : B ! C as in Lemma 3.1. By Lemma 3.1 (1),
this double covering is independent of the choice of C0. We call this qB : B ! C
the double covering associated to q.

Lemma 3.3. Let ' : X ! C be a sextic del Pezzo fibration and C0 a '-section.
Let (q : Q ! C, T ) be the relative double projection as in Definition 2.2. Let
'B : B ! C be the double covering associated to q and 'T := q|T .

Let Hilb3t+1(X/C)! B ! C (respectively Hilb2t+1(X/C)! T ! C) be
the Stein factorization of the relative Hilbert scheme of twisted cubics (respectively
conics). Let B0 (respectively T 0) be the normalization of B (respectively T ). Then
B (respectively T ) is isomorphic to B0 (respectively T 0) over C . In particular, 'B
and 'T are independent of the choice of '-sections.

Proof. We fix a '-section C0 and take the diagram (2.1) as in Proposition 2.1. Let
U ⇢ C be an open set such that Xt is smooth and �KeXt is ample for every t 2 U .
By Proposition 2.1 (2), U is not empty and the birational map � : eX 99K eQ is
isomorphic over U . Set XU := '�1(U), QU := q�1(U), eXU := e'�1(U) '
eq�1(U), GU := eq�1(U) \ G, and TU = '�1T (U). We set the morphisms as in the
following diagram:

eXU

}}{

{

{

{

{

{

{

{

�

!!

C

C

C

C

C

C

C

C

e'U

✏✏

GU

!!

B

B

B

B

B

B

B

B

XU

'U
!!

D

D

D

D

D

D

D

D

QU �

qU
||z

z

z

z

z

z

z

z

TU

U.

(3.1)

Note that e'U , 'U , and qU are isotrivial.
First, we show the assertion for T . Composing the morphisms in the diagram

(3.1), we have a morphism eU : GU ! XU over U . Then we can regard the P1-
bundle GU ! TU as a family of conics in the fibers of XU ! U . By the universal
property, there is a natural morphism TU ! Hilb2t+1(XU/U) over U . Since 'U
is isotrivial, the morphism Hilb2t+1(XU/U)! U factors an étale triple cover T 0U
over U as the Stein factorization. Hence TU ! Hilb2t+1(XU/U) is a section of
Hilb2t+1(XU/U)!T 0U , which implies that TU 'T

0
U . Hence T

0 is isomorphic to T .
Next, we show the assertion for B. Set BU = '�1B (U). Then by Lemma 3.1 (1),

Hilbt+1(QU/U) ! U factors through BU such that Hilbt+1(QU/U) ! BU is a
P1-bundle and BU ! U is an étale double covering. Let RU ! Hilbt+1(QU/U)
be the universal family of the relative Hilbert scheme of lines. Set R0U := eXU ⇥QU
RU . The flat family R0U ! Hilbt+1(QU/U) parametrizes twisted cubics on XU
over U by the evaluation R0U ! XU . Hence the universal property gives a mor-
phism Hilbt+1(QU/U) ! Hilb3t+1(XU/U) over U . Let B0U ! U be the finite
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part of the Stein factorization of Hilb3t+1(XU/U)! U . Then we get a morphism
BU ! B0U . Thanks to isotriviality, we can check that B

0
U is an étale double cover-

ing over U and BU ! B0U is bijective. Hence BU ! B0U is an isomorphism. Thus
B is isomorphic to B0.

The proof is complete.

Definition 3.4. Let ' : X ! C be a sextic del Pezzo fibration. We define 'B : B !
C and 'T : T ! C as in the settings of Lemma 3.3. We call 'B (respectively
'T ) the associated double (respectively triple) covering to that sextic del Pezzo
fibration '.

3.2. Proof of Theorem A

We use the same notation as in Proposition 2.1.
(1) As in Proposition 2.1 (2) and (3), the birational map � : eX 99K eQ is an iso-

morphism or a flop of isolated (�2)-curves. Then by [25, Corollary (5.6) and (5.7)],
� is a composition of blow-ups and blowing-downs along smooth rational curves.
Hence J (eX) is isomorphic to J (eQ) as complex tori by [5, Lemma 3.11]. When
C = P1 moreover, the isomorphism J (eX) ' J (eQ) preserves the polarizations.
Therefore, the assertion follows from Lemma 3.1 (2) and [5, Lemma 3.11].

(2) The assertion from a direct calculation using the formulas in Lemma 3.1 (3)
and Proposition 2.1 (5).

The proof of Theorem A is complete.

3.3. Characterizations of some nef vector bundles on quadric surfaces

A locally free sheaf E is called a nef vector bundle if OP(E)(1) is nef. In this
subsection, we will obtain numerical characterizations of some nef vector bundles
on an irreducible and reduced quadric surface. We will use these results for proving
Theorem C.

Until the end of this subsection, we work over the following setting:

• Q denotes an irreducible and reduced quadric surface in P3. We refer the defi-
nitions ofOQ(1) andSQ to Definition 1.4;

• WhenQ is smooth, we set ⇡ : F := PP1(O(1)�O(1))! P1 and let � : F! Q
be an isomorphism;

• When Q is singular, we set ⇡ : F := PP1(O �O(2))! P1 and let � : F! Q
be the contraction of the (�2)-curve;

• Let h (respectively f ) be a tautological divisor (respectively a fiber) of the P1-
bundle F! P1. Note that � ⇤OQ(1) = OF(h) for each case.

Remark 3.5. By [24], S_Q is a globally generated vector bundle of rank 2 with
detS_Q = OQ(1) and c2(S_Q) = 1. When Q is smooth, it is known that S_Q '
OQ(h � f )�OQ( f ).

The aim is to give the following characterization of the bundleS_Q �OQ(1).
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Proposition 3.6. Let FQ be a nef vector bundle on Q of rank 3 such that detFQ =
OQ(2), c2(F) = 3, and h0(F_Q) = 0. Then FQ is isomorphic to S_Q �OQ(1).

First, we confirm the following lemma.

Lemma 3.7. Let E be a rank 2 nef vector bundle on Q with detE ' OQ(1).

(1) If c2(E) = 0, then E ' OQ(1)�OQ;
(2) If c2(E) = 1, then E ' S_Q.

Proof. The assertion was already proved in [22, 27] if Q is non-singular. We attain
a proof even if Q is singular.

(1) When c2(E) = 0, then the Hirzebruch-Riemann-Roch theorem and the Leray
spectral sequence gives �(E(�1)) = �(� ⇤E(�h)) = 1. Note that h2(Q,E(�1)) =
h0(E_(�1)) = h0(E(�2))  h0(E(�1)) by the Serre duality. Thus we have
h0(E(�1)) > 0 and hence an injection O(1) ! E . By the same arguments as
in [22, Proposition 5.2], we have E = O �OQ(1).

(2) Suppose that c2(E) = 1. Set eE := � ⇤E . Then it holds that det eE = O(h) and
c2(eE) = 1. We have �(eE(�h+ f )) = 1 by the Hirzebruch-Riemann-Roch theorem
and h2(eE(�h + f )) = h0(eE_(�h � f )) = h0(eE(�2h � f )) by the Serre duality.
Since eE is nef and c1(eE) = h, we have eE |l = OP1 �OP1(1) for every l 2 | f | and
hence h0(eE(�2h� f )) = 0, which implies h0(eE(�h+ f )) > 0. Hence there is an
injection ↵ : O(h � f )! eE .

If there exists a fiber l 2 | f | such that ↵|l = 0, then we obtain a non-zero map
O(h)! eE , which means h0(eE(�h)) > 0. Then we however have eE ' O �O(h)
by the same argument as in the proof of Lemma 3.7 (1), which contradicts c2(eE) =
1. Therefore, for every l 2 | f |, ↵|l is a non-zero map from O(h � f )|l ' OP1(1)
to eE |l ' OP1 �OP1(1). Then Cok↵|l = Ol and hence Cok↵ is the pull-back of a
line bundle on P1. Since det eE = O(h), we obtain an exact sequence

0! O(h � f )! eE ! O( f )! 0. (3.2)

If Q is smooth, then this sequence splits and hence we obtain eE ' O(h � f ) �
O( f ) ' S_Q. If Q is singular, then this sequence does not split since eE is nef
and O(h � f ) is not nef. The vector bundles fitting into the exact sequence (3.2)
which does not split are unique up to isomorphism since Ext1(O( f ),O(h � f )) =
H1(F2,O(h � 2 f )) = C. By the exactly same argument, � ⇤S_Q also fits into the
exact sequence (3.2). Hence we obtain � ⇤S_Q ' �

⇤E and henceS_Q ' E .

Lemma 3.8. Let F be a rank 3 nef vector bundle on F with detF = OF(2h) and
c2(F) = 3. Then the following assertions hold:

(1) h0(F(�2h + a f )) = 0 for any a 2 Z;
(2) F |l ' O �O(1)2 for a general member l 2 | f |;
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(3) h0(F(�h � f )) = 0;
(4) h0(F(�h)) > 0.

Proof. (1) We may assume that a � 0. We will prove (1) by the induction on a.
Assume that a = 0. If h0(F(�2h)) 6= 0, then it follows thatF = O(2h)�O2 from
[22, Proposition 5.2], which contradicts c2(F) = 3. Thus we have h0(F(�2h)) =
0. Assume that a > 0. If h0(F(�2h + a f )) 6= 0, then there exists an injection
◆ : O(2h�a f )! F . By the assumption of the induction h0(F(�2h+(a�1) f )) =
0, for every member l 2 | f |, we have ◆|l 6= 0. Therefore, we obtain an exact
sequence 0 ! O(2h � a f )|l ! F |l ! Cok ◆|l ! 0. Since F |l is a nef vector
bundle with c1 = 2, it holds that F |l = O(2) �O2 and Cok ◆|l = O2l . It implies
that the natural morphism ⇡⇤⇡⇤ Cok ◆ ! Cok ◆ is isomorphic. Thus we obtain an
exact sequence 0! O(2h�a f )! F ! O(a1 f )�O((a�a1) f )! 0 for some
a1 2 Z. Hence we have c2(F) = 2a, which contradicts c2(F) = 3.

(2) Assume the contrary. Then we obtainF |l ' O2�O(2) for any member l 2 | f |
by the upper semicontinuity. Then ⇡⇤F(�2h) is a line bundle on P1. Hence we
have a non-zero map ⇡⇤⇡⇤F(�2h)! F(�2h). It implies that h0(F(2h�a f )) 6=
0 for some a 2 Z, which contradicts (1).
(3) If h0(F(�h � f )) 6= 0, then we have an injection ↵ : O(h + f )! F . When
Q is smooth, we consider another ruling h� f . For every l 0 2 |h� f |, ↵|l 0 : O(h+
f )|l 0 ! F |l 0 is injective by (1). Since O(h + f )|l 0 ' OP1(2) and c1(F |l 0) = 2,
we have Cok↵|l 0 ' O2l 0 and hence Cok↵ is a nef vector bundle. Then Cok↵ '
O �O(h � f ) holds, which contradicts c2(F) = 3. When Q is singular, we take
the restriction ↵|C0 on the (�2)-curve C0. By (1), ↵|C0 is a non-zero map from
O(h + f )|C0 ' O(1) to F |C0 ' O2, which is a contradiction. Therefore, we have
h0(F(�h � f )) = 0.

(4) We have �(F(�h)) = 1 by the Hirzebruch-Riemann-Roch theorem and
h2(F(�h)) = h0(F_(�h)) by the Serre duality. Since F_|l = O � O(�2) or
O(�1)2 for any l 2 | f |, we have h0(F_(�h)) = 0 and hence h0(F(�h)) > 0.

Proof of Proposition 3.6. Set F := � ⇤FQ. Lemma 3.8 (4) attains an injection
↵ : O(h)! F . Letting E = Cok↵, we have the following exact sequence:

0! O(h) ↵
!F ! E ! 0. (3.3)

By Lemma 3.8 (3), ↵|l is non-zero for every l 2 | f |. By Lemma 3.8 (2), the
cokernel of ↵|l : O(h)|l ! F |l is locally free for general members l 2 | f |. Then E
is locally free in codimension 1 and hence torsion free by [22, Lemma 5.4]. Hence
we have the following exact sequence:

0! E ◆
!E__ ! T ! 0. (3.4)

Here T denotes the cokernel of the natural injection ◆ : E ! E__. Since E is locally
free in codimension 1, SuppT is 0-dimensional or empty. Note that E__ is locally
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free since F is a smooth surface. By [23, Lemma 9.1], E__ is nef. It is clear that
detE__ = detE = O(h). The Hirzebruch-Riemann-Roch theorem implies that
�(F) = 8, �(O(h)) = 4, and �(E__) = 5�c2(E__). By the exact sequences (3.3)
and (3.4), we have �(E) = 4 and 5 � c2(E__) = �(E__) = �(E) + h0(T ) � 4.
In particular, c2(E__) = 0 or 1.

If c2(E__) = 0, then E__ ' O(h)�O by Lemma 3.7 (1). Hence we have a
morphism F ! OF, which is surjective at the generic point. This contradicts our
assumption h0(F_Q) = 0. Hence we have c2(E__) = 1 and T = 0, which implies
E ' E__ ' S_Q by Lemma 3.7 (2). Since Ext

1(S_Q,OQ(h)) = H1(SQ(h)) =

H1(S_Q) = 0, the exact sequence (3.3) splits. The proof of Proposition 3.6 is
complete.

3.4. Certain vector bundles on families of surfaces with multi-sections

We will use the following theorem for proving Theorem C.

Theorem 3.9. Let X,Y be smooth varieties with dim X = dimY +2. Let f : X !
Y be a flat projective morphism with f⇤OX = OY . Let Z ⇢ X be a locally complete
intersection closed subscheme of codimension 2. Suppose that f |Z : Z ! Y is
finite with deg( f |Z ) � 2. Additionally we assume that R1 f⇤OX is locally free and
H2(Y, f⇤! f ⌦ R1 f⇤IZ ) = 0.

Then there exists a locally free sheaf F satisfying the following conditions:

(1) F fits into the following exact sequence:

0! f ⇤((R1 f⇤IZ )(�KY ))! F ! IZ (�KX )! 0; (3.5)

(2) For every closed point y 2 Y , if the fiber Xy is reduced, then there are no
surjections F |Xy ! OXy .

This theorem resembles the Hartshorne-Serre correspondence for a family of
surfaces f : X ! Y with a multi-section Z . However, even if Y is point, the
Hartshorne-Serre correspondence does not imply Theorem 3.9 since H2(O(KX ))=
C 6= 0. To prove Theorem 3.9, we use relative Ext-sheaves. We will prove this the-
orem in Appendix A.

4. Extensions to moderate (PPP1)3-fibrations

We devote this section to the proof of Theorem B.

4.1. Moderate (PPP1)3-fibrations

In the next theorem, we construct certain Mori fiber spaces 'Y : Y ! C with
smooth total spaces Y whose smooth fibers are (P1)3.
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Theorem 4.1. Let f : F! C be a P3-bundle and T ⇢ F a smooth curve. Assume
that deg( f |T ) = 3 and Tt := ( f |T )�1(t) is non-colinear in Ft = P3 for each
t 2 C .

(1) There exists a unique sub P2-bundle E ⇢ F containing T ;
(2) There exists the following diagram:

eF+

µF

���

�

�

�

�

�

�

�  +
F

��

?

?

?

?

?

?

?

?
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 F

{{v

v

v

v

v

v

v

v

v
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H

H
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H
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H
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H

H

H
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✏✏
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@

@

@

@

@

@
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~

~
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~
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F
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u

u

u

u

u

u

u

u

u

C C,

(4.1)

where
• �F : eF := BlT F! F is the blow-up of F along T with exceptional divisor
GF := Exc(�F);

• 8 : eF 99K eF+ is a family of Atiyah flops over C;
• Y is smooth and 'Y : Y ! C is a Mori fiber space;
• µF is the blow-up along a 'Y -section C0 and contracts the proper trans-
form eE+ of E.

(3) If we set GY ⇢ Y be the proper transform of GF, then it holds that �KY ⇠
2GY � '⇤Y (KC + det f⇤OF(E));

(4) Every smooth 'Y -fiber is isomorphic to (P1)3.

In this paper, we call this Mori fiber space 'Y : Y ! C themoderate (P1)3-fibration
with respect to the pair ( f : F! C, T ).

Remark 4.2. In the setting of Theorem 4.1, for every t 2 C , the scheme Tt =
f �1(t) \ T is reduced, or a union of one reduced point and a non-reduced length 2
subscheme, or a curvilinear scheme of length 3, i.e., Tt ' SpecC["]/("3).

Proof of Theorem 4.1. We proceed in 4 steps.
Step 1. First, we show (1). LetOF(1) be a tautological line bundle. Then f⇤(OF(1)⌦
IT ) is a line bundle L on C . Let E 2 |OF(1) ⌦ IT ⌦ f ⇤L�1| be a member
corresponding to a nowhere vanishing section of OC ' f⇤(OF(1) ⌦ IT ) ⌦ L�1.
Then E ! C is a P2-bundle and Et is the linear span of Tt for every t 2 C ,
which proves (1). Replacing OF(1) by OF(E), we have �KF = 4E � f ⇤(KC +
det f⇤OF(E)).
Step 2. Let �F : eF! F and �E : eE! E be the blow-ups along T and GF ⇢eF and
GE ⇢ eE the exceptional divisors of �F and �E respectively. Set

LeF := � ⇤FOF(2)� GF and LeE := LeF|eE. (4.2)



RELATIVE EXTENSIONS OF SEXTIC DEL PEZZO FIBRATIONS 1387

Note that

�KeF = 2LeF � ( f � � )⇤(KC + det f⇤OF(1)) ⇠C 2LeF. (4.3)

The following claim is the 2-ray game of eE over C .
Claim 4.3.

(1) O(LeE) is globally generated and big over C and ( f |E ��E)⇤O(LeE) is a vector
bundle of rank 3;

(2) Set E := PC(( f |E � �E)⇤O(LeE)) and let  E : eE! E denote the morphisms
over C defined by |LeE|. Then  E is the blow-up of E along a non-singular
curve T ⇢ E. Moreover, the composite morphism T ,! E ! C is a triple
covering.

Proof. (1) For every t 2 C , there is a smooth conic C ⇢ Et = P2 containing
Tt . By the exact sequence 0 ! IC/Et ! ITt/Et ! ITt/C ! 0, we see that
OEt (2) ⌦ ITt/Et is globally generated and h0(OEt (2) ⌦ ITt/Et ) = 3 for every t ,
which proves (1).

(2) For a general point t 2 C , Et  eEt ! Et = P2 is nothing but the Cremona
involution. Thus  E is a birational morphism onto the P2-bundle E ! C . Since
�KeE ⇠C LE + (� |E)⇤OE(1) is ample over C and ⇢(eE) = 3,  E is the contraction
of an extremal ray. Then  E is the blow-up along a non-singular curve T by [19,
Theorem (3.3)]. For a general t 2 C ,eEt ! Et = P2 is the blow-up at three points.
Hence T ! C is a triple covering.

Step 3. Next we play the 2-ray game ofeF over C by using Claim 4.3.
Claim 4.4.

(1) O(LeF) is globally generated and big over C ;
(2) Let F : eF! F denote the Stein factorization of the morphism over C defined

by |LeF|. Then  F|eE =  E and Exc( F) = Exc( E);
(3)  F is a family of Atiyah’s flopping contractions over C .

Proof. (1) For any t 2 C , we have (LeF|eFt )
3 = 5 by a direct calculation. Since eE ⇠

� ⇤OF(1) � GF, we have eE + � ⇤OF(1) ⇠ LeF. Then we obtain an exact sequence
0 ! � ⇤OF(1) ! OeF(LeF) ! OeE(LeE) ! 0. Since R1( f � � )⇤(�

⇤OF(1)) = 0,
O(LeF) is globally generated over C by Claim 4.3 (1).

(2) Let � ⇢ eF be an irreducible curve with LeF.� = 0. Then LeF ⇠C eE + � ⇤OF(1)
and � ⇤OF(1).� > 0 since LeF is ample over C . Thus we obtain eE.� < 0, which
implies � ⇢ eE. Since LeE.� = 0, � is a fiber of Exc( E)! T . Conversely, every
curve � contracted by  E is also contracted by  F. Then we have  F|eE =  E by
the rigidity lemma and hence Exc( F) = Exc( E).
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(3) Let l be a fiber of Exc( F)! T . Then we have l ' P1 and the exact sequence
0! Nl/eE! Nl/eF! NeE/eF|l ! 0, which implies thatNl/eF = OP1(�1)2�OP1 .
The proof is complete.

Step 4. Let  +
F : eF+ ! F be the flop of  F. Let eE+ and G+

F be the proper
transforms of eE and GF oneF+ respectively.

Claim 4.5. There exists a birational morphism

µF : eF+! Y

over C such that Y is non-singular and µF blows eE+ down to a 'Y -section C0,Y ,
where 'Y : Y ! C is the induced morphism.

Proof. By the construction of the flop eF 99K eF+, the proper transform eE+ ⇢ F+

is a P2-bundle over C . By the equality (4.3), we have �KFt |Et = OP2(2) for every
point t . Hence it holds that �KeF+

t
|E+

t
' OP2(2) and hence NeE+

t /eF+
t
' OP2(�1)

for every t 2 C . Thus we obtain the morphism µF.

Since µF is the contraction of an extremal ray, we obtain ⇢(Y ) = 2. Therefore, 'Y
is the contraction of a KY -negative ray. The proof of Theorem 4.1 (2) is complete.

Since �KeF+ ⇠ 4eE+ + 2G+
F � ('Y � µF)⇤(KC + det f⇤OF(1)), if we set

GY = µF⇤G+
F , then we have �KY ⇠ 2GY � '⇤Y (KC + det f⇤OF(E)), which

proves Theorem 4.1 (3).
To confirm Theorem 4.1 (4), we take a point t 2 C such that Yt = '�1Y (t) is

smooth. Then Yt is a smooth Fano 3-fold with index 2, which is so-called a del
Pezzo 3-fold. Since (�KYt )3 = (�KeF+

t
)3 + 8 = (�KeFt )

3 + 8 = 48 and ⇢(Yt ) =

⇢(eF+
t )�1 = ⇢(eFt )�1 = 3, we have Yt ' (P1)3 by Fujita’s classification of the del

Pezzo manifolds [13, Theorem 3.3.1]. The proof of Theorem 4.1 is complete.

4.2. Proof of Theorem B

In this section we prove Theorem B, which asserts that there exists a (P1)3-fibration
containing a given sextic del Pezzo fibration as a relative hyperplane section.

Proof of Theorem B. Let ' : X ! C be a sextic del Pezzo fibration. Let C0 be q '-
section. Let (q : Q ! C, T ) be the relative double projection of (' : X ! C,C0)
as in Definition 2.2. Let EQ ⇢ Q be the proper transform of Exc(µ : BlC0 X !
X). By Proposition 2.1 (6), there exists a divisor ↵ on C such that �KQ ⇠ 2EQ �
q⇤↵. Then consider the following projective bundle over C :

f : F := PC(q⇤OQ(EQ))! C.
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This f is a P3-bundle and there is a natural closed embedding Q ,! F over C .
When OF(1) denotes the tautological bundle of f , we have OF(1)|Q = OQ(EQ).
Since �KQ ⇠ (OF(2)� f ⇤↵)|Q , we have the linear equivalence

Q ⇠ OF(2) + f ⇤(↵ � (KC + det(q⇤OQ(EQ)))) (4.4)

by the adjunction formula.
Claim 4.6. There exists a unique member E 2 |OF(1)| such that

(1) E \ Q = EQ and f |E : E! C is P2-bundle;
(2) for every t 2 C , Tt = f �1(t) \ T is non-colinear 0-dimensional subscheme

of length 3 in P3 = Ft and spans Et .

In particular, the P3-bundle f : F! C and T satisfy the condition of the setting in
Theorem 4.1 and hence E is the sub P2-bundle as in Theorem 4.1 (1).

Proof. Consider an exact sequence 0 ! OF(�Q) ⌦ OF(1) ! OF(1) !
OQ(EQ)! 0. SinceOF(Q) ⇠C OF(2), we obtain Ri f⇤(OF(�Q)⌦OF(1)) = 0
for all i � 0. Then the restriction morphism H0(F,OF(1)) ! H0(Q,OQ(EQ))
is an isomorphism and hence there exists a unique member E 2 |OF(1)| such that
E \ Q = EQ . Since EQ is a prime divisor of Q, we obtain dimEt = 2 for all
t 2 C , which implies that E! C is a P2-bundle. Thus (1) follows. To prove (2),
we assume that there exists a line l ⇢ Ft such that Tt ⇢ l for some t . Since Tt ⇢ Qt
and Qt is a quadric surface, we obtain l ⇢ Qt . Let � : BlT Q ! Q denote the
blow-up as in Proposition 2.1. Then we have �KBlT Q .��1⇤ l < 0, which is a con-
tradiction since �KBlT Q is nef over C from Proposition 2.1 (1) and (3). Hence the
linear span of Tt , say hTt i, is a 2-plane in Ft and thus we deduce that Et = hTt i for
every t 2 C .

By Theorem 4.1, F ! C can be birationally transformed into a Mori fiber
space Y over C with a general fiber (P1)3 as in the diagram (4.1). Note that eF =
BlT F contains eQ = BlT Q in this setting.

We use the same notation as in Theorem 4.1 and its proof. The only remaining
part is to show the following claim.
Claim 4.7.

(1)  F|eQ coincides with  Q in Proposition 2.1 (3);
(2) The proper transform eQ+ ⇢eF+ of Q is isomorphic to eX ;
(3) It holds that µF|eX = µX and C0,Y = C0.
1. X is a member of |GY +'⇤Y�|, where we set � := ↵�(KC+det(q⇤OQ(EQ)));
(4) If we set HY := GY �'⇤Y↵ and � := ↵+�, then we have�KY = 2HY +'⇤Y �

and X 2 |HY + '⇤Y �|;
(5) Let 'B : B ! C be the associated double covering to '. Then OC(��) is

isomorphic to Cok(OC ! 'B⇤OB)⌦O(�KC), which is nothing but L in the
statement of Theorem B.



1390 TAKERU FUKUOKA

Proof. (1) We have Q 2 |OF(2) + f ⇤�| by the equality (4.4) and hence eQ 2
|OF(2) � GF + ( f � � )⇤�| = |LeF + ( f � � )⇤�| by the equality (4.2). Recall
that  F : eF ! F is the Stein factorization of the morphism given by |LeF|. For
every k > 0, it follows that R1 ef⇤OeF((k � 1)LeF) = 0 and hence ef⇤OeF(kLeF) !
(ef |eQ)⇤OeQ(kLeF) is surjective, which implies  F|eQ =  Q .

(2) We obtain eQ ⇠F 0 as divisors oneF+ and hence Q :=  F(eQ) is a Cartier divisor
on F. Then we have eQ+ = ( +

F )�1(Q) ⇢eF+ and hence the dimension of the fibers
of eQ+! Q is less than or equal to 1. Since  F|eQ is the flopping contraction of eQ
over C , Q \  F(Exc( F)) is a finite set or the empty set. (2) clearly holds when
it is empty. Now we assume Q \  F(Exc( F)) is not empty. Hence the morphism
eQ+ ! Q is a small contraction. Thus eQ+ is regular in codimension 1 and hence
normal since this is an effective divisor of a smooth variety eF+. Moreover, the
birational map 9|eQ : eQ 99K eQ+ is isomorphic in codimension 1, which implies
that EeQ = eE|eQ+ coincides with the proper transform of eE+|eQ . Since �eE ⇠Y
� ⇤FOF(1) is ample over Y andeE+ is ample over Y , we conclude that eQ+ is the flop
of  Q . Then we have eQ+ = eX by the uniqueness of the flop.
(3) It is enough to show that µ⇤FGY |eX ⇠C µ⇤X (�KX ). By (4.4), eQ is a member of
|eE+G+ ( f �� )⇤�| and hence eX is a member of |eE+ +G+ + ('Y �µF)⇤�|. Since
�KeF+ ⇠C 2(eE+ + G+

F ), we have �KeX ⇠C (eE+ + G+
F )|eX . Recalling that we set

GY = µF⇤G+, we have µ⇤FGY |eX ⇠C µ⇤X (�KX ), which completes the proof of (3).

(4) This assertion follows from the equality µ⇤FX = eE+ + eX as divisors.
(5) By Theorem 4.1 (3), we have �KY = 2GY � '⇤Y (KC + det q⇤OQ(EQ)) =
2GY + '⇤Y (� � ↵). Thus we obtain �KY = 2HY + '⇤Y � and X 2 |HY + '⇤Y �|.

(6) Set 6 := {t 2 C | q�1(t) is singular }red. By (4.4), Q is a member of |OF(2) +
f ⇤�|. Let u 2 H0(Sym2(q⇤OQ(EQ)) ⌦ OC(�)) be the section corresponding to
Q. Then the 6 is the degeneracy locus associated to the symmetric form u. Hence
we can deduce that 6 is the zero scheme of a global section of det(q⇤O(EQ))⌦2 ⌦
O(4�). By Lemma 3.1 (1), 6 is the branched divisor of 'B : B ! C . Then the
Hurwitz formula gives !B = '⇤B(!C ⌦ det(q⇤O(EQ)) ⌦ O(2�)) = '⇤BO(↵ +
�) = '⇤BO(�). By the duality of the finite flat morphism 'B : B ! C , we have
OC(�)⌦'B⇤OB = 'B⇤!B = ('B⇤OB)_⌦!C . ThusOC(KC � �) is the cokernel
of the splitting injectionOC ! 'B⇤OB .

The proof of Theorem B is complete.

5. Extensions to moderate (PPP2)2-fibrations

We devote this section to prove Theorem C. The main idea is similar to that of
Theorem B.
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5.1. Moderate (PPP2)2-fibrations

In this section we will obtain a Mori fiber space 'Z : Z ! C with smooth total
space Z whose smooth fibers are (P2)2 as in the next theorem. We call this 'Z a
moderate (P2)2-fibration in this paper.

Theorem 5.1. Let C be a smooth projective curve and q : Q! C a quadric fibra-
tion. Let T ⇢ Q be a smooth irreducible curve. Assume that deg(q|T ) = 3 and
�KBlT Q is nef over C . Then the following assertions hold:

(1) There exists a locally free sheaf F and the following exact sequence

0! q⇤(R1q⇤IT (�KC))! F ! IT (�KQ)! 0 (5.1)

such thatF |Qt ' S_Qt
�OQt (1) holds for every t 2 C . We refer the definitions

ofOQt (1) and SQt to Definition 1.4;
(2) There exists the following diagram:
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C C,

(5.2)

where
• PQ(F) 99K eZ is a family of Atiyah flops;
• Z is smooth and 'Z : Z ! C is a Mori fiber space;
• µZ : eZ ! Z is the blow-up along a 'Z -section C0;

(3) Let ⇠F be a tautological divisor on PQ(F) and set ⇠Z := µZ ⇤9⇤⇠F .
Then �KZ ⇠ 3⇠Z � '⇤Z� and µ⇤Z⇠Z = 9⇤⇠F + Exc(µZ ), where � =
det(R1q⇤IT (�KC));

(4) Every smooth 'Z -fiber is isomorphic to (P2)2.

In this paper, we call the Mori fiber space 'Z : Z ! C as in Theorem 5.1 the
moderate (P2)2-fibration with respect to the pair (q : Q! C, T ).

Proof. We proceed in 4 steps.

Step 1. Let us prove (1). We apply Theorem 3.9 for X = Q, Y = C , f = q,
and Z = T . Since R1q⇤OX = 0 and dimC = 1, Theorem 3.9 gives the exact
sequence (5.1) and the locally free sheaf F . Moreover, there are no surjections
F |Qt ! OQt for every t since Qt is an irreducible and reduced quadric surface.
Note that detF |Qt = O(�KQt ) and c2(F |Qt ) = 3 follow from (5.1). If F is
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q-nef, then we have h0(F |_Qt
) = 0 since every morphism F ! OQt must be sur-

jective, which implies that F |Qt ' S_Qt
� OQt (1) by Proposition 3.6. Hence it

suffices to show thatF is q-nef. To show this nefness, we consider the projectiviza-
tion PQ(F). By the surjection F ⇣ IT (�KQ), BlT Q is embedded in PQ(F)

over Q as the zero scheme of the global section s 2 H0(PQ(F),OPQ(F)(1) ⌦
q⇤(R1q⇤IT (�KC))_) corresponding to the injection q⇤(R1q⇤IT (�KC)) ! F .
Since �KBlT Q = OPQ(F)(1)|eQ is nef over C by assumption, so isOPQ(F)(1). The
proof of (1) is complete.

Step 2. Next we confirm the following claim.

Claim 5.2. There exists a unique effective divisor EQ ⇢ Q containing T such that
2EQ + KQ ⇠C 0 and q⇤IT (EQ) = OC .

Proof. Take a P3-bundle f : F! C such that F contains Q. Since �KBlT Q is nef
over C , the linear span of Tt is a 2-plane in Ft = P3. By Theorem 4.1 (1), there
exists a unique sub P2-bundle E containing T . Set EQ := E \ Q. Then we have
an exact sequence 0! OF(�Q + E)! OF(E)⌦ IT/F! O(EQ)⌦ IT/Q ! 0.
Since Ri f⇤OF(�Q+E) = 0 for any i and f⇤(IT/F⌦OF(E)) = OC as in the proof
of Theorem 4.1 (1), we have q⇤IT (EQ) = OC , which proves that EQ satisfies the
conditions. For a general point t 2 C , the fiber (EQ)t is a unique smooth conic
passing through the three points Tt . Hence the uniqueness of EQ follows.

From now on, we fix a divisor ↵ on C such that �KQ = 2EQ � q⇤↵.

Claim 5.3. There exists an exact sequence

0! O(EQ � q⇤↵)! F ! E ! 0 (5.3)

where E is a locally free sheaf with E |Qt ' S_Qt
for every t 2 C .

Proof. Tensoring the exact sequence (5.1) with O(�EQ + q⇤↵), we obtain the
following exact sequence:

0! q⇤((R1q⇤IT )(↵ � KC))⌦O(�EQ)! F(�EQ + q⇤↵)! IT (EQ)! 0.

Claim 5.2 implies that q⇤IT (EQ) = OC . Since Riq⇤OQ(�EQ) = 0 for any i ,
we have q⇤F(�EQ + q⇤↵) ' q⇤IT (EQ) ' OC . Hence we obtain an injection
◆ : O(EQ � q⇤↵) ! F with the locally free cokernel E := Cok ◆. Then we have
an exact sequence 0 ! OQt (1) ! F |Qt ! E |Qt ! 0 for every t 2 C . Since
F |Qt ' S_Qt

�OQt (1) and Hom(OQt (1),S_Qt
) = 0, F |Qt contains OQt (1) as a

direct summand. Hence we have E |Qt ' S_Qt
for every t 2 C .
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Step 3. Let PQ(E) ⇢ PQ(F) be the natural inclusion from the exact sequence
(5.3). We define morphisms as in the following commutative diagram:

PQ(F)

⇡F
✏✏

rF

))

PQ(E)_?
o

⇡E
zzt

t

t

t

t

t

t

t

t

t

rE

rr

Q

q
✏✏

C.

Let ⇠F be a tautological divisor of ⇡F : PQ(F) ! Q and ⇠E := ⇠F |PQ(E). Then
⇠E is a tautological divisor of PQ(E) and PQ(E) ⇢ PQ(F) is a member of |O(⇠F�
⇡⇤(EQ)) ⌦ r⇤FO(↵)|. Note that OPQ(E)(⇠E) is rE -globally generated and
rE⇤OPQ(E)(⇠E) = q⇤E is a vector bundle of rank 4. Thus ⇠E gives a morphism
 E : PQ(E)! PC(q⇤E). Set G = Exc( E) and S =  E(G).

Claim 5.4.

(1) S is smooth and  E : PQ(E)! PC(q⇤E) is the blow-up of PC(q⇤E) along S;
(2) The morphism S ! C factors a non-singular curve B such that S ! B is a

P1-bundle and B ! C is a double covering. Moreover, B ! C is the double
covering associated to q.

Proof.

(1) Let t 2 C be a point and consider a morphism  E,t : PQt (S
_
Qt

) ! P3. If
Qt is smooth (respectively singular), then it is known that  E,t is the blow-up
along union of two disjoint lines in P3 [20, Table 3, No 25.] (respectively the
blow-up along a double line which is contained in a smooth quadric surface).
This fact implies that every fiber l of G ! S is isomorphic to P1 and satisfies
�KPQ(E).l = 1. Then [2, Theorem 2.3] implies that S is non-singular and  E
is the blow-up along S;

(2) For any t 2 C , St ⇢ P3 is a union of two disjoint lines if Qt is smooth and
(St )red is a line if Qt is singular. Let S! B ! C be the Stein factorization of
S! C . Since S is smooth, so is B. Then S! B is a P1-bundle and B ! C
is a double covering. The branched locus of this double cover B ! C is
{t 2 C | Qt is singular}. Therefore, B ! C is the double covering associated
to q : Q! C .

Step 4. Let  F : PQ(F)! Z be the Stein factorization of the morphism given by
|⇠F | over C . Since �KPQ(F) ⇠C 3⇠F ,  F : PQ(F)! Z is a crepant contraction.
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Claim 5.5.

(1) Exc( E) = Exc( F ) holds and  F is a 2-dimensional family of Atiyah’s
flopping contractions. In particular, if 9 : PQ(F) 99K eZ denotes the flop,
then eZ is non-singular;

(2) Let EeZ be the proper transform of PQ(E) ⇢ PQ(F) on eZ . Then there exists a
birational morphism µZ : eZ ! Z over C such that Z is non-singular and µZ
is the blow-up along a section C0,Z of the induced morphism 'Z : Z ! C .

Proof.

(1) Let � be a curve contracted by  F . Then we have ⇠F .� = 0 and hence
PQ(E).� = �⇡⇤F EQ .� < 0 since EQ is ample over C . Thus PQ(E) con-
tains � and � is contracted by  E . Conversely, it is clear that every curve �
contracted by  E is also contracted by  F . Therefore, we have  F |PQ(E) =
 E by the rigidity lemma and Exc( F ) = Exc( E). Let l be any fiber of
Exc( F )! S. Then we haveNl/PQ(E) = O(�1)�O2 and 1 = �KPQ(E).l =
(⇠F + ⇡⇤F EQ).l = ⇡F⇤l.EQ . Hence PQ(E).l = �1 in PQ(F). Considering
the exact sequence 0! Nl/PQ(E) ! Nl/PQ(F) ! NPQ(E)/PQ(F)|l ! 0, we
obtain Nl/PQ(F) ' O(�1)2 � O2. Thus  F is a 2-dimensional family of
Atiyah’s flopping contractions;

(2) We have EeZ ' PC(q⇤E) by the construction of this flop. Moreover, for each
t 2 C , if we take a line l ⇢ EeZ ,t ' P3, then we have �KeZ .l = �KeZt .l = 3.
Hence we obtain �KeZt |EeZt

= OP3(3) and NEeZt /
eZt ' OP3(�1) for every

t 2 C . Therefore, there exists a morphism µZ : eZ ! Z over C such that µZ
blows EeZ down to a section C0,Z of 'Z : Z ! C and Z is smooth.

Note that µZ is an extremal contraction and hence ⇢(Z) = 2.
We show (3). Set � := det(R1q⇤IT (�KC)) as in Theorem 5.1 (3). Since

�KPQ(F) = 3⇠F � r⇤F� by the exact sequence (5.1), we have �KZ = 3⇠Z � '⇤Z�.
Moreover, since µZ is the blow-up along a 'Z -section, we have µ⇤Z KZ = KeZ +
3EeZ . Thus we have µ⇤Z⇠Z = 9⇤⇠F + EeZ since ⇠Z = µZ ⇤9⇤⇠F by the definition.
The proof of (3) is complete.

To prove (4), let t 2 C be a point such that Zt = '�tZ (t) is smooth. Then Zt
is a so-called del Pezzo 4-fold. From the diagram (5.2), we have ⇠4Z · '�1Z (t) =
⇠4F · r�1F (t) + 1 = 6 by a direct calculation. Then we have Zt ' (P2)2 by Fujita’s
classification of del Pezzo manifolds [13, Theorem 3.3.1].

The proof of Theorem 5.1 is complete.

5.2. Proof of Theorem C

Let ' : X ! C be a sextic del Pezzo fibration. Our goal is to construct a (P2)2-
fibration containing X as a relative linear section.
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Let C0 be a '-section. Let (q : Q ! C, T ) be the relative double projection
of (' : X ! C,C0) as in Definition 2.2. Let EQ ⇢ Q be the proper transform of
Exc(BlC0 X ! X). Then EQ is nothing but the divisor that we obtain in Claim 5.2.
By Proposition 2.1 (3), we see that O(�KBlT Q) is nef over C . Then Theorem 5.1
gives the moderate (P2)2-fibration 'Z : Z ! C . In order to find an embedding from
X into Z over C , it suffices to show that the proper transform of Q on Z coincides
with X .

Now let us use the same notation as in Theorem 5.1 and its proof. Let G be
as in the statement of Theorem C. Considering the exact sequence 0 ! IT/Q !
OQ ! OT ! 0 and taking the cohomology of q⇤, we obtain

G = R1q⇤IT ⌦O(�KC). (5.4)

Note that eQ=BlT Q is the zero scheme of the global section of H0(PQ(F),O(⇠F )⌦
r⇤FG_) corresponding to the injection q⇤G ! F in the sequence (5.1) under the
natural isomorphism H0(PQ(F),O(⇠F )⌦ r⇤FG_) ' HomQ(q⇤G,F).

Now Theorem C is a consequence of the following claim.
Claim 5.6.

(1)  F |eQ coincides with  Q in Proposition 2.1 (3);
(2) If eQ+ ⇢ eZ denotes the proper transform of eQ ⇢ PQ(F), then the birational

map eQ 99K eQ+ is the flop over C . In particular, eQ+ ' eX holds;
(3) It holds that µZ |eX = µX . In particular, there exists a closed embedding

i : X ,! Z such that i(C0) = C0,Z ;
(4) X is the zero scheme of a global section ofOZ (⇠Z )⌦ '⇤ZG_;
(5) It holds thatO(KZ + 3⇠Z ) ' '⇤Z detG.

Proof.

(1) It suffices to show the restriction morphism rF ⇤OPQ(F)(k⇠F )! (rF |eQ)⇤OeQ ·

(k⇠F ) is surjective for every k > 0. Since eQ is the zero scheme of a global
section of the rank 2 vector bundle OPQ(F)(1) ⌦ r⇤FG_, we have the exact
sequence 0! OPQ(F)((k�2)⇠F )⌦r⇤F detG ! OPQ(F)((k�1)⇠F )⌦r⇤FG !
IeQ/PQ(F)(k⇠F ) ! 0. Thus we have R1rF ⇤IeQ/PQ(F)(k⇠F ) = 0 for every
k > 0. Hence we are done;

(2) By (1), we have  F (eQ) = X .
Since  F is defined over C by ⇠F , there exists a Cartier divisor ⇠Z on Z such
that ⇠Z is ample over C and  ⇤F⇠Z = ⇠F . Since eQ is the zero scheme of a
global section of  ⇤F (O(⇠Z ) ⌦ r⇤G_), X is that of O(⇠Z ) ⌦ r⇤G_ in Z and
hence eQ+ is that of  ⇤ZO(⇠Z )⌦ r+⇤G_ in eZ .
Then (2) follows from similar arguments as in the proof of Claim 4.7 (2);

(3) By Theorem 5.1 (3), we have µ⇤Z⇠Z ⇠ ⇠eZ + EeZ . Since9⇤⇠F |eX ⇠C �KeX , we
obtain µ⇤Z⇠Z |eX ⇠C µ⇤X (�KX ), which proves the assertion;
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(4) Since eX is the zero scheme of a global section of OeZ (9⇤⇠F ) ⌦ r+⇤G_ and
9⇤⇠F = µ⇤Z⇠Z �Exc(µZ ) holds, we obtain a section s 2 H0(Z ,IC0/Z (⇠Z )⌦
r+⇤G_) such that the zero scheme of s is X ;

(5) This assertion immediately follows from (5.4) and Theorem 5.1 (3).

The proof of Theorem C is complete.

6. Singular fibers of sextic del Pezzo fibrations

This section is devoted to proving Theorem D and Corollary E.

6.1. Main result of this section

One of the main purpose of this section is to classify singular fibers of sextic del
Pezzo fibration X ! C . It follows from the assumption ⇢(X) = 2 (or [9, (4.6)])
that every fiber of a sextic del Pezzo fibration ' : X ! C is irreducible and Goren-
stein. Such surfaces were studied by many persons (e.g. [1,6,8,12,26]). As the first
step to classify singular fibers, we review the classification of irreducible Gorenstein
sextic del Pezzo surfaces.

Theorem 6.1 ([1, 6, 8, 12, 26]). Let S be an irreducible Gorenstein del Pezzo sur-
face with (�KS)

2 = 6.
(1) Suppose that S has only Du Val singularities. Let eS ! S be the minimal
resolution. Then there is a birational morphism " : eS! P2 such that " is the blow-
up of P2 at three (possibly infinitely near) points. If 6 denotes the 0-dimensional
subscheme in P2 of length 3 corresponding to the three (possibly infinitely near)
points, then the isomorphism class of S is determined by 6 as in Table 6.1 below.

Type 6 Is 6 colinear? # of lines on S Singularity
(2,3) reduced non-colinear 6 smooth
(2,2) SpecC t SpecC["]/("2) non-colinear 4 A1
(2,1) SpecC["]/("3) non-colinear 2 A2
(1,3) reduced colinear 3 A1
(1,2) SpecC t SpecC["]/("2) colinear 2 A1 + A1
(1,1) SpecC["]/("3) colinear 1 A1 + A2

Table 6.1. Classification of Du Val sextic del Pezzo surfaces.

We refer to [6, 8, 12] for more precise details. We also refer to Lemma 6.12 for the
reason why we employ the above notion for Du Val sextic del Pezzo surfaces.

(2) Suppose that the singularities of S are not Du Val and that S is a rational
surface. Let ⌫ : S ! S be the the normalization. Then S is a Hirzebruch surface.
The complete linear system |⌫⇤!�1S | gives an embedding S ,! P7 and S ⇢ P6 is
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the image of the projection from a point away from S. Let C ⇢ OS be the conductor
of ⌫ and E := SpecOS/C. Then (S, ⌫⇤!�1S , E, E ! ⌫(E)) is one of the two cases
in Table 6.2.

Type S ⌫⇤!�1S E E ! ⌫(E)

(n2) F2 h + 2 f E = C0 double cover
(n4) F4 h + f E = E1 + E2 where ⌫(E) = ⌫(E1) = ⌫(E2) and

E1 = C0 and E2 ⇠ f Ei ! ⌫(E) is isomorphic

Table 6.2. Classification of non-normal rational sextic del Pezzo surfaces.

For the notation of Fn , h, f , and C0, we refer to Section 1.5. For more precise
details, we refer to [1, 26].

(3)When S is not a rational surface, S is the cone over a curve C ⇢ P5 of degree 6
and arithmetic genus 1.

Remark 6.2. Let S be the cone over a curve C ⇢ P6 of degree 6 and arithmetic
genus 1. Then we have dim TvS = 6 where v is the vertex. Hence for any sextic del
Pezzo fibration ' : X ! C , X does not contain such an S since we assume that the
total space X is smooth. In other words, every '-fiber is of type (i , j), (n2) or (n4)
as in Theorem 6.1.

The main result of this section is the following theorem.

Theorem 6.3. Let ' : X ! C be a sextic del Pezzo fibration andC0 be an arbitrary
'-section. Let (q : Q ! C, T ) be the relative double projection of (' : X !
C,C0) as in Definition 2.2. Then the following assertions hold for any t 2 C .

(1) For j 2 {1, 2, 3}, Xt is of type (2, j) if and only if Qt is smooth and #(Tt )red =
j;

(2) For j 2 {1, 2, 3}, Xt is of type (1, j) if and only if Qt is singular, #(Tt )red = j ,
and Sing Qt \ Tt = ?;

(3) Xt is of type (n2) if and only if Qt is singular, #(Tt )red = 2, and the double
point of Tt is supported at the vertex of Qt ;

(4) Xt is of type (n4) if and only if Qt is singular, #(Tt )red = 1, and Sing Qt =
(Tt )red.

6.2. Singular fibers of moderate (PPP1)3-fibrations

First of all, we classify the singular fibers of moderate (P1)3-fibrations as in the
following theorem.

Theorem 6.4. Let f : F! C and T ⇢ F be as in the setting of Theorem 4.1. Let
'Y : Y ! C be the moderate (P1)3-fibration which is obtained by Theorem 4.1.
Then the following assertions hold for any t 2 C .
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(1) Yt ' (P1)3 if and only if #(Tt )red = 3;
(2) Yt ' P1⇥Q2

0 if and only if #(Tt )red = 2, whereQ2
0 denotes the 2-dimensional

singular quadric cone;
(3) Yt ' P1,1,1 if and only if #(Tt )red = 1.

For the definition of P1,1,1, we refer to Definition 6.6 below.

To define P1,1,1, we need the following lemma.

Lemma 6.5. Let " 2 Ext1F2(O( f ),O(2h � f )) = H1(F2,OF2(2h � 2 f )) = C be
a non-zero element. This element gives the following non-trivial extension:

0! O(2h � f )! E ! O( f )! 0. (6.1)

Then E is the cokernel of an injection OF2(�h + f ) ! O2 � O(h + f ). In
particular, E is globally generated.

Proof. Let s1, s2 2 H0(OF2(h � f )) be sections such that (si = 0) = C0 + li ,
where li 2 | f | and l1 \ l2 = ?. Let t 2 H0(OF2(2h)) be a general section such
that (t = 0) \ C0 = ?. Then the cokernel of the map v := (s1, s2, t) : OF2(�h +
f ) ! O2 � O(h + f ) is locally free. Let us confirm that Cok v = E . Set s =
(s1, s2) : OF2(�h + f )! O2F2 . Then we have a surjection Cok v ⇣ Cok s. Since
both (s1 = 0) and (s2 = 0) contain C0, the morphism s : O(�h + f ) ! O2
factors through the map O(� f )! O2 which is given by (l1, l2). Hence we have
a surjection Cok s ! O( f ) and hence a surjection Cok v ! O( f ) and an exact
sequence 0 ! O(2h � f ) ! Cok v ! O( f ) ! 0, which does not split since
O(2h� f ) is not globally generated but Cok v is. Since Ext1(O( f ),O(2h� f )) =
C, we have Cok v ' E .

Definition 6.6 ([8]). Let E be the bundle on F2 fitting into the exact sequence (6.1)
that does not split. We define ]P1,1,1 := PF2(E) and set P1,1,1 ⇢ P7 be the image of
the morphism defined by |OPF2 (E)(1)|.

Remark 6.7 ([8]). By Lemma 6.5 and [8, (si31i), P.170], we can check that the
variety P1,1,1 is the del Pezzo variety of type (si31i) in the sense of [8]. In particular,
there is a very ample divisor HP1,1,1 on P1,1,1 such that KP1,1,1 + 2HP1,1,1 ⇠ 0 and
H3P1,1,1 = 6. Moreover, the singular locus of P1,1,1 is a line and P1,1,1 has a family
of Du Val A2-singularities along the line.

Proof of Theorem 6.4. We use the diagram (4.1) and the notation in Theorem 4.1
and its proof. By Theorem B (2), there is a Cartier divisor HYt such that KYt +
2HYt ⇠ 0 and H3Yt = 6. Hence Yt is a del Pezzo variety of degree 6.

(1) Assume #(Tt ) = 3. SinceeF+
t is a flop ofeFt ,eF+

t is smooth since so iseFt . Since
µF is the blow-up along a section of Y ! C , Yt is smooth and hence Yt ' (P1)3
by Theorem 4.1 (4).
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(2) Assume #(Tt ) = 2. Then the singular locus ofeFt is a smooth rational curve l and
eFt has a family of Du Val A1-singularities along this curve l. Since l is contained in
the exceptional locus of the blow-upeFt ! Ft , l is not a flopping curve oneFt . Thus
eF+
t is also normal and has a 1-dimensional family of Du Val A1-singularities. Since

eF+
t is the blow-up of Yt at a smooth point, Yt is also normal and has a 1-dimensional
family of Du Val A1-singularities. Hence Yt is of type (vi), or (si211), or (si22i) in
the sense of Fujita [8]. Moreover, it follows that ⇢(Yt ) = 2 from this construction.
By the definition in [8, P.155 (respectively P.170)], we can check that the variety V
of type (vi) or (si211) is of Picard rank 1 if V has a 1-dimensional family of Du Val
A1-singularities. Thus V must be of type (si22i).

By the definition in [8, P.169], we can check that the variety of type (si22i) is
isomorphic to P1 ⇥Q2

0.

(3) Assume that #(Tt )red = 1. By Remark 4.2, Tt is defined by (x, y, z3) locally.
Hence eFt has a 1-dimensional family of Du Val A2-singularities. It follows from
the same argument as in the proof of (2) that Yt also has a 1-dimensional family of
Du Val A2-singularities. Then by Fujita’s classification, Yt is of type (si31i) in the
sense of [8], which is isomorphic to P1,1,1 by Remark 6.7.

6.3. Singular fibers of moderate (PPP2)2-fibrations

Next, we classify the singular fibers of the moderate (P2)2-fibrations. In order to
state the result, we review the definition of the variety P2,2, which was introduced
by Fujita [8] and Mukai [21] independently.

Definition 6.8 ([21], [8]). We define gP2,2 := PP2(OP2(2) � �P2(2)). Then the
tautological divisor ⇠ is free and the linear system |⇠ | gives a morphism gP2,2! P8
since h0(P2,OP2(2)��P2(2)) = 9. We define P2,2 as the image of the morphism
and  : gP2,2! P2,2.
Remark 6.9. We can check that the variety P2,2 is the del Pezzo variety of type
(vu) in the sense of [8, P.155].

Theorem 6.10 ([9, (4.6)]). Let q : Q ! C and T be as in the setting of Theo-
rem 5.1. Let 'Z : Z ! C be the moderate (P2)2-fibration that is obtained by
Theorem 5.1. Then the following assertions hold for any t 2 C .

(1) Qt is smooth if and only if Zt ' (P2)2;
(2) Qt is singular if and only if Zt ' P2,2.

Proof of Theorem 6.10. Set F as in Theorem 5.1 (1). By Theorem 5.1 (2), the
blow-up eZt of Zt at a smooth point is the flop of PQt (FQt ). Since the map9 in the
diagram (5.2) is a family of Atiyah flops over C , we conclude that Qt is smooth if
and only if Zt is smooth. Hence it suffices to show that Zt ' P2,2 if Zt is singular,
which is known by [8] or [9, (4.6)].
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6.4. Proof of Theorem 6.3

For proving Theorem 6.3, we need three lemmas.

Lemma 6.11. Let S be a hyperplane section of P1,1,1 ⇢ P7. If S is non-normal,
then S is of type (n4) in Theorem 6.1.

Proof. We use the notation in Definition 6.6. Let ⇡ : eP1,1,1! F2 be the projection
and ⇠ a tautological divisor. As explained in [8, (si31i), P.170], the exceptional
divisor ofeP1,1,1! P1,1,1 is the union of a unique member E1 2 |⇠+⇡⇤(�2h+ f )|
and E2 := ⇡⇤C0. Note that ⇠ is the pull-back of a hyperplane section of P1,1,1 ⇢
P7.

Let eS ⇢ eP1,1,1 = PF2(E) be the proper transformation of S ⇢ P1,1,1. Then
there exist a, b 2 Z�0 such that eS ⇠ ⇠ � (aE1 + bE2) = (1 � a)⇠ + ⇡⇤((2a �
b)h + (2b � a) f ). Since eS is effective, we have a  1.

Let us prove that a = 1. If a = 0, then eS 2 ⇠ � ⇡⇤(b(h � 2 f )) and hence
b = 0 or 1 by (6.1). Assume b = 1. Then we have eS ⇠ ⇠ � ⇡⇤(h � 2 f ). Let
s : O(h � 2 f ) ! E be the section corresponding to eS. Since eS is irreducible, the
zero locus of s, say Z , is 0-dimensional. Then it follows from [22, Lemma 5.4] that
Cok s is torsion free. Hence we have an exact sequence 0! O(h � 2 f )! E !
IZ (h + 2 f )! 0. Since c2(E) = 2, Z must be empty. Then we have E ' O(h)2
since E is nef, which is a contradiction to (6.1). Assume b = 0, i.e., eS ⇠ ⇠ . Then
S does not contain the singular locus of P1,1,1. Hence eS is also non-normal. Let
s : O! E be the section corresponding toeS and Z the zero locus of s. By a similar
argument as before, we have an exact sequence 0! O! E ! IZ (2h)! 0. By
this exact sequence, BlZ F2 is embedded into PF2(E) = eP1,1,1. Note that BlZ F2
coincides with eS over F2 \ Z . Since both of BlZ F2 and eS are integral, BlZ F2
coincides with eS. Since c2(E) = 2, Z is of length 2 and hence BlZ F2 = eS is
normal, which is a contradiction.

Therefore, we have a = 1. TheneS ⇠ ⇡⇤((2�b)h+(2b�1) f ), which implies
b = 1 sinceeS is a prime divisor. SinceeS is integral, there is a smooth rational curve
C 2 |h + f | such thateS = ⇡�1(C). Then the restriction of the sequence (6.1) to C
splits, which implies eS ' F4. Therefore, S is of type (n4) by Theorem 6.1.

Lemma 6.12. Let ' : X ! C be a sextic del Pezzo fibration and t 2 C be a point.
Let 'B : B ! C and 'T : T ! C be the associated coverings. If Xt is normal,
then Xt is of type (#Bt , #Tt ).

Proof. Let C0 := {t 2 C | Xt is normal}, which is an open subset of C . Set
X0 := '�1(C0), B0 := '�1B (C0), and T 0 := '�1T (C0). Now X0! C0 is a Du Val
family of sextic del Pezzo surfaces in the sense of Kuznetsov [16, Definition 5.1].
Kuznetsov also constructed the double covering Z3 ! C0 and the triple covering
Z2 ! C0 in [16, Theorem 5.2]. Then it follows from [16, Corollaries 3.13 and
5.5] that Xt is of type (#(Z3,t )red, #(Z2,t )red), where Zd,t is the fiber of t under
Zd ! C0. Hence it is enough to show that Z3 ' B0 and Z2 ' T 0. By [16,
Propositions 5.12 and 5.14], Hilbdt+1(X/C)! C factors through Zd as the Stein
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factorization andZd is non-singular. Thus Lemma 3.3 implies this assertion, which
completes the proof.

Lemma 6.13. Let ' : X ! C , C0, q : Q ! C , and T as in the statement of
Theorem 6.3. Then for any t 2 C , Xt is normal if and only if Sing(Qt ) \ Tt = ?.

Proof. We use the same notation as in Proposition 2.1 and its proof.
First, we suppose that Sing(Qt ) \ Tt = ?. Then it follows from Remark 4.2

that eQt is normal and hence so is Xt . Note that eXt is the blow-up of Xt at a smooth
point x := C0,t . As shown in the proof of Proposition 2.1 (1), every exceptional
curve of  t : eXt ! Xt is the proper transform of a line passing through the smooth
point x . Now let us assume that Xt is non-normal. Since the non-normal locus
does not contain x , the non-normal locus is not contracted by  t . Hence Xt is also
non-normal. This is a contradiction and hence Xt is normal.

Next, we assume that Sing(Qt ) \ Tt 6= ? and show that Xt is non-normal.
Then Qt is singular and hence a quadric cone. Let x 2 Qt be the singular point of
Qt . Then Tt contains x . Since T is a trisection of q, Tt is not reduced at x . Hence
#(Tt )red 2 {1, 2}.
Claim 6.14. Let F and eF as in Theorem 4.1. If Sing(Qt ) \ Tt 6= ?, then eQt =
BlTt Qt is non-normal along the singular locus ofeFt .

Proof. Assume that #(Tt )red = 2 (respectively 1). Let Blx Ft be the blow-up of
Ft = P3 at x and E the exceptional divisor dominating x . Let x 0 2 E (respec-
tively 60 ⇢ E) be the intersection of E and the proper transform of Tt . When
#(Tt )red = 1, we set x 0 = 60red. Let Blx 0 Blx Ft be the blow-up at x 0 and E 0 the ex-
ceptional divisor. Let x 00 be the reduced point of Tt (respectively the point that is the
intersection of E 0 and the proper transform of 60). We set M = Blx 00 Blx 0 Blx Ft
and let EM ⇢ M be the proper transform of E . Then we have a natural mor-
phism ⌧ : M ! eFt = BlTt Ft by the universal property of the blow-up. Note
that C := ⌧ (E) ' P1 (respectively C := ⌧ (E) = ⌧ (E 0) ' P1) and ⌧ is a
crepant divisorial contraction. Thus eFt has a family of Du Val A1 (respectively
A2) -singularities along its singular locus C . Let Qt,M ⇢ M be the proper trans-
form of Qt on M . Since Qt contains x as an ordinary double point, we can check
that ⌧ |Qt,M : Qt,M ! eQt = BlTt Qt is finite but not isomorphic. Hence eQt is
non-normal along C = Sing(eFt ).

By Claim 6.14, eQt is non-normal along an exceptional locus of eQt ! Qt . Hence
the non-normal locus of eQt is not contracted by the morphism  t : eQt ! Xt in
the diagram (2.1). Therefore, Xt is non-normal and hence so is eXt . Since eXt is the
blow-up of Xt at a smooth point, Xt is non-normal.

Proof of Theorem 6.3. (1) and (2): Assume Xt is of type (2, j) (respectively (1, j)).
By Lemma 3.1 (1), #(Bt )red = 2 if and only if Qt is smooth. Then Lemma 6.12
shows that Qt is smooth (respectively singular) and #(Tt )red = j . Moreover, when
Xt is of type (1, j), it follows from Lemma 6.13 that Sing Qt \ (Tt )red = ?.
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(3) Assume Xt is of type (n2). Then Lemma 6.13 shows that Qt is singular and
Sing Qt \ (Tt )red 6= ?. If #(Tt )red = 1, then Xt is contained in P1,1,1 as a hyper-
plane section by Theorem 6.4, which contradicts Lemma 6.11. Hence #(Tt )red = 2.

(4) Assume Xt is of type (n4). Then Lemma 6.13 shows that Qt is singular
and Sing Qt \ (Tt )red 6= ?. If #(Tt )red = 2, then Xt is contained in P1 ⇥ Q2

0
as a hyperplane section by Theorem 6.4. Thus we obtain a birational morphism
F4! Q2

0, which is a contradiction. Hence #(Tt )red = 1.
The proof is complete.

6.5. Proof of Theorem D and Corollary E

Finally, we prove Theorem D and Corollary E. Combining Theorems 6.4, 6.10, and
6.3, we have Theorem D. Let us show Corollary E. Let ' : X ! C be a sextic del
Pezzo fibration. Then (1) and (2) follow immediately from Theorem A (3). Let us
show (3). By Theorem A (3), we have (�KX/C)3 = (�KX +'⇤KC)3 = 24g(C)�
(6g(B) + 4g(T ) + 14). Let RB and RT denote the ramification divisor of 'B and
'T . Then the Hurwitz formula implies deg RB = 2g(B)+2�4g(C) and deg RT =
2g(T ) + 4 � 6g(C). Thus we have (�KX/C)3 = �(3 deg RB + 2 deg RT )  0.
Hence (�KX/C)3 = 0 if and only if deg RB = deg RT = 0, which is equivalent to
that 'B and 'T are étale. By Theorem D, this is equivalent to that ' is smooth. The
proof is complete.

7. Proof of Theorem F

Let us show Theorem F by presenting explicit examples of sextic del Pezzo fibra-
tions which contain singular fibers of type (2, j) for j = 1, 2, 3 (see Example 7.4),
(1, j) for j = 1, 2, 3 (see Example 7.5), (n2), or (n4) (see Example 7.6).

Step 1. We start our construction of examples of sextic del Pezzo fibrations from
the following submanifolds in P4:

T ⇢ Q2 ⇢ Q3 ⇢ P4,

whereQ3 is a smooth quadric 3-fold,Q2 ⇢ Q3 is a smooth hyperplane section, and
T ⇢ Q2 is a twisted cubic curve.

For a smooth conic C ⇢ Q3 with T \ C = ?, let ⌧ : Q := BlC Q3 ! Q3

be the blow-up along C and T := ⌧�1⇤ T . Then there exists a quadric fibration
q : Q ! P1 given by the linear system of hyperplane sections of Q3 containing C .
Note that q|T : T ! P1 is a triple covering.
Step 2.
Claim 7.1. There exists a sextic del Pezzo fibration ' : X ! P1 with a section s
such that (q : Q ! P1, T ) is the relative double projection of (' : X ! P1, s).
Moreover, X is a weak Fano 3-fold with (�KX )3 = 22 and �KX .s = 0.
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Proof. Let � : eQ := BlT Q ! Q be the blow-up. Set H = � ⇤⌧⇤OQ3(1), E =
Exc(� ), and G = ��1⇤ Exc(⌧ ). Note that�KeQ = 3H � E �G is free since H �G
and 2H�E are free. Using [10, Proposition 3.5], which is an inverse transformation
of Proposition 2.1, we obtain a sextic del Pezzo fibration ' : X ! P1 and a '-
section s satisfying (�KX )3 = 22 and �KX .s = 0. Since eQ is weak Fano, X is
also weak Fano by [ibid, Proposition 3.5].

Remark 7.2. Let (B, T ) be the coverings associated to this sextic del Pezzo fibra-
tion. Since (�KX )3 = 22, Theorem A implies that B ' T ' P1. Then B ! P1 is
ramified over exactly two points and hence Q! P1 has exactly two singular fibers
by Lemma 3.1 (1).

We prove Theorem F by showing that for any condition in Theorem 6.3, there
exists a suitable smooth conic C and a point t 2 P1 such that the pair (Qt , Tt )
satisfies the condition.

Step 3. For a point p 2 Q3, let TpQ3 denote the projective tangent space of Q3 at
p. For two points v1, v2 2 Q3, we set

C(v1, v2) := Q3 \ Tv1Q3 \ Tv2Q3.

Claim 7.3. Let C ⇢ Q3 be a smooth conic and hCi ⇢ P4 be the linear span of C .
Then there exist two points v1(C), v2(C) 2 Q3 such that C(v1(C), v2(C)) = C .

Moreover, there exists the following one-to-one correspondence:
�
{v1, v2} ⇢ Q3��C(v1, v2) is smooth

 
 ! { smooth conics in Q3}

2 2

{v1, v2} 7�! C(v1, v2)
{v1(C), v2(C)}  �[ C.

Proof. The quadric fibration q : Q ! P1 has exactly two singular fibers Q1,C and
Q2,C as we saw in Remark 7.2. Then Qi := ⌧ (Qi,C) ⇢ Q3 is a singular quadric
cone for each i . Set vi (C) := � (Sing Qi ). Then a hyperplane H in P4 containing
hCi is tangent to Q3 if and only if H \ Q3 = Qi and H = Tvi (C)Q3 for some
i 2 {1, 2}. Therefore, we have Tv1(C)Q3 \ Tv2(C)Q3 = hCi.

Let us confirm the one-to-one correspondence. Take two points v1, v2 2 Q3

such that C(v1, v2) is smooth conic. Then {v1(C(v1, v2)), v2(C(v1, v2))} is the set
of vertices of the cones {Tv1Q3 \Q3, Tv2Q3 \Q3}, which is nothing but {v1, v2}.
Hence we are done.

Step 4. We finish the proof by presenting suitable examples as follows.
Example 7.4 (Singular fiber of type (2, j) for j = 1, 2, 3). Fix j 2 {1, 2, 3}. We
can take a smooth conic C ⇢ Q2 such that #(C \ T )red = j . Let Q1 be a smooth
hyperplane section ofQ3 such that C = Q1 \Q2. Then we have Q1 \ T = C \ T .
Let Q2 ⇢ Q3 be a general hyperplane section such that Q2 \ Q1 \ T = ?. The
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pencil  L = {�Q1 + µQ2 | [� : µ]} induces a quadric fibration q : BlQ1\Q2 Q3 !
P1. Let f : BlQ1\Q2 Q3! Q3 be the blow-up. If we setfQi := f �1⇤ Qi , thenfQi is
a q-fiber. Then we obtain T \fQ1 ' T \C since Q1\Q2\T = ?. Set t = q(fQ1).
Seeing the fiber (Qt , T t ) = (fQ1, T \ fQ1) and using Theorem 6.3, we obtain an
example of a sextic del Pezzo fibration having fibers of type (2, j).

Example 7.5 (Singular fiber of type (1, j) for j = 1, 2, 3). Fix j 2 {1, 2, 3}. We
can take a smooth conic C ⇢ Q2 such that #(C \ T )red = j . By Claim 7.3, we can
take a point v1, v0 2 Q3 such that C = C(v1, v

0). Then we have Tv1Q3 \Q2 = C .
Let v2 2 Q3 be a point ofQ3 such that hv1, v2i 6⇢ Q3 and Tv2Q3\C\T = ?.

Set Qi = TviQ3 \ Q3 and fQi ⇢ BlC(v1,v2) Q3 be the proper transform of Qi
for i = 1, 2. Then by Claim 7.3, fQ1, fQ2 are the singular fibers of the quadric
fibration BlC(v1,v2) Q3 ! P1. Recall that Q1 \Q2 = C is a smooth conic. Hence
Q1 \Q2 does not contain the vertex of Q1 and hence we have C \ T ' fQ1 \ T .
Therefore, T does not pass through the vertex of Q1. Set t = q(fQ1). Seeing the
fiber (Qt , T t ) = (fQ1, T \ fQ1) and using Theorem 6.3, we obtain an example of a
sextic del Pezzo fibration having fibers of type (1, j).

Example 7.6 (Singular fibers of type (n2) and (n4)). We fix an isomorphism
Q2 ' P1a ⇥ P1b and let la and lb be the two rulings. We may assume that T 2
|la+2lb|. Let ga : T ! P1a be the restriction of the first projection to T . Take a point
p1 2 T . Then we haveTp1Q2 = la+lb and henceTp1Q3\T = Tp1Q3\Q2\T =
(la + lb) \ T = p1 + g�1a (ga(p1)) as effective Cartier divisors on T .

Let p2 2 Q3 be a general point such that C(p1, p2) is smooth conic. Let
Qi := TpiQ3\Q3, q : Q = BlC Q3! P1 the quadric fibration, andfQi the proper
transform of Qi . Then fQ1 is a singular q-fiber with the vertex p1 and fQ1 \ T '
T \ (la + lb) = p1 + g�1a (ga(p1)).

If p1 is a unramified (respectively ramified) point of T ! P1a , then we obtain
an example of a sextic del Pezzo fibration having fibers of type (n2) (respectively
(n4)) by seeing the fiber (fQ1, T \fQ1) and using Theorem 6.3.

The proof of Theorem F is complete.

Appendix

A. Relative universal extensions of sheaves

This appendix is devoted to proving Theorem 3.9.
First of all, we recall the notion of relative Ext sheaves and organize some basic

properties. Let f : X ! Y be a proper morphism between noetherian schemes X
and Y . Let F and G be coherent sheaves on X and E a coherent sheaf on Y .
We denote the i-th cohomology of the right derived functor of f⇤Hom(F ,�) by
Extif (F ,�). We call this sheaf Extif (F ,G) the relative Ext sheaf (cf. [14]).
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Note that Extif (OX ,G) = Ri f⇤G by the definition. Moreover, composing
natural canonical morphisms

f⇤Hom(F ,G)⌦ E ! f⇤
�
Hom(F ,G)⌦ f ⇤E

�
! f⇤Hom(F ,G ⌦ f ⇤E),

we obtain a natural morphism Extif (F ,G ⌦ f ⇤E) ! Extif (F ,G) ⌦ E . By the
projection formula, this is isomorphic when E is locally free.

Consider the following three spectral sequences:

Ri f⇤Ext j (F ,G ⌦ f ⇤E)) Exti+ j
f (F ,G ⌦ f ⇤E),

Hi (Y,Ext jf (F ,G ⌦ f ⇤E))) Exti+ j (F ,G ⌦ f ⇤E), (A.1)

Hi (X,Ext j (F ,G ⌦ f ⇤E))) Exti+ j (F ,G ⌦ f ⇤E).

These spectral sequences give the following three natural morphisms:

↵ : Ext1f (F ,G ⌦ f ⇤E)! f⇤Ext1(F ,G ⌦ f ⇤E),

� 0 : Ext1(F ,G ⌦ f ⇤E)! H0(Y,Ext1f (F ,G ⌦ f ⇤E)), (A.2)

� 0 : Ext1(F ,G ⌦ f ⇤E)! H0(X,Ext1(F ,G ⌦ f ⇤E)).

Additionally, we define e�, �, and � as in the following commutative diagram:

Ext1(F,G ⌦ f ⇤E)
� 0

//

e�
//

�

//

� 0

**

@A
� //

H0(Y,Ext1f (F,G ⌦ f ⇤E))

✏✏

H0(↵)
// H0(Y, f⇤Ext1(F,G⌦ f ⇤E))

✏✏

H0(Y,Ext1f (F ,G)⌦ E)

✏✏

// H0(Y, f⇤Ext1(F ,G)⌦ E)

✏✏

Hom(E_,Ext1f (F ,G))
↵��

// Hom(E_, f⇤Ext1(F ,G))

'adjoint
✏✏

Hom( f ⇤E_,Ext1(F ,G)),

(A.3)

where all vertical arrows are the natural morphisms. Note that all of the vertical
arrows are isomorphic when E is locally free.
Remark A.1. For an element t 2 Ext1(F ,G ⌦ f ⇤E), it is easy to verify that the
composite morphism

f ⇤E_ f ⇤�(t)
! f ⇤Ext1f (F ,G)

f ⇤↵
! f ⇤ f⇤Ext1(F ,G)

"
!Ext1(F ,G) (A.4)

is nothing but � (t) 2 Hom( f ⇤E_,Ext1(F ,G)), where " : f ⇤ f⇤Ext1(F ,G) !
Ext1(F ,G) is the natural morphism.



1406 TAKERU FUKUOKA

Definition A.2. Put E = Ext1f (F ,G)_. Consider the composition

⌧ : Ext1(F ,G ⌦ f ⇤Ext1f (F ,G)_)
e�
! H0(Y,Ext1f (F ,G)⌦ Ext1f (F ,G)_)

✓
!Hom(Ext1f (F ,G),Ext1f (F ,G)),

(A.5)

where e� is the morphism in (A.3) and ✓ is the natural morphism.
We say that an element t 2 Ext1(F ,G⌦ f ⇤Ext1f (F ,G)_) is universal if ⌧ (t) =

id. If t is universal, then we say that the corresponding extension

0! G ⌦ f ⇤Ext1f (F ,G)_ ! Ht ! F ! 0 (A.6)

is an f -universal extension of F by G. When Y = Spec k for a field k, Ht is just
called a universal extension of F by G.

The following lemma is a criterion for the existence of a locally free f -univer-
sal extension of F by G.
Lemma A.3. Suppose the following conditions hold:

(1) Ext1f (F ,G) is locally free;
(2) H2(Y, f⇤Hom(F ,G)⌦ Ext1f (F ,G)_) = 0;
(3) X is regular, G is locally free, and hd(Fx )  1 for any x 2 X;
(4) " � f ⇤↵ : f ⇤Ext1f (F ,G)! Ext1(F ,G) is surjective (see (A.4)).

Then there exists a locally free f -universal extensionH of F by G.
Proof. First, we prove that the conditions (1) and (2) imply the existence of an f -
universal extension. By (A.5), it is enough to see that ✓ and e� are surjective. By (1),
the morphism ✓ in (A.5) is surjective. Moreover, the surjectivity of e� is equivalent
to that of � 0, which is defined in (A.2) by the spectral sequence (A.1). Using this
spectral sequence, (1), and (2), we deduce that � 0 is surjective. Therefore, there
exists an f -universal extensionHt .

Now Ht fits into the exact sequence (A.6). Since we assume that X is regular
and G is locally free in (3),Ht is locally free if and only if Exti (Ht ,G) = 0 for any
i � 1. By takingHom(�,G) of the sequence (A.6), we obtain an exact sequence

Hom(G ⌦ f ⇤Ext1f (F ,G)_,G)
�
!Ext1(F ,G)! Ext1(Ht ,G)! 0.

Since hd(Fx )  1 for all x 2 X , we have Exti (Ht ,G) = 0 for any i � 2. Hence
it is enough to show that � is surjective. Let ⌫ : f ⇤Ext1f (F ,G) ! Hom(G ⌦
f ⇤Ext1f (F ,G)_,G) be the natural map.

Recall � (t) 2 Hom( f ⇤Ext1f (F ,G),Ext1(F ,G)) as in (A.3). Then it holds
that � � ⌫ = � (t). Hence it suffices to show that � (t) is surjective. To see this fact,
we recall the diagram (A.4). By (1) and the universality, the morphism f ⇤�(t) is
isomorphic. By (4), " � f ⇤↵ is surjective. Then by Remark A.1, � (t) is surjective,
which completes the proof.
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The following lemma is an important property of a universal extension.

Lemma A.4. Let X be a proper geometrically connected geometrically reduced
scheme over a field. Let F and L be a coherent sheaf and an invertible sheaf on X
respectively. Suppose that there exists a universal extension of F by L:

0! L⌦ Ext1(F ,L)_ ! H! F ! 0. (A.7)

If there are no surjections F ! L, then there are no surjectionsH! L.

Proof. To obtain a contradiction, assume that there are no surjections F ! L and
there is a surjection a : H! L. We consider the following commutative diagram:

0 // L⌦ Ext1(F ,L)_ //

b
✏✏

H //

a
✏✏

F //

✏✏

0

0 // L L // 0,

where b is the composition of the morphisms L⌦ Ext1(F ,L)_ ! H and a. Since
there are no surjections F ! L, we have b 6= 0. Hence b splits. Letting V be
the linear subspace of Ext1(F ,L)_ such that Ker b = L ⌦ V , we obtain an exact
sequence 0 ! L ⌦ V ! Ker a ! F ! 0. Then the exact sequence (A.7)
is the push-forward of this exact sequence, which implies that id : Ext1(F ,L) !
Ext1(F ,L) factors through V , which is a contradiction. Hence we are done.

Proof of Theorem 3.9. Let f : X ! Y and Z ⇢ X be as in Theorem 3.9. We
first prove that there is a locally free f -universal extension H of IZ by ! f . It is
enough to check that (1) – (4) in Lemma A.3 hold for F = IZ and G = ! f . (2)
and (3) immediately hold from our assumption. We show (1). Considering the
higher direct images of the exact sequence 0! IZ ! OX ! OZ ! 0, we have
the exact sequence 0 ! OY ! f⇤OZ ! R1 f⇤IZ ! R1 f⇤OX ! 0. Hence
R1 f⇤IZ is locally free since so is R1 f⇤OX and f |Z is finite flat by our assumption.
Since every fiber of f and f |Z are Cohen-Macaulay, [14, Theorem (21)] gives the
following:

0 // (R1 f⇤OX )_ // (R1 f⇤IZ)_
b↵

// ( f⇤OZ )_ // ( f⇤OX )_ // 0

0 // Ext1f (OX ,! f ) //

'

OO

Ext1f (IZ ,! f ) //

'

OO

Ext2f (OZ ,! f ) //

'

OO

Ext2f (OX ,! f ).

'

OO

(A.8)

Hence (1) follows. We show (4). When we identify ( f⇤OZ )_ with f⇤!Z/Y , the
natural map ↵ in (A.4) can be identified with b↵ in (A.8). Set E := Cok(OY !
f⇤OZ ). Then we have =b↵ = E_ by (A.8). By [4, Theorem 2.1 (ii)], the composition
of the natural maps f ⇤E_ ! f ⇤ f⇤!Z/Y ! !Z/Y is surjective, which implies (4).
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Then Lemma A.3 gives a locally free f -universal extension H of IZ by ! f .
TensoringO(�KX ), we obtain a locally free f -universal extensionF of IZ (�KX )
by OX . Identifying Ext1f (IZ ,! f )

_ with R1 f⇤IZ , we obtain the exact sequence
(3.5). For each y 2 Y , the restriction of the exact sequence (3.5) to Xy is also
exact since f and f |Z are flat. Since Ext2(IZ\Xy ,!Xy ) = H0(Xy,IZ\Xy ) = 0
holds, the natural morphism Ext1f (IZ ,! f )⌦k(y)! Ext1(IZ\Xy ,!Xy ) is isomor-
phic by [3, Satz 3]. Thus F |Xy is also a universal extension of IZ\Xy (�KXy ) by
OXy . Since there are no surjections from IZ\Xy (�KXy ) toOXy , the property (2) of
Theorem 3.9 follows from Lemma A.4 if Xy is reduced. The proof is complete.
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