Ann. Sc. Norm. Super. Pisa Cl. Sci. (5)
Vol. XXI (2020), 1371-1409

Relative linear extensions of sextic del Pezzo fibrations over curves

TAKERU FUKUOKA

Abstract. In this paper, we study a sextic del Pezzo fibration over a curve com-
prehensively. We obtain certain formulae of several basic invariants of such a
fibration. We also establish the embedding theorem of such a fibration which as-
serts that every such a fibration is a relative linear section of a Mori fiber space
with a general fiber (P13 and that with a general fiber (P2)2. As an application
of this embedding theorem, we classify singular fibers of such a fibration and
answer a question of T. Fujita about the existence of non-normal fibers.

Mathematics Subject Classification (2010): 14E25 (primary); 14E30 (sec-
ondary).

1. Introduction

1.1. Motivations

A smooth del Pezzo surface S of degree d is defined to be a smooth projective sur-
face whose anti-canonical divisor —K g is ample with (—K $)? = d. It is a famous
result that for any integer d € {1, ..., 9}, there exists a certain variety V such that
every del Pezzo surface S of degree d is a weighted complete intersection of V.
For example, when d = 3 (respectively d = 4), we take V3 = P3 (respectively
V4 = IP*) and every del Pezzo surface of degree 3 (respectively 4) is a cubic hyper-
surface on P3 (respectively a complete intersection of two quadrics on P*). When
d = 6, we can take not only Vs = (P')? but also Vs = (P?)2. Then every del
Pezzo surface of degree 6 is a hyperplane section of (P')? and also a codimension
2 linear section of (IP?)? with respect to the Segre embeddings. These descriptions
are classic and useful to study del Pezzo surfaces.

In this paper, we mainly discuss how to relativize these descriptions for del
Pezzo fibrations. A relativization of these embeddings is important for the study of
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del Pezzo fibrations; such relativizations have been used by several researchers (e.g.
[28]). As we will see in the next subsection, relativizations of these descriptions for
del Pezzo fibrations of degree d have been established when d # 6. One of the
main results of this paper is to give a relativization when d = 6.

1.2. Known results

In this paper, we employ the following definition for del Pezzo fibrations as in the
context of Mori theory. Let X be a smooth projective 3-fold whose canonical divisor
K is not nef. By virtue of Mori theory, X has an extremal contraction ¢: X — C,
which is a surjective morphism onto a normal projective variety C with connected
fibers satisfying that p(X/C) = 1 and —Kyx is g-ample. When dimC = 1, we
call ¢ a del Pezzo fibration, which is one of the final outputs of the minimal model
program. In this case, a general ¢-fiber F is a del Pezzo surface. Then the degree
of a del Pezzo fibration ¢: X — C is defined to be (—KFr)?.

Let ¢: X — C be a del Pezzo fibration of degree d. In the paper [19], Mori
proved that 1 < d < 9 and d # 7. Moreover, he proved that if d = 9 then ¢
is P>-bundle, and if d = 8 then there exists an embedding of X into a P3-bundle
over C containing X as a quadric fibration [19, Theorem (3.5)]. When d = 1 or 2,
Fujita proved that there exists a weighted projective space bundle containing X as
a relative weighted hypersurface [9, (4.1),(4.2)].

Now we assume that 3 < d < 6. Then ¢: X — C has a natural embed-
ding into the P4 -bundle p — Pc(p.O(—=Kx)) — C. D’Souza [7, (2.2.1) and
(2.3.1)] and Fujita [9, (4.3) and (4.4)] proved that if d = 3 or 4, then X is a rel-
ative complete intersection in P¢ (¢.O(—Kx)). More precisely, when d = 4 for
example, they proved that there is a rank 2 vector bundle £ on C such that X is the
zero scheme of a global section of Op.(p,0(-ky))(2) ® p*E. Whend = 5 or 6,
Pc (9. O(—Kx)) does not contain X as a relative complete intersection and hence
it seems to be difficult to treat such an X as a submanifold of P¢(¢,O(—Kx)).
When d = 5 and C = P!, however, K. Takeuchi claimed that X is relatively de-
fined in Pp1 (9. O(—Kx)) by the Pfaffian of the 4 x 4 diagonal minors of a 5 x 5
skew-symmetric matrix [28, Theorem (3.3) (v)].

1.3. Main results

In this paper, we mainly treat a sextic del Pezzo fibration ¢: X — C, i.e., that of
degree 6.

1.3.1. Associated coverings

For every sextic del Pezzo fibration ¢: X — C, we will define smooth projective
curves B, T with a double covering structure ¢p: B — C and a triple covering
structure o7 : T — C respectively associated to ¢. These coverings ¢p and ¢r
are deeply related to the relative Hilbert scheme of twisted cubics and conics re-
spectively (see Lemma 3.3). In particular, when all ¢-fibers are normal, the cov-
erings B and T coincide with the coverings 23 and 25 over C that are defined
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by Kuznetsov [16] (see Lemma 3.3 and the proof of Lemma 6.12). We refer to
Definition 3.4 for the precise definition.

1.3.2. Formulae for invariants (—Kx)3 and h'2(X)

For a sextic del Pezzo fibration X — C, the associated coverings are closely related
to the invariants (—K x)> and A1-2(X).

Theorem A. Let ¢: X — C be a sextic del Pezzo fibration. Let opp: B — C
be the double covering and ¢7: T — C the triple covering associated to ¢ (see
Definition 3.4). Then the following assertions hold:

(1) J(X) x Jac(C) is isomorphic to Jac(B) x Jac(T) as complex tori, where
J(X) is the intermediate Jacobian of X. Moreover, if C = P!, then J(X)
is isomorphic to Jac(B) x Jac(T) as principally polarized Abelian varieties,
where the polarization of J (X) is defined as in [5];

(2) It holds that (—K x)? = 22 — (6g(B) + 4g(T) + 12g(C)).

This theorem shows that the invariants (—K x)> and A1-2(X) can be interpreted by
the genera of three curves C, B,and T .

1.3.3. Relative linear extensions

Let us recall that a smooth sextic del Pezzo surface is a hyperplane section of (P')3
and also a codimension 2 linear section of (P?)? under the Segre embeddings. In the
following two theorems, we relativize these embeddings for every sextic del Pezzo
fibration.

Theorem B. Let ¢: X — C be a sextic del Pezzo fibration and ¢g: B — C the
double covering associated to ¢. Set L := Cok(O¢c — ¢p,Op) ® O(—Kc¢). Then
there exists a smooth projective 4-fold Y , an extremal contraction ¢y : Y — C and
a divisor Hy on Y satisfying the following conditions:

(1) Every smooth fiber of gy is isomorphic to (P1)3;
(2) Oy(Ky + 2Hy) = ¢} L holds;
(3) Y contains X as a member of |O(Hy) ® gaiﬁ_l l.

Theorem C. Let ¢: X — C be a sextic del Pezzo fibration and ¢7: T — C the
triple covering associated to ¢. Set G := Cok(O¢ — ¢1,,01) @ O(—K(). Then
there exists a smooth projective 5-fold Z, an extremal contraction ¢z: Z — C and
a divisor Hz on Z satisfying the following conditions:

(1) Every smooth fiber of ¢z is isomorphic to (P%)?;

(2) Oz(Kz +3Hz) = ¢} detG holds;

(3) There exists a sections € H'(Z, Oz (Hy) Q¢%5GY) such that X is isomorphic
to the zero scheme of s .

Remark 1.1. Note that the sheaf £ (respectively G) in Theorem B (respectively
Theorem C) is invertible (respectively locally free of rank 2).
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One of the most different points from the case where the degree is not 6 is
that ¢y and ¢z in Theorems B and C may have singular fibers, and must have
when C = P! by the invariant cycle theorem (cf. [29, II, Theorem 4.18]). We will
classify singular fibers of ¢y and ¢z in Theorem D. Moreover, as an application of
Theorems B and C, we will classify singular fibers of sextic del Pezzo fibrations in
Theorems D and F.

1.3.4. Classification of singular fibers of sextic del Pezzo fibrations

Let us recall Fujita’s result about singular fibers of del Pezzo fibrations [9].

Theorem 1.2 ([9, (4,10)]). Let ¢: X — C be a del Pezzo fibration. If ¢ is not of
degree 6, then every fiber of ¢ is normal.

However, singular fibers of sextic del Pezzo fibrations are yet to be classified. In-
deed, Fujita proposed the following question.

Question 1.3 ([9, (3,7)]). Do there exist sextic del Pezzo fibrations containing non-
normal fibers?

Another main result of this paper is a classification of singular fibers of sextic
del Pezzo fibrations ¢ : X — C. For the proof, we will use the embeddings X — Y
and X < Z as in Theorems B and C. In summary, we will show the following
theorem.

Theorem D. Let ¢: X — C be a sextic del Pezzo fibration. Let pp: B — C and
or: T — C be the coverings associated to ¢. Let X — Y and X — Z be the
embeddings as in Theorems B and C respectively. For t € C, we set B; := (pgl )
and T; := (p;] (1).

Then for every t € C, the numbers (#(By)red, #(T;)red) determine the isomor-
phism classes of Y;, Z; and the possibilities of those of X; as in Table 1.1.

‘ #(Bt)red ‘ #(Tt)red H Xt | Yt | Zt |
2 3 (2,3) ®H | @»?
2 2 (2,2) Pl x Q7 | P%)?
2 1 2.1 PLLT T (P2)2
1 3 (1,3) (PH3 P22
1 2 (12 or n2) | P! x Q7 | P>?
1 1 (I,)or (n4) | PLLI P22

Table 1.1. The singular fibers of ¢, ¢y, and ¢z.

For the definitions of (i,j), (n2), and (n4d), we refer to Theorem 6.1. Q% denotes
the quadric cone. For the definition of P111 (respectively P?2), we refer to Defini-
tion 6.6 (respectively Definition 6.8).

In particular, if X; is normal, then the isomorphism class of X; is determined
by the pair (#(By)red, #(Tt)red) and the number of lines in X; is equal to #(By)red X
#(Tt)red'
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As applications of Theorems A and D, we have the following properties of a sextic
del Pezzo fibration ¢: X — C.

Corollary E. Let ¢: X — C be a sextic del Pezzo fibration.

(1) It holds that (—K x)> < 22 and (—Kx)> # 20;

() If (—Kx)? > 0, then C ~ P'. In particular, X is rational since ¢ admits a
section (cf. [18, Theorem 4.2]);

(3) It holds that (—Kx/c)3 < 0 and the equality holds if and only if ¢ is a smooth
morphism.

1.3.5. Existence of non-normal fibers

We will give an answer to Question 1.3 by presenting sextic del Pezzo fibrations
with non-normal fibers. More precisely, as a consequence of Examples 7.4, 7.5,
and 7.6, we will show the following theorem.

Theorem F. Let Xo be a sextic Gorenstein del Pezzo surface, which is possibly
non-normal. Suppose that X is not a cone over an irreducible curve of arithmetic
genus 1. Then there exists a sextic del Pezzo fibration ¢ : X — C containing Xo.

In particular, Theorem F gives an affirmative answer for Question 1.3.

1.3.6. Relative double projection

Our proof of the main results are based on the relative double projection from a
section of ¢. This is a relativization of the double projection from a general point
x of a sextic del Pezzo surface S, which is given as follows. Under the embedding
S < IP% given by the anti-canonical system, we consider the projection P% --» P>
from the tangent plane T, S = P> C IP® of S at x. The proper image of S under this
birational map is a smooth quadric surface Q2 and the map S --» Q? is birational.
This birational map is what is called the double projection from the point x on S. In
Proposition 2.1, we will establish a relativization of this birational map § --» Q?
for a sextic del Pezzo fibration.

1.4. Organization of this paper

We organize this paper as follows.

In Section 2, we will establish a relativization of the double projection from a
point on a sextic del Pezzo surface (=Proposition 2.1).

In Section 3, we will collect some preliminary results for quadric fibrations to
define the associated coverings and prove Theorem A. Furthermore, we will see
the following two statements: a characterization of a certain nef vector bundle of
rank 3 on a quadric surface (=Proposition 3.6), and a variant of the Hartshorne-Serre
correspondence on a family of surfaces with a multi-section (=Theorem 3.9). These
two statements will be necessary for our proving Theorem C. As Theorem 3.9 is
formulated in a slightly general form, we will postpone its proof to Appendix A.

In Section 4 and 5, we will prove Theorems B and C respectively.
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In Section 6, using Theorems B and C, we will classify the singular fibers of
the sextic del Pezzo fibrations and prove Theorem D and Corollary E.

In Section 7, we will prove Theorem F by using results in Section 6 and give
explicit examples.

1.5. Notation and definitions

Throughout this paper, we work over the complex number field C. We basically
adopt the terminology of [11,15]. Vector bundles and line bundles just mean locally
free sheaves and invertible sheaves. For a locally free sheaf £ on X, Px(€) is
defined to be ProjSym& in this paper. Then the Hirzebruch surface I, is defined
to be Ppi (O & O(n)). On F,, h denotes a tautological divisor, f a fiber, and
Co € |h — nf| the negative section.

Additionally, we use the following notation: Q" denotes the non-singular hy-
perquadric in P"*!, and QS denotes a quadric surface in IP*> with an ordinary double

point. Note that Q(Z) is given by contracting the (—2)-curve on .

Definition 1.4. For an irreducible and reduced quadric surface Q C P3, Op(1)
denotes the very ample line bundle with respect to the embedding. Moreover, under
a fixed linear embedding Q < Q°, we define S0 = Sp3lo, where S is the

spinor bundle on (@3 in the sense of [24, Definiton 1.3].

In this paper, we employ the following definition for del Pezzo fibrations and
quadric fibrations.

Definition 1.5. We say that ¢: X — C is a del Pezzo fibration if ¢ is an extremal
contraction from a non-singular projective 3-fold X onto a smooth projective curve
C,ie.,—Ky is g-ample and p(X/C) = 1, as in Section 1.2.

q: Q — C is called a quadric fibration if q is a del Pezzo fibration of degree
8. In particular, we assume that Q is a smooth projective 3-fold and p(Q/C) = 1.
By [19, Theorem (3.5)], every smooth fiber of a quadric fibration g: Q — C is
actually isomorphic to Q2.
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2. Relative double projections

For the proof of Theorems B and C, the relative double projection from a section of
a sextic del Pezzo fibration plays an important role. We devote this section to prove
Proposition 2.1 that establishes this technique.

2.1. Relativizations of double projections

The following proposition is a method of relativizing the double projection of a sex-
tic del Pezzo surface. The proof will be done by Takeuchi’s 2-ray game argument.
Before the statement of the proposition, we recall the fact that ¢ admits a section
by [18, Theorem 4.2].

Proposition 2.1. Let ¢: X — C be a sextic del Pezzo fibration. Let Cy be a ¢-
section. Let pu: X = Blc, X — X be the blow-up of X along Cy, E = Exc(u),
and ¢ := ¢ o ju. Then the following assertions hold:

(1) O(=Kyy) is @-globally generated and the morphism X — Pc(p:O(=K3))
over C given by O(—K) is a contraction onto its image X;

(2) The morphism x: X — X is an isomorphism or a flopping contraction.
When vy is flopping, every non-trivial fiber of ¥x is an isolated (—2)-curve
in the sense of 25, Definition 5.1];

(3) When Vrx is an isomorphism, let x: X — Q denote the identity map. Then
there exists a unique contraction o : Q —- 0 of another K 5 g-negative ray over

C. When vrx is a flopping contraction, let x X --» Q denote the flop of ¥x.
Then there exists the contraction o : Q — Q of the K Q-negatlve ray over C.
In both cases, we set the morphisms as in the following commutative diagram:

E ¢ ¥5---%---0 > ¢ @.1)
SN NN
Co ¢ X 7 X q O o T
C C;

(4) The following assertions hold:

(a) o is the blow-up along a non-singular curve T C Q;
(b) deg(q|r) = 3 and q is a quadric fibration.



1378 TAKERU FUKUOKA

Moreover, if we set G = Exc(o), then there is a divisor o on C such that
G~—-Kz—2E5+q"a;

(5) The following equalities hold:

1
(—Kp)® = 5(4(—Kx)3 — 16x(O7) + 485 (O¢)).

1
—Kx.Co+ Ko.T = 6(1(; +22x(O1) — 54x(Oc)).

1
dega + Ko.T = (K} +10x(Or) — 18x(Oc)):

(6) The proper transform Eg C Q of E = Exc(u) contains T . Moreover, it holds
that —Kg =2Eg — q*a.

Proof. (1) Fix a point t € C. Then )~(, =g (1) is the blow-up of X; = go_l(t) at
a smooth point. For each 7 € C, —KYy, is very ample and hence —K5 is globally
generated and big. Let ¥x: X — X be as in the assertion (1). To show that the
morphism ¥x : X — X is a contraction, it suffices to prove that —K'g, is simply
generated, i.e., the section ring R(}?,, O(—Ky )= EBm>0 HO(X,, O(—mK3 )) is
generated by H 0%(O(=Kx %, )) foreacht € C. Smce X ¢ is an irreducible, a general
member C € [— K5 |is 1ntegral It is well-known that —K'; |c is simply generated.
Moreover, for every m € Zxo, the relative Kawamata-Viehweg vanishing gives
R'G,O(-mKg) = 0, which implies H'(X;, O(-mKg,)) = 0. Thus —Ky, is
simply generated.

(2) Let [ be an arbitrary non-trivial i-fiber. First, we prove that [ is the proper
transform of a line in a ¢-fiber meeting Cy and that ./\/'1/;( ~ O(=1)2orO®O(-2).
Set P := Pc(p:O(— Kx)), P = = Bl¢, P,and P := Pc((p*(’)( K%)). Then we
have a P!-bundle 7: P — P. Now P contains X and hence P contains X. Then
the restriction 7|5 coincides with ¥ x by (1). Hence [ is the proper transform of
a line in some @-fiber X; which meets the point Cyp N X;. Moreover, the normal
bundle ./\/'1/7( is contained in ./\/}/;, o~ (9;?16. Hence we have Afl/x ~ O(=1? or
O O0(-2).

The remaining part we must show is that ¥x is a flopping contraction if ¥x
is not isomorphic. Assume that ¥x contracts a prime divisor G. Since Pic(X) =
Z[-K31 @ Z[E]1® ¢* Pic(C), there exist x, y € Z such that G =¢ x(—Ky) + yE.
Note that /| " X ;= r()?' 1) 1s the contraction of the (—2)-curves for a general 7.

As shown in the above argument, the (—2)-curves are the proper transforms of
the lines passing through the point Co ;. Hence the (—2)-curves on X; are disjoint.
Moreover, if n denotes the number of the (—2)-curves on X;, then n < 2 since X,
is a del Pezzo surface of degree 6. Then we have 0 = —K Glg, =5x+y, —2n =

(G|~ )2 = 5x2 4+ 2xy — y*,and n € {1, 2}. These equalities gives x = + /1"—5 and

y = F,/ 3, which is a contradiction.
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(3) It follows from the construction of é that 2 = ,o(f /C) = p(é /C). Hence
NE(Q/C) C Ni(Q/C) = R? is spanned by two rays. If x is identity, then —K5 is
relatively ample over C and the assertion holds by the relative contraction theorem.
If x is a flop, then v¢ is the contraction of an extremal ray, say Ri. If R, denotes
another ray, then we have K 5.R, < 0 since a general g-fiber is a del Pezzo surface.
Letting o be the contraction of R, we complete the proof of (3).

(4) Since p(é) = 3, it holds that p(Q) =2 and dim Q > 2. If dim Q = 2, then Q
is a P!-bundle over C. Let s C Q be a section of 9 — C and set G := g*s. Then
there exist x, y € Z such that G =¢ x(—K é) +yEj5. Then for a general g-fiber

Fg,we have GZFQ =0 and —K5GFy = 2, which implies 5x% 4+ 2xy — y?> =0

— : . _ 4646
and 5x + y = 2. Solving the above equalities, we get x = £

which contradicts x, y € Z.

Therefore, we obtain dim Q = 3 and hence o is divisorial. Set G = Exc(o).
Since every g-fiber is integral and yx is isomorphic in codimension 1, every g-fiber
is integral. Hence T := o(G) is not contained in any g-fiber. By [19, Theo-
rem (3.3)], T is a non-singular curve, Q is smooth, and o is the blow-up of Q
along T. Set m := deg(q|r). Then there exist x,y € Z and @ € Pic(C) such
that G ~ x(—Kgp) + yEj + g*a. For a general g-fiber Fg. ol is a con-

and y = F %

traction of disjoint finitely many (—1)-curves. Hence we have G>.F = —m and
—K5.F5.G = m, which implies 5x% +2xy — y*> = —m and 5x + y = m. Hence

we obtain x = EVOMLI0NEON g\ o fmEES) hich implies m € {1, 3).

When m = 1, we have (x, y) = (0, 1) since x, y € Z. Then G|F§ = E|F§
holds for a general F 0 and hence we obtain G = Ej. If x is an identity, then it
is a contradiction since u is the contraction of another ray. If x is a flop, then E is
relatively ample over X and hence —E is relatively ample over X. However, G is
relatively ample over X, which is a contradiction.

Therefore, we obtain m = 3 and hence ¢ is a quadric fibration. In this case, we
have (x, y) = (1, —=2) since x, y € Z.

(5) Using (4), we obtain the following equations:

(—Ko)—2(=Ko.T)—2x(Or)= (—K3)* = (-Kg)
= (—Kx)’ —2(=Kx.Co) — 2x(O¢),
—Ko.T +2x(Or) = (-K3)*.G = (—K3)*.x, 'G

= ((=Kx)? = 2(=Kx.Co) — 2x(O¢))

—2(—=Kx.Co+2x(O¢)) + 5dega, and
—2x(0r) = —K3.G> = —K3.(x; ' G)*

= ((=Kx)? = 2(=Kx.Co) — 2x(O¢))

—8x(Oc)—4(—Kx.Co+2x(Oc¢))+6dega.
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The assertion directly follows from solving the above equations.

(6) By (4), we obtain —Ky ~ 2Ep — g*a. For a general pointt € C, Eg N Q;
is a hyperplane section of Q. Since E5 N Q; is a (—1)-curve in the g-fiber Qy,
E o N Q; passes through the three points 7 N Q;. Thus E¢ contains 7. U

Definition 2.2. For a sextic del Pezzo fibration ¢: X — C with a section Cy, the
pair (g: Q — C, T) as in Proposition 2.1 is called the relative double projection
of the pair (¢: X — C, Cp).

3. Preliminaries and proof of Theorem A

The main purpose of this section to prepare some facts about quadric fibrations
(=Lemma 3.1), nef vector bundles on quadric surfaces (=Proposition 3.6), and a
certain vector bundle on a family of surfaces with a multi-section (=Theorem 3.9).
In this section we will also prove Theorem A by using Lemma 3.1 and Proposi-
tion 2.1.

3.1. The double covers associated to quadric fibrations

In this section we confirm some basic properties of a quadric fibrationg: Q — C.
We refer to Definition 1.5 for the definition of a quadric fibration in this paper. The
following lemma should be well-known for experts.

Lemma 3.1. Let g: Q — C be a quadric fibration and s a q-section (note that q
admits a section by [18, Theorem 4.2]). Let f: Q = Bly Q — Q be the blow-up of
QO along s. _

Then there exists a divisorial contraction g: Q — P over C suchthatp: P —
C is a P*>-bundle and g is the blow-up along a smooth irreducible curve B C P.
Moreover, the morphism qp := p|p: B — C is a finite morphism of degree 2 with
the following conditions:

(1) The branched locus of qp coincides with the closed set ¥ :={t e C | Q; =
g~ (1) is singular } with the reduced induced closed subscheme structure;

(2) J(Q) and Jac(B) are isomorphic as complex tori, where [J(Q) denotes the
intermediate Jacobian of Q. If C = P!, then these are isomorphic as princi-
pally polarized Abelian varieties;

(3) It holds that (—KQ)3 =40 — (8g(B) +32g(C)).

Proof. By [7, Theorem (2.7.3)] and its proof, we have the contraction é — P,
which is the blow-up along a bisection B of P. Thus it is easy to check (1). (2) and
(3) follow from similar arguments as in Proposition 2.1.

O



RELATIVE EXTENSIONS OF SEXTIC DEL PEZZO FIBRATIONS 1381

Definition 3.2. Let g: Q — C be a quadric fibration. Take a g-section Cy. Then
we obtain the double covering gg: B — C as in Lemma 3.1. By Lemma 3.1 (1),
this double covering is independent of the choice of Cy. We call this gg: B — C
the double covering associated to q.

Lemma 3.3. Let ¢: X — C be a sextic del Pezzo fibration and Cy a ¢-section.
Let (qg: QO — C,T) be the relative double projection as in Definition 2.2. Let
¢p: B — C be the double covering associated to q and o1 := q|T.

Let Hilbs, 1 (X/C) — B — C (respectively Hilby;,1(X/C) — T — C) be
the Stein factorization of the relative Hilbert scheme of twisted cubics (respectively
conics). Let B (respectively T') be the normalization of B (respectively T ). Then
B (respectively T) is isomorphic to B’ (respectively T') over C. In particular, ¢
and @7 are independent of the choice of p-sections.

Proof. We fix a ¢-section C¢ and take the diagram (2.1) as in Proposition 2.1. Let
U C C be an open set such that X; is smooth and —Kg is ample for every 7 € U.
By Proposition 2.1 (2), U is not empty and the birational map x : X --» é is
isomorphic over U. Set Xy := ¢~ '(U), Qu = ¢ ' (U), Xy := ¢~ (U) ~
g 'U),Gy =g " (U)NG,and Ty = <p;1(U). We set the morphisms as in the
following diagram:

(3.1)

;(U > Gy
v > Ty

Xy bu 0

N

U.

Note that @/, ¢y, and gy are isotrivial.

First, we show the assertion for 7. Composing the morphisms in the diagram
(3.1), we have a morphism ey : Gy — Xy over U. Then we can regard the Pl-
bundle Gy — Ty as a family of conics in the fibers of Xy — U. By the universal
property, there is a natural morphism 7y — Hilby,41(Xy/U) over U. Since ¢y
is isotrivial, the morphism Hilby;4+1(Xy/U) — U factors an étale triple cover Tl’]
over U as the Stein factorization. Hence Ty — Hilby;41(Xy/U) is a section of
Hilby 41 (Xy/U)— T}, which implies that Ty ~T},. Hence T" is isomorphic to 7.

Next, we show the assertion for B. Set By = (pgl (U). Then by Lemma 3.1 (1),
Hilb;+1(Qu/U) — U factors through By such that Hilb;(Qy/U) — By is a
P!-bundle and By — U is an étale double covering. Let Ry — Hilb; 1 (Qu/U)
be the universal family of the relative Hilbert scheme of lines. Set R}, := Xy x o,
Ry . The flat family R;j — Hilb,;11(Qy/U) parametrizes twisted cubics on Xy
over U by the evaluation R, — Xy. Hence the universal property gives a mor-
phism Hilb; 1 (Qy/U) — Hilb3;11(Xy/U) over U. Let Bb — U be the finite
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part of the Stein factorization of Hilbs,; 11 (Xy/U) — U. Then we get a morphism
By — By;. Thanks to isotriviality, we can check that By, is an étale double cover-
ing over U and By — By, is bijective. Hence By — By, is an isomorphism. Thus
B is isomorphic to B’.

The proof is complete. O]

Definition 3.4. Let ¢: X — C be a sextic del Pezzo fibration. We define ¢g: B —
C and ¢r: T — C as in the settings of Lemma 3.3. We call ¢p (respectively
oT) the associated double (respectively triple) covering to that sextic del Pezzo
fibration ¢.

3.2. Proof of Theorem A

We use the same notation as in Proposition 2.1.

(1) As in Proposition 2.1 (2) and (3), the birational map x : X --» Q is an iso-
morphism or a flop of isolated (—2)-curves. Then by [25, Corollary (5.6) and (5.7)],
xisa comgosition of blow-ups and blowing-downs along smooth rational curves.
Hence J(X) is isomorphic to J (Q) as complex tori by [5, Lemma 3.11]. When
C = P! moreover, the isomorphism J(X) ~ J (Q) preserves the polarizations.
Therefore, the assertion follows from Lemma 3.1 (2) and [5, Lemma 3.11].

(2) The assertion from a direct calculation using the formulas in Lemma 3.1 (3)
and Proposition 2.1 (5).

The proof of Theorem A is complete. O

3.3. Characterizations of some nef vector bundles on quadric surfaces

A locally free sheaf £ is called a nef vector bundle if Opg)(1) is nef. In this
subsection, we will obtain numerical characterizations of some nef vector bundles
on an irreducible and reduced quadric surface. We will use these results for proving
Theorem C.

Until the end of this subsection, we work over the following setting:

Q denotes an irreducible and reduced quadric surface in P3. We refer the defi-
nitions of Og(1) and . to Definition 1.4;

When Q is smooth, we set 7 : F := Pp1 (O(1)®O(1)) — Pl andleto: F — Q
be an isomorphism;

e When Q is singular, we set 7 : F := Ppi (O @ O(2)) — Pl andleto: F — Q
be the contraction of the (—2)-curve;

Let i (respectively f) be a tautological divisor (respectively a fiber) of the P!-
bundle F — P!. Note that 0*Oq(1) = Or(h) for each case.

Remark 3.5. By [24], % is a globally generated vector bundle of rank 2 with
det% = Og(1) and cz(%) = 1. When Q is smooth, it is known that % ~
Oq(h — f) ® Og(f).

The aim is to give the following characterization of the bundle % ® Og(1).
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Proposition 3.6. Let Fq be a nef vector bundle on Q of rank 3 such that det Fo =
Oqg(2), c2(F) =3, and ho(f(vg) = 0. Then Fg is isomorphic to % ® Og(1).

First, we confirm the following lemma.
Lemma 3.7. Let £ be a rank 2 nef vector bundle on Q with det £ >~ Og(1).

(1) If c2(E) =0, then € ~ Og(1) & Og;
@) Ifex(€) =1, then £ ~ ..

Proof. The assertion was already proved in [22,27] if Q is non-singular. We attain
a proof even if Q is singular.

(1) When ¢2(€) = 0, then the Hirzebruch-Riemann-Roch theorem and the Leray
spectral sequence gives x (£(—1)) = x (6*E(—h)) = 1. Note that h2(Q, £(—1)) =
hOEV (1)) = h%E(=2)) < h°(E(-1)) by the Serre duality. Thus we have
h9(E(—1)) > 0 and hence an injection O(1) — &£. By the same arguments as
in [22, Proposition 5.2], we have £ = O @ Og(1).

(2) Suppose that ¢2(€) = 1. Set € := o*E. Then it holds that det€ = O(h) and
c2(€) = 1. We have x (E(—h+ f)) = 1 by the Hirzebruch-Riemann-Roch theorem
and h*(E(—h + ) = h°(EY(—=h — f)) = h%(E(=2h — f)) by the Serre duality.
Since & is nef and ¢1(£) = h, we have &|; = Op1 & Opi(1) for every [ € | f] and
hence h%(E(—2h — f)) = 0, which implies hO(E(—=h + f)) > 0. Hence there is an
injectiona: O(h — f) — £.

If there exists a fiber / € | f| such that «|; = 0, then we obtain a non-zero map
O(h) — &, which means h°(E(—h)) > 0. Then we however have € ~ O @ Q(h)
by the same argument as in the proof of Lemma 3.7 (1), which contradicts ¢(£) =
1. Therefore, for every / € | f|, a|; is a non-zero map from Ot — Hli = Opi(1)
to £l =~ Op1 @ Opi(1). Then Coka|; = O; and hence Cok « is the pull-back of a
line bundle on P!. Since det £ = O(h), we obtain an exact sequence

0= Ot —f) = E— Of) — 0. (32)

If Q is smooth, then this sequence splits and hence we obtain £~ Oh-fe
of) ~ % If Q is singular, then this sequence does not split since £ is nef
and O(h — f) is not nef. The vector bundles fitting into the exact sequence (3.2)
which does not split are unique up to isomorphism since Ext' (O(f), O(h — f)) =
H'(F,, O(h — 2f)) = C. By the exactly same argument, a*% also fits into the

exact sequence (3.2). Hence we obtain 0*5”(\/@ ~ ¢*& and hence 5”(“@ ~E. O

Lemma 3.8. Let F be a rank 3 nef vector bundle on F with det F = Or(2h) and
c2(F) = 3. Then the following assertions hold:

(1) h°%(F(=2h +af)) =0 foranya € Z;
() Fli = O ® O)? for a general member € | f|;
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(3) B2(F(=h — f)) =0;
4) hO°(F(=h)) > 0.

Proof. (1) We may assume that a > 0. We will prove (1) by the induction on a.
Assume thata = 0. If hO(F(—2h)) # 0, then it follows that F = O(2h) @ O? from
[22, Proposition 5.2], which contradicts ¢2(F) = 3. Thus we have h°(F(—2h)) =
0. Assume that a > 0. If hO(F(—=2h + af)) # 0, then there exists an injection
1: OQh—af) — F.By the assumption of the induction h°(F(—=2h+(a—1) f)) =
0, for every member [ € |f]|, we have ¢|; # 0. Therefore, we obtain an exact
sequence 0 — OQh — af)|; — F|; — Cokt|l; — 0. Since F|; is a nef vector
bundle with ¢; = 2, it holds that F|; = O(2) ® O? and Cok|; = (’)12. It implies
that the natural morphism 7 *m, Cokt — Cok is isomorphic. Thus we obtain an
exact sequence 0 > ORh—af) > F — O(a1 f)®OWa—ay) f) — 0 for some
aj € Z. Hence we have ¢(F) = 2a, which contradicts ¢ (F) = 3.

(2) Assume the contrary. Then we obtain F|; ~ O>@ O(2) for any member [ € | f|
by the upper semicontinuity. Then 7, (—2h) is a line bundle on P!. Hence we
have a non-zero map 7 *m,JF (—2h) — F(—2h). It implies that hO(FQ2h —af)) #
0 for some a € Z, which contradicts (1).

(3) If iO(F(—h — f)) # 0, then we have an injection a: O(h + f) — F. When
Q is smooth, we consider another ruling & — f. Foreveryl' € |h — f|,aly: O(h+
Dy — Flp is injective by (1). Since O(h + )|y =~ Op1(2) and ¢ (Fly) = 2,
we have Cok |y =~ (’)12, and hence Cok « is a nef vector bundle. Then Coka =~
O @& O(h — f) holds, which contradicts c2(F) = 3. When Q is singular, we take
the restriction «|c, on the (—2)-curve Cy. By (1), a|c, is a non-zero map from
O+ flc, = O1) to Flc, =~ (O?, which is a contradiction. Therefore, we have
W (F(—=h — f)) =0.

(4) We have x(F(—h)) = 1 by the Hirzebruch-Riemann-Roch theorem and
h*(F(=h)) = h°(FV(—h)) by the Serre duality. Since FV|; = O & O(=2) or
O(—1)?forany ! € | f|,we have h°(F"(—h)) = 0 and hence h*(F(—h)) > 0. O

Proof of Proposition 3.6. Set F := o*Fg. Lemma 3.8 (4) attains an injection
a: O(h) — F. Letting £ = Cok «r, we have the following exact sequence:

0> Oh)>F—>E—D0. (3.3)

By Lemma 3.8 (3), «; is non-zero for every [ € |f|. By Lemma 3.8 (2), the
cokernel of «|;: O(h)|; — F|; is locally free for general members ! € | f|. Then £
is locally free in codimension 1 and hence torsion free by [22, Lemma 5.4]. Hence
we have the following exact sequence:

0> ESEY T 0. (3.4)

Here 7 denotes the cokernel of the natural injection¢: £ — £YV. Since £ is locally
free in codimension 1, Supp 7 is 0-dimensional or empty. Note that £V is locally
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free since F is a smooth surface. By [23, Lemma 9.1], £V is nef. It is clear that
detEYY = det€ = O(h). The Hirzebruch-Riemann-Roch theorem implies that
x(F) =8, x(Oh)) =4,and x(EVY) = 5—c2(EVY). By the exact sequences (3.3)
and (3.4), we have x(€) =4 and 5 — c2(EVY) = x(EVY) = x(&) + h°(T) > 4.
In particular, c2(EYY) =0 or 1.

If ¢2(EVY) = 0, then £YY ~ O(h) @ O by Lemma 3.7 (1). Hence we have a
morphism F — Op, which is surjective at the generic point. This contradicts our
assumption ho(}"é) = 0. Hence we have ¢(EYY) = 1 and 7 = 0, which implies
E ~EVY ~ % by Lemma 3.7 (2). Since Ext! (.Y, Og(h)) = H (Fh)) =
H 1(5{6) = 0, the exact sequence (3.3) splits. The proof of Proposition 3.6 is
complete. O

3.4. Certain vector bundles on families of surfaces with multi-sections

We will use the following theorem for proving Theorem C.

Theorem 3.9. Let X, Y be smooth varieties withdim X =dimY +2. Let f: X —
Y be a flat projective morphism with f,Ox = Oy. Let Z C X be a locally complete
intersection closed subscheme of codimension 2. Suppose that flz: Z — Y is
finite with deg(f|z) > 2. Additionally we assume that R' f,Oyx is locally free and
H2(Y, fiwr ® R £, 17) =0.

Then there exists a locally free sheaf F satisfying the following conditions:

(1) F fits into the following exact sequence:
0— f*(R'£iZ)(=Ky) = F — Iz(=Kx) = 0; (3.5)

(2) For every closed point 'y € Y, if the fiber X, is reduced, then there are no
surjections F| X, = (’)xy.

This theorem resembles the Hartshorne-Serre correspondence for a family of
surfaces f: X — Y with a multi-section Z. However, even if Y is point, the
Hartshorne-Serre correspondence does not imply Theorem 3.9 since H 2(O(Ky)) =
C # 0. To prove Theorem 3.9, we use relative Ext-sheaves. We will prove this the-
orem in Appendix A.

4. Extensions to moderate (P!)3-fibrations
We devote this section to the proof of Theorem B.

4.1. Moderate (P!)3-fibrations

In the next theorem, we construct certain Mori fiber spaces ¢gy: ¥ — C with
smooth total spaces ¥ whose smooth fibers are (PH3.
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Theorem 4.1. Let f: F — C be a P*>-bundle and T C F a smooth curve. Assume
that deg(f|r) = 3 and T; := (f|r)~'(t) is non-colinear in F;, = P3 for each
reC.

(1) There exists a unique sub P*>-bundle E C F containing T ;
(2) There exists the following diagram:

Fr<---2--F=BI,F @1

where

e OF: F:= Bly F — F is the blow-up of F along T with exceptional divisor
Gr = Exc(oF);
o ®: F --» F7 is a family of Atiyah flops over C;
e Y is smooth and gy : Y — C is a Mori fiber space;
e uy is the blow-up along a gy-section Cy and contracts the proper trans-
form E* of E.
(3) If we set Gy C Y be the proper transform of G, then it holds that —Ky ~
2Gy — ¢y (K¢ + det f,Op(E));
(4) Every smooth @y-fiber is isomorphic to (P1)3.

In this paper, we call this Mori fiber space gy : Y — C the moderate (P')3-fibration
with respect to the pair (f: F — C, T).

Remark 4.2. In the setting of Theorem 4.1, for every t € C, the scheme 7T; =
f~1(t) N T is reduced, or a union of one reduced point and a non-reduced length 2
subscheme, or a curvilinear scheme of length 3, i.e., T; >~ Spec C[e]/ (3).

Proof of Theorem 4.1. We proceed in 4 steps.

Step 1. First, we show (1). Let Op(1) be a tautological line bundle. Then f; (Or () ®
Zr) is a line bundle £ on C. Let E € |Or(1) ® Zr ® f*L~'| be a member
corresponding to a nowhere vanishing section of O¢c ~ f.(Or(1) @ I7) ® L.
Then E — C is a P?-bundle and E; is the linear span of 7, for every t € C,
which proves (1). Replacing Or(1) by Or(E), we have — Ky = 4E — f*(K¢ +
det £ Op(E)).

Step 2. Let o F — Fand OF: E — E be the blow-ups along T and Gy C F and
GE C E the exceptional divisors of o and of, respectively. Set

Ly := o3 Op(2) — Gr and L := L§l5. 4.2)
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Note that
—Kz =2Lz — (f o o) (K¢ + det £, Or(1)) ~¢ 2L%. 4.3)

The following claim is the 2-ray game of E over C.
Claim 4.3.

(1) O(Lg) is globally generated and big over C and (f|g o o)« O(L5) is a vector
bundle of rank 3; L

(2) SetE :=Pc((flg 0 or)+O(Lg)) and let Y : £ — [E denote the morphisms
over C defined by |Lg|. Then ¢ is the blow-up of E along a non-singular

curve T C E. Moreover, the composite morphism 7 < E — C is a triple
covering.

Proof. (1) For every t € C, there is a smooth conic C C E, = P? containing
T;. By the exact sequence 0 — Zc/g, — ZIr,)8, — ZI7,,c — 0, we see that

Og, (2) ® Ir, g, is globally generated and h°(Of, (2) ® Zr,/k,) = 3 for every ¢,
which proves (1).

(2) For a general point ¢t € C, E, < I@, — E, = P?is nothing but the Cremona
involution. Thus g is a birational morphism onto the P2-bundle E — C. Since
—K5 ~c Lg + (o|g)*Og(1) is ample over C and p () = 3, ¢ is the contraction
of an extremal ray. Then Y is the blow-up along a non-singular curve T by [19,

Theorem (3.3)]. For a general t € C,E;, — K, = IP? is the blow-up at three points.
Hence T — C is a triple covering. O

Step 3. Next we play the 2-ray game of F over C by using Claim 4.3.
Claim 4 4.

(1) O(Ly) is~ globally generated and big over C;

(2) Let y: F — T denote the Stein factorization of the morphism over C defined

by |Lz|. Then yp|z = ¥g and Exc(Yr) = Exc(Yg);
(3) Y is a family of Atiyah’s flopping contractions over C.

Proof. (1) Forany t € C, we have (Lﬁlﬁ)3 = 5 by a direct calculation. Since B~
0*Or(1) — G, we have E + 0*Op(1) ~ L. Then we obtain an exact sequence
0 — 0*Or(1) - O(Ly) — Og(Lg) — 0. Since R'(f 0 0)4(c*Op(1)) = 0,
O(LIF) is globally generated over C by Claim 4.3 (1).

2)Lety C F be an irreducible curve with Lz.y = 0. Then Lg ~¢ E +o*Or(1)
and 0*Op(1).y > 0 since L is ample over C. Thus we obtain E.y < 0, which

implies y C . Since Lg.y = 0, y is a fiber of Exc(yg) — T. Conversely, every
curve y contracted by v is also contracted by . Then we have Y|z = ¥ by
the rigidity lemma and hence Exc(yr) = Exc(YE).
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(3) Let [ be a fiber of Exc(y/g) — T. Then we have [ ~ P! and the exact sequence
0— /\/'I/I~E — N’l/ﬁ — Nﬁ/ﬂl — 0, which implies that/\/'l/ﬁ = Op1 (—1)* @ Op1.
The proof is complete. O

Step 4. Let 1/:} : F+ — T be the flop of yr. Let E+ and Gy be the proper

transforms of E and Gy on F+ respectively.

Claim 4.5. There exists a birational morphism
UF: AN

over C such that Y is non-singular and up blows E+ down to a gy-section Cy.y,
where gy : Y — C is the induced morphism.

Proof. By the construction of the flop F --» F*, the proper transform Et ¢ Fr
is a P2-bundle over C. By the equality (4.3), we have —KE |E = Op2(2) for every
point 7. Hence it holds that —K@ g+ = Op2(2) and hence N@? fFr Op2(—1)
for every t € C. Thus we obtain the morphism up. O

Since ur is the contraction of an extremal ray, we obtain p(Y) = 2. Therefore, gy
is the contraction of a K z—negative ray. The proof of Theorem 4.1 (2) is complete.

Since —Kgy ~ 4ET 4+ 2GF — (py o up)* (K¢ + det £,Op(1)), if we set
Gy = MF*G]‘F", then we have —Ky ~ 2Gy — ¢y (K¢ + det £, Op(E)), which
proves Theorem 4.1 (3).

To confirm Theorem 4.1 (4), we take a point 7 € C such that ¥; = ¢, 1(t) is
smooth. Then Y; is a smooth Fano 3-fold with index 2, which is so-called a del
Pezzo 3-fold. Since (—Ky,)? = (—K@P +8 = (—Kﬁt)3 +8 =48and p(Y;) =
p(ITT,Jr) —1= p(ITT,) —1=3,wehave ¥; ~ (P")? by Fujita’s classification of the del
Pezzo manifolds [13, Theorem 3.3.1]. The proof of Theorem 4.1 is complete. [

4.2. Proof of Theorem B

In this section we prove Theorem B, which asserts that there exists a (P')>-fibration
containing a given sextic del Pezzo fibration as a relative hyperplane section.

Proof of Theorem B. Let ¢: X — C be a sextic del Pezzo fibration. Let Cy be q ¢-
section. Let (g: Q — C, T) be the relative double projection of (¢: X — C, Cp)
as in Definition 2.2. Let Eg C Q be the proper transform of Exc(u: Blcy, X —
X). By Proposition 2.1 (6), there exists a divisor o on C such that — Ko ~ 2E¢p —
g*a. Then consider the following projective bundle over C:

f: F:= Pc(q*OQ(EQ)) — C.
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This f is a P3-bundle and there is a natural closed embedding Q < F over C.
When Or(1) denotes the tautological bundle of f, we have Op(1)|gp = Og(Ep).
Since —K¢g ~ (Or(2) — f*a)|g, we have the linear equivalence

0~ Or(2) + f*(a — (K¢ + det(qxO9(E0)))) (4.4)

by the adjunction formula.
Claim 4.6. There exists a unique member E € |Op(1)] such that

(1) ENQ = Eg and f|g: E — C is P?>-bundle;
(2) foreveryt € C,T; = f ~1(t) N T is non-colinear O-dimensional subscheme
of length 3 in P3 = I, and spans E,.

In particular, the P3-bundle f: F — C and T satisfy the condition of the setting in
Theorem 4.1 and hence E is the sub P2-bundle as in Theorem 4.1 (1).

Proof. Consider an exact sequence 0 — Op(—Q) ® Op(1) — Or(l) —
Op(Eg) — 0. Since Op(Q) ~¢ Or(2), we obtain R’ f,,(Op(—Q) ® Op(1)) =0
for all i > 0. Then the restriction morphism H°(F, Or(1)) — H°(Q, Op(Ep))
is an isomorphism and hence there exists a unique member E € |Or(1)| such that
EN Q = Eg. Since Eg is a prime divisor of Q, we obtain dim[E, = 2 for all
t € C, which implies that E — C is a P?-bundle. Thus (1) follows. To prove (2),
we assume that there exists a line [ C IF; such that 7, C [ for some ¢. Since T; C O,
and Q; is a quadric surface, we obtain / C Q;. Let o: Blr Q — Q denote the
blow-up as in Proposition 2.1. Then we have —Kgi; 9.0, 17 < 0, which is a con-
tradiction since — Kpi; ¢ is nef over C from Proposition 2.1 (1) and (3). Hence the
linear span of T;, say (T;), is a 2-plane in IF; and thus we deduce that [E;, = (T;) for
every t € C. 0

By Theorem 4.1, F — C can be birationally transformed into a Mori fiber
space Y over C with a general fiber (P1)3 as in the diagram (4.1). Note that F =
Bl7 IF contains Q = Bl Q in this setting.

We use the same notation as in Theorem 4.1 and its proof. The only remaining
part is to show the following claim.

Claim 4.7.

(D Wﬂr|é coincides with ¢ in Proposition 2.1 (3);

(2) The proper transform é* C F* of Q is isomorphic to X;

(3) It holds that up|3 = ux and Coy = Co.

1. X is amember of |Gy +¢} B|, where we set B := o — (K¢ +det(gxOp(Ep)));

(4) If we set Hy := Gy — gy and § := o + f, then we have —Ky = 2Hy + ¢}
and X € |Hy + ¢} 4l;

(5) Let pg: B — C be the associated double covering to ¢. Then O¢ (—§) is
isomorphic to Cok(O¢ — ¢p+Op) ® O(—K ), which is nothing but £ in the
statement of Theorem B.
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Proof. (1) We have Q € |Or(2) + f*B]| by the equality (4.4) and hence é €
|Or(2) — Gr + (f 0o 0)*B| = |Lz + (f o 0)*B| by the equality (4.2). Recall
that Y : F — T is the Stein factorization of the morphism given by |Lg|. For
every k > 0, it follows that R' f.Oz((k — 1)Lz) = 0 and hence f,O(kL§) —
(f|§)*(’)§(kL§) is surjective, which implies WF|§ =vYg.

(2) We obtain é ~7 0 as divisors on F~ and hence Q= IﬁF(é) is a Cartier divisor
on F. Then we have ot = (l/f];— )~1(Q) ¢ F* and hence the dimension of the fibers
of QT — Q is less than or equal to 1. Since V| ¢ 1s the flopping contraction of O
over C, O N Yr(Exc(Yp)) is a finite set or the empty set. (2) clearly holds when
it is empty. Now we assume on Y (Exc(¥r)) is not empty. Hence the morphism
QJr — Q is a small contraction. Thus QJr is regular in codimension 1 and hence
normal since this is an effective divisor of a smooth variety F+. Moreover, the
birational map W|5: Q --» Q™ is isomorphic in codimension 1, which implies
that E5 = E|g. coincides with the proper transform of E+|§. Since —E ~y
cf];f Or(1) is ample over Y and ET is ample over Y, we conclude that §+ is the flop
of ¥¢. Then we have O = X by the uniqueness of the flop.

(3) It is enough to show that ,U,FGle ~c Wy (= KX) By (44), Q is a member of
E+G+ (f oo)*B| and hence X is a member of E++G*+ (py o up)*B|. Since
—Kg+ ~c 2(153Jr + G+) we have — K3 ~c (E + G+)|X Recalling that we set
Gy = up«G™, we have urGylg ~c wy(—Kx), which completes the proof of (3).

(4) This assertion follows from the equality upX = E*+ + X as divisors.

(5) By Theorem 4.1 (3), we have —Ky = 2Gy — ¢} (Kc + detq,Op(Ep)) =
2Gy + ¢y (B — ). Thus we obtain —Ky = 2Hy + ¢}6 and X € |Hy + ¢} 4].

(6) Set T := {t € C | ¢~ (¢) is singular };eq. By (4.4), Q is a member of |Op(2) +
f*Bl. Letu € HO(Symz(q*OQ(EQ)) ® Oc(B)) be the section corresponding to
Q. Then the X is the degeneracy locus associated to the symmetric form u. Hence
we can deduce that ¥ is the zero scheme of a global section of det(q+O(E Q))®2 ®
O@4pB). By Lemma 3.1 (1), T is the branched divisor of ¢p: B — C. Then the
Hurwitz formula gives wp = ¢j(wc ® det(q:O(Eg)) @ O2B)) = ¢30(x +
B) = ¢30O(8). By the duality of the finite flat morphism ¢p: B — C, we have
Oc(®)®pp,Op = ¢p,wp = (9, Op) @ wc. Thus Oc (K¢ — §) is the cokernel
of the splitting injection O¢ — ¢p,Op. O

The proof of Theorem B is complete. O

5. Extensions to moderate (P?)2-fibrations

We devote this section to prove Theorem C. The main idea is similar to that of
Theorem B.
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5.1. Moderate (P?)2-fibrations

In this section we will obtain a Mori fiber space ¢z: Z — C with smooth total
space Z whose smooth fibers are (P2)? as in the next theorem. We call this ¢z a
moderate (P?)?-fibration in this paper.

Theorem 5.1. Let C be a smooth projective curve and q: Q — C a quadric fibra-
tion. Let T C Q be a smooth irreducible curve. Assume that deg(q|r) = 3 and
—KBi, g is nef over C. Then the following assertions hold.:

(1) There exists a locally free sheaf F and the following exact sequence
0 — ¢*(R'¢:.Ir(=Kc)) = F — Ir(—Kg) — 0 (5.1)

such that F|g, =~ %t ®0Og, (1) holds for everyt € C. We refer the definitions
of Og,(1) and 7, to Definition 1.4;
(2) There exists the following diagram:

PRI, SN Po(F) (5.2)

where

o Po(F) -—» Zis a family of Atiyah flops;

o Zis smooth and ¢z : Z — C is a Mori fiber space;
o uz: Z — Z is the blow-up along a ¢z-section Cy;

(3) Let &r be a tautological divisor on Po(F) and set &7 := uz,V&r.
Then —Kz ~ 387 — ¢ B and uyéz; = W.kr + Exc(uz), where f =
det(R'qIr (—Kc¢));

(4) Every smooth @z-fiber is isomorphic to (P2)2.

In this paper, we call the Mori fiber space ¢z: Z — C as in Theorem 5.1 the
moderate (IP?)2-fibration with respect to the pair (q: Q — C, T).

Proof. We proceed in 4 steps.

Step 1. Let us prove (1). We apply Theorem 39 for X = Q,Y = C, f = g,
and Z = T. Since qu*(’)x = 0 and dimC = 1, Theorem 3.9 gives the exact
sequence (5.1) and the locally free sheaf /. Moreover, there are no surjections
Flo, = Oy, for every ¢t since Q; is an irreducible and reduced quadric surface.
Note that det F|g, = O(—=Kp,) and c2(Flp,) = 3 follow from (5.1). If F is
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g-nef, then we have h°(F %1) = 0 since every morphism F — ¢, must be sur-
jective, which implies that F|p, =~ %t ® Og, (1) by Proposition 3.6. Hence it
suffices to show that F is g-nef. To show this nefness, we consider the projectiviza-
tion Po(F). By the surjection 7 — Z7(—Kyp), Bly Q is embedded in Py (F)
over Q as the zero scheme of the global section s € H 0(]P’Q (F), OPQ(}-)(I) ®
g*(R'¢.Ir(—Kc))Y) corresponding to the injection g*(R'¢.Ir(—K¢)) — F.
Since —Kgi; 0 = Op,(7) (D] is nef over C by assumption, so is Op,(7)(1). The
proof of (1) is complete.

Step 2. Next we confirm the following claim.

Claim 5.2. There exists a unique effective divisor Eg C Q containing T such that
2Ep + Kg ~¢c Oand q*IT(EQ) =0Oc¢.

Proof. Take aP3-bundle f: F — C such that IF contains Q. Since —Kpj, o is nef
over C, the linear span of T; is a 2-plane in F; = P3. By Theorem 4.1 (1), there
exists a unique sub P2-bundle E containing 7. Set Eg := E N Q. Then we have
an exact sequence 0 — Op(—Q +E) - Op(E) ® Zr/r — O(EQ) ® I1/9 — 0.
Since R f,Op(—Q+E) = 0 for any i and f«@rp®@0Or(E)) = Oc as in the proof
of Theorem 4.1 (1), we have ¢.Z7 (Eg) = Oc, which proves that E¢ satisfies the
conditions. For a general point t € C, the fiber (Ep); is a unique smooth conic
passing through the three points 7;. Hence the uniqueness of E ¢ follows. O

From now on, we fix a divisor « on C such that — Ko =2Egp — g*a.

Claim 5.3. There exists an exact sequence
0> 0OEg—qfa) > F—>E—0 (5.3)

where £ is a locally free sheaf with £|p, ~ %t forevery t € C.

Proof. Tensoring the exact sequence (5.1) with O(—E¢ + g*«), we obtain the
following exact sequence:

0 — ¢*((R'g«Ir)(@ — K¢)) ® O(=Eg) — F(—Eg +q*a) — Ir(Eg) — 0.

Claim 5.2 implies that ¢.Z7(Eg) = Oc¢. Since Riq*OQ(—EQ) = 0 for any i,
we have ¢.F(—Eg + q¢*a) ~ ¢ Zr(Ep) ~ Oc. Hence we obtain an injection
t: O(Eg — g*a) — F with the locally free cokernel £ := Cok . Then we have
an exact sequence 0 — Og,(1) — Flg, = &€|g, — 0 forevery t € C. Since
Flo, = %[ ® Oy, (1) and Hom(Oyp, (1), %t) =0, F|p, contains Op, (1) as a
direct summand. Hence we have &|p, >~ %t foreveryt € C. O
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Step 3. Let Pp(E) C Po(F) be the natural inclusion from the exact sequence
(5.3). We define morphisms as in the following commutative diagram:

Po(F) ~——Po(€)

.
ql re

Let £ be a tautological divisor of 7r: Po(F) — Q and &¢ = §rlpy(e)- Then
&g is a tautological divisor of P (£) and P (€) C P (F) is a member of |O(§x —
n*(Eg)) ® ryO(a)]. Note that Op,s)(§s) is re-globally generated and
rexOpye)(g) = g«& is a vector bundle of rank 4. Thus & gives a morphism
Ve: Po(&) = Pc(g«€). Set G = Exc(Yg) and § = ¥¢(G).

Claim 54.

(1) Sissmooth and ¥¢: Po(E) — Pc(g«€) is the blow-up of Pc(¢+&) along S;

(2) The morphism § — C factors a non-singular curve B such that S — B is a
P!-bundle and B — C is a double covering. Moreover, B — C is the double
covering associated to ¢q.

Proof.

(1) Let t € C be a point and consider a morphism ¢ ;: Pp, (Yét) — P3.If
Q; is smooth (respectively singular), then it is known that ¢ ; is the blow-up
along union of two disjoint lines in 3 [20, Table 3, No 25.] (respectively the
blow-up along a double line which is contained in a smooth quadric surface).
This fact implies that every fiber / of G — S is isomorphic to P! and satisfies
—Kp, &)l = 1. Then [2, Theorem 2.3] implies that S is non-singular and ¢
is the blow-up along S;

(2) Foranyt € C, S, C IP3 is a union of two disjoint lines if Q; is smooth and
(St)req is a line if Q; is singular. Let S — B — C be the Stein factorization of
S — C. Since S is smooth, so is B. Then S — B is a P!-bundle and B — C
is a double covering. The branched locus of this double cover B — C is
{t € C | Qy is singular}. Therefore, B — C is the double covering associated

tog: Q — C. O

Step 4. Let Y7 : Po(F) — Z be the Stein factorization of the morphism given by
|E7] over C. Since —Kp,(F) ~c 357, YrF: Po(F) — Z is a crepant contraction.
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Claim 5.5.

ey

2)

Exc(¥¢) = Exc(¥F) holds and v is a 2-dimensional family of Atiyah’s
ﬂopping contractions. In particular, if W: Po(F) --+» Z denotes the flop,
then Z is non- singular;

Let E be the proper transform of Pp(€) C Po(F) on Z. Then there exists a

birational morphism w7z : Z — Z over C such that Z is non- singular and pz
is the blow-up along a section Cy_z of the induced morphism ¢z: Z — C.

Proof.

ey

2)

Let y be a curve contracted by {»r. Then we have £r.y = 0 and hence
Po(€).y = —m7Eg.y < 0since Eg is ample over C. Thus Py(£) con-
tains y and y is contracted by {¢. Conversely, it is clear that every curve y
contracted by ¢ is also contracted by 7. Therefore, we have Yrlp, &) =
Ve by the rigidity lemma and Exc(yr) = Exc(t/fg). Let [ be any fiber of
Exc(¢) — S. Thenwe have NV jp, ) = O(— D@O?and 1 = —Kpye)l =
Er+m7EQ).l = mril.Eg. Hence Pp(E).l = —1in Py (F). Cons1der1ng
the exact sequence 0 — M/pg(g) — ,/\/}/IpQ(j:) — NpQ(g)/pQ(j:)|1 — 0, we
obtain V} /PoF) = O(= 1)2 @ O2. Thus ¥ £ is a 2-dimensional family of
Atiyah’s flopping contractions;

We have E5 =~ Pc(g+£) by the construction of this flop. Moreover, for each
teC1fwe‘[akeahnelcEZt:IP>3 then we have —K3.l = —K5 .l = 3.
Hence we obtain —K7 g, = Op3(3) and NE 7 = (’)Pz( 1) for every

t € C. Therefore, there exists a morphism w7 : Z — Z over C such that uz
blows E» down to a section Co z of ¢z: Z — C and Z is smooth. 0

Note that 1 is an extremal contraction and hence p(Z) = 2.

We show (3). Set 8 := det(qu*IT(—Kc)) as in Theorem 5.1 (3). Since

—Kpy(F) = 3EF — rizB by the exact sequence (5.1), we have —Kz = 3§z — 97, .
Moreover, since 1z is the blow-up along a ¢z-section, we have M’}K z = K5 +

3E3

. Thus we have u%éz = W.&r + E5 since £z = uz,V.&x by the definition.

The proof of (3) is complete.

To prove (4), let t € C be a point such that Z; = (p;(t) is smooth. Then Z,

is a so-called del Pezzo 4-fold. From the diagram (5.2), we have Sg . (pgl(t) =

£F -

r}l () + 1 = 6 by a direct calculation. Then we have Z; =~ (P2)2 by Fujita’s

classification of del Pezzo manifolds [13, Theorem 3.3.1].

S5.2.

The proof of Theorem 5.1 is complete. O

Proof of Theorem C

Let ¢: X — C be a sextic del Pezzo fibration. Our goal is to construct a (P?)2-
fibration containing X as a relative linear section.



RELATIVE EXTENSIONS OF SEXTIC DEL PEZZO FIBRATIONS 1395

Let Co be a p-section. Let (g: Q — C, T) be the relative double projection
of (p: X — C, Cp) as in Definition 2.2. Let Ep C Q be the proper transform of
Exc(Blc, X — X). Then Eg is nothing but the divisor that we obtain in Claim 5.2.
By Proposition 2.1 (3), we see that O(— K3y, o) is nef over C. Then Theorem 5.1
gives the moderate (P?)2-fibration ¢z : Z — C. Inorder to find an embedding from
X into Z over C, it suffices to show that the proper transform of Q on Z coincides
with X.

Now let us use the same notation as in Theorem 5.1 and its proof. Let G be
as in the statement of Theorem C. Considering the exact sequence 0 — Zr,p —
Op — Or — 0 and taking the cohomology of g, we obtain

G = R'¢.Ir @ O(—K¢). (54)

Note that é:BlT Q is the zero scheme of the global section of H° Po(F),0¢Er)®
rG") corresponding to the injection ¢*G — F in the sequence (5.1) under the
natural isomorphism H°(Po(F), O(¢r) ® r’%G") =~ Homg(¢*G, F).

Now Theorem C is a consequence of the following claim.

Claim 5.6.

(D) 1//]:|Q coincides with v/ in Proposition 2.1 (3)

) If Q+ C Z denotes the proper transform of Q C IP’Q (]: ), then the birational
map O --» O is the flop over C. In particular, 0+ ~ X holds;

(3) It holds that uz|y = mx. In particular, there exists a closed embedding
i: X < Z suchthati(Co) = Co, z;

(4) X is the zero scheme of a global section of Oz (£7) ® ¢5G";

(5) Itholds that O(Kz + 3&7) >~ ¢} detG.

Proof.

(1) Tt suffices to show the restriction morphism r £, Op o(F) (kEF) = (rF| é)*(’)
(k&r) is surjective for every k > 0. Since Q is the zero scheme of a global
section of the rank 2 vector bundle (’)]pQ( AHD r;;gV, we have the exact
sequence 0 — Op,(7)((k=2)r)®rzdetG — Op,r) ((k—DEF)@rzG —
I5/pyr) kéF) — 0. Thus we have erf*zé Jpor) (kEF) = 0 for every
k > 0. Hence we are done;

(2) By (1), we have Y7 (Q) = _
Since ¥ is defined over C by &, there exists a Cartier divisor & on Z such
that & is ample over C and w}‘_-é 7 = &7. Since é is the zero scheme of a
global section of ¥ 1-(O(&7) ® 7*GY), X is that of O(&7) ® 7*GY in Z and
hence O is that of V507 @rt*GY in Z.

Then (2) follows from similar arguments as in the proof of Claim 4.7 (2);

(3) By Theorem 5.1 (3), we have u%&z ~ &5+ E5. Since W.£r|y ~c —K5,we

obtain u%&z|3 ~c wy(—Kx), which proves the assertion;
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(4) Since X is the zero scheme of a global section of Oz (Wér) @ rt*GY and
V. Er = u%Ez —Exc(uz) holds, we obtain a section s € HY(z, Icyz(E2)®
rT*GV) such that the zero scheme of s is X

(5) This assertion immediately follows from (5.4) and Theorem 5.1 (3). 0

The proof of Theorem C is complete.

6. Singular fibers of sextic del Pezzo fibrations

This section is devoted to proving Theorem D and Corollary E.

6.1. Main result of this section

One of the main purpose of this section is to classify singular fibers of sextic del
Pezzo fibration X — C. It follows from the assumption p(X) = 2 (or [9, (4.6)])
that every fiber of a sextic del Pezzo fibration ¢ : X — C is irreducible and Goren-
stein. Such surfaces were studied by many persons (e.g.[1,6,8,12,26]). As the first
step to classify singular fibers, we review the classification of irreducible Gorenstein
sextic del Pezzo surfaces.

Theorem 6.1 ([1,6,8,12,26]). Let S be an irreducible Gorenstein del Pezzo sur-
face with (— Kg)? =6. -

(1) Suppose that S has only Du Val singularities. Let S — S be the minimal
resolution. Then there is a birational morphism ¢: S — P2 such that ¢ is the blow-
up of P? at three (possibly infinitely near) points. If £ denotes the O-dimensional
subscheme in P? of length 3 corresponding to the three (possibly infinitely near)
points, then the isomorphism class of S is determined by % as in Table 6.1 below.

[ Type || py | Is ¥ colinear? [ # of lines on S | Singularity |
(2,3) reduced non-colinear 6 smooth
(22) || Spec C u SpecCle]/(¢?) | non-colinear 4 Aq
2,1) Spec Cle]/ (€3) non-colinear 2 Aj
(1,3) reduced colinear 3 Aq
(1.2) || SpecC u Spec Cle]/(g%) colinear 2 Al + A
(1,1) Spec Cle]/ () colinear 1 Al + Ap

Table 6.1. Classification of Du Val sextic del Pezzo surfaces.

We refer to [6,8,12] for more precise details. We also refer to Lemma 6.12 for the
reason why we employ the above notion for Du Val sextic del Pezzo surfaces.

(2) Suppose that the singularities of S are not Du Val and that S is a rational
surface. Let v: S — S be the the normalzzatzon Then S is a Hirzebruch surface.
The complete linear system |v*wg | gives an embedding S — P7 and S C P° is
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the image of the projection from a point away from S. Let C C Os be the conductor
of v and E := Spec O5/C. Then (S, v*a)gl, E, E — v(E)) is one of the two cases
in Table 6.2.

| Type || § | viog' | E | E — v(E) |
m2) (| Fy | h4+2f E =Cy double cover

md) (| Fg | h+ f E =FE| + E; where | v(E) =v(E;) = v(E>) and
Ei=Coand E; ~ f E; — v(E) is isomorphic

Table 6.2. Classification of non-normal rational sextic del Pezzo surfaces.

For the notation of ¥y, h, f, and Cy, we refer to Section 1.5. For more precise
details, we refer to [1,26].

(3) When S is not a rational surface, S is the cone over a curve C C P3 of degree 6
and arithmetic genus 1.

Remark 6.2. Let S be the cone over a curve C C IP° of degree 6 and arithmetic
genus 1. Then we have dim T,,S = 6 where v is the vertex. Hence for any sextic del
Pezzo fibration ¢: X — C, X does not contain such an S since we assume that the
total space X is smooth. In other words, every g-fiber is of type (i,j), (n2) or (n4)
as in Theorem 6.1.

The main result of this section is the following theorem.

Theorem 6.3. Letp: X — C be a sextic del Pezzo fibration and Cy be an arbitrary
p-section. Let (q: Q — C,T) be the relative double projection of (¢: X —
C, Cy) as in Definition 2.2. Then the following assertions hold for any t € C.

(1) For j € {1,2,3}, X; isof type (2, j) if and only if Q; is smooth and #(T;)req =

Js

(2) For j € {1,2,3}, X; is of type (1, j) if and only if Q; is singular, #(T;)red = J,
and Sing Q; N T; = O,

(3) X, is of type (n2) if and only if Q, is singular, #(T;)req = 2, and the double
point of Ty is supported at the vertex of Q;;

(4) X; is of type (n4) if and only if Q; is singular, #(T;)req = 1, and Sing Q; =
(Tt )red-

6.2. Singular fibers of moderate (P1)3-fibrations

First of all, we classify the singular fibers of moderate (P')3-fibrations as in the
following theorem.

Theorem 64. Let f:F — C and T C F be as in the setting of Theorem 4.1. Let
@y: Y — C be the moderate (P')3-fibration which is obtained by Theorem 4.1.
Then the following assertions hold for any t € C.
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(1) Y, = (PYY? if and only if #(T)rea = 3;

(2) Y, ~ P! x Q} if and only if #(T;)rea = 2, where Q denotes the 2-dimensional
singular quadric cone;

(3) Y; >~ PVLYifand only if #(T;)req = 1.

For the definition of P111, we refer to Definition 6.6 below.
To define P! 1’1, we need the following lemma.

Lemma 6.5. Let ¢ € Extﬁ%((’)(f), OQh — f)) = H'(F2, Op,(2h —2f)) = C be
a non-zero element. This element gives the following non-trivial extension:

0— OQh—f)— & — O(f) — 0. 6.1)

Then & is the cokernel of an injection Op,(—h + f) — O*> ® O(h + f). In
particular, € is globally generated.

Proof. Let 51,52 € HO((’)FZ(h — f)) be sections such that (s; = 0) = Co + [;,
where [; € |flandlj Nl = . Lett € HO(OF2 (2h)) be a general section such
that (t = 0) N Co = &. Then the cokernel of the map v := (s1, 52, 1): Op,(—h +
f) = O?>@® O(h + f) is locally free. Let us confirm that Cokv = &£. Sets =
(s1,52): Opy,(=h + f) — (9%2. Then we have a surjection Cok v — Cok s. Since
both (s; = 0) and (s, = 0) contain Cg, the morphism s: O(=h + f) — O?
factors through the map O(— f) — O? which is given by (/1, [»). Hence we have
a surjection Coks — (O(f) and hence a surjection Cokv — O(f) and an exact
sequence 0 - OQRh — f) — Cokv — O(f) — 0, which does not split since
O(2h — f) is not globally generated but Cok v is. Since Ext' (O(f), OQRh— f)) =
C, we have Cokv ~ €. O

Definition 6.6 ([8]). Let £ be the bundle on [F; fitting into the exact sequence (6.1)

that does not split. We define P!-1.1 := Py, (€) and set P1-I'! € P7 be the image of
the morphism defined by |OP}F2 &) (D).

Remark 6.7 ([8]). By Lemma 6.5 and [8, (si31i), P.170], we can check that the
variety P11 is the del Pezzo variety of type (si31i) in the sense of [8]. In particular,
there is a very ample divisor Hpi.1.1 on P11 guch that Kpi11 + 2Hp1,11 ~ 0 and
H3]1,'1 = 6. Moreover, the singular locus of P! is a line and P"-!-! has a family
of Du Val Aj-singularities along the line.

Proof of Theorem 6.4. We use the diagram (4.1) and the notation in Theorem 4.1
and its proof. By Theorem B (2), there is a Cartier divisor Hy, such that Ky, +
2Hy, ~ 0 and H% = 6. Hence Y; is a del Pezzo variety of degree 6.

(1) Assume #(T;) = 3. Since ﬁf is a flop of ﬁt, ﬁf is smooth since so is IE. Since
urF is the blow-up along a section of ¥ — C, Y, is smooth and hence Y; =~ (P13
by Theorem 4.1 (4).
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(2) Assume #(T;) = 2. Then the singular locus of IF; is a smooth rational curve [ and
[F; has a family of Du Val A;-singularities along this curve /. Since / is contained in
the exceptional locus of the blow-up F; — [,/ is not a flopping curve on F;. Thus
IEf is also normal and has a 1-dimensional family of Du Val A|-singularities. Since
IF‘;r is the blow-up of ¥; at a smooth point, Y; is also normal and has a 1-dimensional
family of Du Val A;-singularities. Hence Y; is of type (vi), or (si211), or (5i22i) in
the sense of Fujita [8]. Moreover, it follows that p(Y;) = 2 from this construction.
By the definition in [8, P.155 (respectively P.170)], we can check that the variety V
of type (vi) or (si211) is of Picard rank 1 if V has a 1-dimensional family of Du Val
Aj-singularities. Thus V must be of type (si221i).

By the definition in [8, P.169], we can check that the variety of type (si22i) is
isomorphic to P! x Q2.

(3) Assume that #(T;)red = 1. By Remark 4.2, T; is defined by (x, y, ) locally.
Hence [F; has a 1-dimensional family of Du Val A,-singularities. It follows from
the same argument as in the proof of (2) that ¥; also has a 1-dimensional family of
Du Val Aj;-singularities. Then by Fujita’s classification, Y; is of type (si31i) in the
sense of [8], which is isomorphic to P!'!:! by Remark 6.7. O

6.3. Singular fibers of moderate (P?)2-fibrations

Next, we classify the singular fibers of the moderate (P?)2-fibrations. In order to
state the result, we review the definition of the variety ]P’z*z, which was introduced
by Fujita [8] and Mukai [21] independently.

Definition 6.8 ([21], [8]). We define P22 .= Pp2(Op2(2) ® Q2p2(2)). _Then the
tautological divisor & is free and the linear system |&| gives a morphism P22 — P8
since hO(IP/f, Op2(2) @ Q2p2(2)) = 9. We define P22 as the image of the morphism
and ¥ : P22 — P22,

Remark 6.9. We can check that the variety P%2 is the del Pezzo variety of type
(vu) in the sense of [8, P.155].

Theorem 6.10 ([9, (4.6)]). Let g: O — C and T be as in the setting of Theo-
rem 5.1. Let 9z: Z — C be the moderate (P?)?-fibration that is obtained by
Theorem 5.1. Then the following assertions hold for any t € C.

(1) Q; is smooth if and only if Z; ~ (P?)?;
(2) Q; is singular if and only if Z; ~ P>2.

Proof of Theorem 6.10. Set F as in Theorem 5.1 (1). By Theorem 5.1 (2), the
blow-up Z; of Z; at a smooth point is the flop of P, (Fp,). Since the map W in the
diagram (5.2) is a family of Atiyah flops over C, we conclude that Q; is smooth if
and only if Z; is smooth. Hence it suffices to show that Z; ~ P22 if 7, is singular,
which is known by [8] or [9, (4.6)]. O
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6.4. Proof of Theorem 6.3
For proving Theorem 6.3, we need three lemmas.

Lemma 6.11. Ler S be a hyperplane section of P11 < P7. If S is non-normal,
then S is of type (n4) in Theorem 6.1.

Proof. We use the notation in Definition 6.6. Let 7 : PLIl [, be the projection
and & a tautological divisor. As explained in [8, (si31i), P.170], the exceptional
divisor of P1:1:1 s PL1.1 is the union of a unique member E| € [E4+7*(—2h+ f)|
aI;d E, := 7*Cy. Note that £ is the pull-back of a hyperplane section of P1.1.1
P’

Let S C pPLLI — Pr, (£) bfi the proper transformation of S C P11, Then
there exist a, b € Zx¢ such that S ~ & — (aE| + bE>) = (1 —a)§ + 7% ((2a —
b)h + (2b — a) f). Since § is effective, we have a < 1.

Let us prove thata = 1. If a = 0, then § € & — 7*(b(h — 2f)) and hence
b =0or1by (6.1). Assume b = 1. Then we have § ~ & — 7*(h — 2f). Let
s: O(h —2f) — & be the section corresponding to S. Since S is irreducible, the
zero locus of s, say Z, is O-dimensional. Then it follows from [22, Lemma 5 .4] that
Cok s is torsion free. Hence we have an exact sequence 0 — O(h —2f) — £ —
Zz7(h+2f) — 0. Since ¢2(£) = 2, Z must be empty. Then we have £ ~ O(h)?
since £ is nef, which is a contradiction to (6.1). Assume b = 0, i.e., S ~ &. Then
S does not contain the singular locus of ]P’l .1 Hence § is also non-normal. Let
s: O — & be the section corresponding to S and Z the zero locus of s. By a similar
argument as before, we have an exact sequence 0 — O —>~5 — T7(2h) — 0. By
this exact sequence, Blz [, is embedded into P, (£) = P11 Note that Blz F,
coincides with S over [, \ Z. Since both of Blz [F, and S are integral, Blz [F,
coincides with S. Since ¢2(£) = 2, Z is of length 2 and hence Blz F, = S is
normal, which is a contradiction. -

Therefore, we have a = 1. Then S ~ 7n*((2—b)h+ (2b—1) f), which implies
b= 1since Sisa prime divisor. Since Sis integral, there is a smooth rational curve
C € |h+ f|suchthat § = 7~1(C). Then the restriction of the sequence (6.1) to C
splits, which implies S ~ F4. Therefore, S is of type (n4) by Theorem 6.1. 0

Lemma 6.12. Let ¢: X — C be a sextic del Pezzo fibration and t € C be a point.
Let pp: B — C and o7: T — C be the associated coverings. If X, is normal,
then X, is of type (#By, #Ty).

Proof. Let C° := {t+ € C | X, isnormal}, which is an open subset of C. Set
X% :=¢71(C%, BY := 5" (€%, and T° := 95" (C?). Now X° — € is a Du Val
family of sextic del Pezzo surfaces in the sense of Kuznetsov [16, Definition 5.1].
Kuznetsov also constructed the double covering 25 — C° and the triple covering
% — CYin [16, Theorem 5.2]. Then it follows from [16, Corollaries 3.13 and
5.5] that X, is of type (#(Z3.1)red, #(Z5.1)red), Where 25, is the fiber of ¢ under
%y — CO. Hence it is enough to show that 23 ~ B? and 25 ~ T°. By [16,
Propositions 5.12 and 5.14], Hilbg,+1(X/C) — C factors through % as the Stein
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factorization and %y is non-singular. Thus Lemma 3.3 implies this assertion, which
completes the proof. O

Lemma 6.13. Let ¢: X — C, Co, q: Q — C, and T as in the statement of
Theorem 6.3. Then for any t € C, X, is normal if and only if Sing(Q;,) N T; = &.

Proof. We use the same notation as in Proposition 2.1 and its proof.

First, we suppose that Sing(Q,) N T; = <. Then it follows from Remark 4.2
that Q, is normal and hence so is X,. Note that X; is the blow-up of X; at a smooth
point x := Co,. As shown in the proof of Proposition 2.1 (1), every exceptional
curve of ¥; : X; — X, is the proper transform of a line passing through the smooth
point x. Now let us assume that X; is non-normal. Since the non-normal locus
does not contain x, the non-normal locus is not contracted by ;. Hence X, is also
non-normal. This is a contradiction and hence X, is normal.

Next, we assume that Sing(Q;) N T; # & and show that X; is non-normal.
Then Qy is singular and hence a quadric cone. Let x € Q; be the singular point of
Q;. Then T; contains x. Since T is a trisection of ¢, 7; is not reduced at x. Hence
#(T)red € {17 2}-

Claim 6.14. Let F and T as in Theorem 4.1. If Sing(Q;) N T; # &, then ét =
Blz, Q; is non-normal along the singular locus of I;.

Proof. Assume that #(T;)eq = 2 (respectively 1). Let Bl, IF, be the blow-up of
F, = P3 at x and E the exceptional divisor dominating x. Let x’ € E (respec-
tively ' C E) be the intersection of E and the proper transform of 7;. When
#(T)rea = 1, we set x’ = X/ . Let Bl Bl IF; be the blow-up at x" and E’ the ex-
ceptional divisor. Let x” be the reduced point of T; (respectively the point that is the
intersection of E’ and the proper transform of ¥’). We set M = Bl,» Bl Bl, FF;
and let Eyy C M _be the proper transform of E. Then we have a natural mor-
phism 7: M — [, = Bly, I, by the universal property of the blow-up. Note
that C := t(E) ~ P! (respectively C = T(E) = T(E') ~ P and 7 is a
crepant divisorial contraction. Thus IF; has a family of Du Val A; (respectively
A») -singularities along its singular locus C. Let Q; py C M be the proper trans-
form of Q; on M. Since Q, contains x as an ordinary double point, we can check
that 7|g, ,,: Or,m — Q: = Bly, O is finite but not isomorphic. Hence Q; is

non-normal along C = Sing(IF,). ]

By Claim 6.14, ét is non-normal along an exceptional locus of ét —_ Q. Hence
the non-normal locus of Q; is not contracted by the morphism v;: Q; — X, in
the diagram (2.1). Therefore, X; is non-normal and hence so is X;. Since X; is the
blow-up of X, at a smooth point, X; is non-normal. O

Proof of Theorem 6.3. (1) and (2): Assume X; is of type (2,j) (respectively (1,j)).
By Lemma 3.1 (1), #(B;)req = 2 if and only if Q; is smooth. Then Lemma 6.12
shows that Q; is smooth (respectively singular) and #(7})eq = j. Moreover, when
X; is of type (1,), it follows from Lemma 6.13 that Sing Q; N (T})req = 9.
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(3) Assume X; is of type (n2). Then Lemma 6.13 shows that Q; is singular and
Sing O N (Ty)red #= . If #(T)req = 1, then X; is contained in Pl aga hyper-
plane section by Theorem 6.4, which contradicts Lemma 6.11. Hence #(7})yeq = 2.

(4) Assume X; is of type (n4). Then Lemma 6.13 shows that Q; is singular
and Sing Q; N (Ty)red # D. If #(T})rea = 2, then X, is contained in P! x Q%
as a hyperplane section by Theorem 6.4. Thus we obtain a birational morphism
Fy — Qg, which is a contradiction. Hence #(7})req = 1.

The proof is complete. ]

6.5. Proof of Theorem D and Corollary E

Finally, we prove Theorem D and Corollary E. Combining Theorems 6.4, 6.10, and
6.3, we have Theorem D. Let us show Corollary E. Let ¢ : X — C be a sextic del
Pezzo fibration. Then (1) and (2) follow immediately from Theorem A (3). Let us
show (3). By Theorem A (3), we have (—KX/C)3 =(—Kyx -|—go*Kc)3 =24g(C)—
(6g(B) +4g(T) + 14). Let Rg and Ry denote the ramification divisor of ¢p and
¢t . Then the Hurwitz formula implies deg Rp = 2g(B)+2—4g(C) and deg Rt =
2g(T) + 4 — 6g(C). Thus we have (—Kx/c)3 = —(3degRp + 2degR7) < 0.
Hence (—Kx/c)3 = 0 if and only if deg Rp = deg R = 0, which is equivalent to
that ¢ and @7 are étale. By Theorem D, this is equivalent to that ¢ is smooth. The
proof is complete. O

7. Proof of Theorem F

Let us show Theorem F by presenting explicit examples of sextic del Pezzo fibra-
tions which contain singular fibers of type (2, j) for j = 1,2, 3 (see Example 7.4),
(1, j) for j = 1,2, 3 (see Example 7.5), (n2), or (n4) (see Example 7.6).

Step 1. We start our construction of examples of sextic del Pezzo fibrations from
the following submanifolds in P*:

T cQ?cQ’cP

where Q? is a smooth quadric 3-fold, Q% ¢ Q3 is a smooth hyperplane section, and
T c Q7 is a twisted cubic curve.

For a smooth conic C ¢ Q* with TNC = @, lett: Q := Blc Q3 - Q°
be the blow-up along C and T := 1 'T. Then there exists a quadric fibration
g: Q — P! given by the linear system of hyperplane sections of Q® containing C.
Note that ¢|7: T — P! is a triple covering.

Step 2.

Claim 7.1. There exists a sextic del Pezzo fibration ¢: X — P! with a section s
such that (g: Q — P!, T) is the relative double projection of (¢: X — P!, ).
Moreover, X is a weak Fano 3-fold with (—Kx)? =22 and —Kx.s = 0.
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Proof. Let o: 0 := Bl;y Q0 — O be the blow-up. Set H = o*t*Ops(1), E =
Exc(o),and G = 0;1 Exc(7). Note that —Ké =3H —E—Gisfreesince H—G
and 2H — E are free. Using [10, Proposition 3.5], which is an inverse transformation
of Proposition 2.1, we obtain a sextic del Pezzo fibration ¢: X — P! and a ¢-
section s satlsfymg (—Kx)? = 22 and —Kx.s = 0. Since Q is weak Fano, X is
also weak Fano by [ibid, Proposition 3.5]. O

Remark 7.2. Let (B, T) be the coverings associated to this sextic del Pezzo fibra-
tion. Since (—Kx)> = 22, Theorem A implies that B ~ T ~ P!. Then B — P! is
ramified over exactly two points and hence Q — P! has exactly two singular fibers
by Lemma 3.1 (1).

We prove Theorem F by showing that for any condition in Theorem 6.3, there
exists a suitable smooth conic C and a point t € P! such that the pair (Qy, Ty)
satisfies the condition.

Step 3. For a point p € Q3,let T p@3 denote the projective tangent space of Q3 at
p. For two points vy, v2 € Q3 we set

Cr,v) =@ nT,Q’NT,Q".
Claim 7.3. Let C C Q3 be a smooth conic and (C) C P be the linear span of C.
Then there exist two points vy (C), 12(C) € @3 such that C(v1(C), v2(C)) = C
Moreover, there exists the following one-to-one correspondence:

{{vl, n} C @3| C(v1, vp) is smooth } <> { smooth conics in Q3}

w W
{vi, v2} —> C(vi, 1)
{v1(C), 12(C)} «— C.

Proof. The quadric fibration ¢: Q — P! has exactly two singular fibers Qi.c and
Q2.c as we saw in Remark 7.2. Then Q; := t(Q;.c) C Q% isa singular quadric
cone for each i. Set v; (C) := o (Sing Q;). Then a hyperplane H in P* containing
(C) is tangent to Q3 if and only if H N Q? = Q; and H = T,,)Q? for some
i € {1,2}. Therefore, we have Ty, )Q® N Ty, c)Q* = (C)

Let us confirm the one-to-one correspondence. Take two points vy, vy € Q3
such that C (vy, vp) is smooth conic. Then {v;(C (v1, v2)), v2(C (v1, v2))} is the set
of vertices of the cones {TU1Q3 nQ?3, TU2Q3 N @3}, which is nothing but {vy, v2}.
Hence we are done. O

Step 4. We finish the proof by presenting suitable examples as follows.

Example 7.4 (Singular fiber of type (2, j) for j =1, 2, 3). Fix je{1,2,3}. We
can take a smooth conic C C Q? such that #(C N T)red = j. Let Q; be a smooth
hyperplane section of Q3 such that C = Q1 NQ?. Then we have 0\ NT =CNT.
Let O, C Q3 be a general hyperplane section such that 0, N Q] N T = @. The
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pencil L = {AQ1 + Q3 | [* : 1]} induces a quadric ﬁbratlon q: BlanQ2 Q3
P'. Let f: Blg,no, Q? - Q3 be the blow-up. If we set Q, = f* Q;,then Ql is
a g-fiber. Then we obtain 7N Q1 ~ TﬁC since Q1N QO>NT = . Sett = q(Ql)
Seeing the fiber (Qy, T,) = (0. TN Ql) and using Theorem 6.3, we obtain an
example of a sextic del Pezzo fibration having fibers of type (2, j).

Example 7.5 (Singular fiber of type (1, j) for j =1, 2, 3). Fix je{l,2,3}. We
can take a smooth conic C C Q2 such that #(C N T )eq = j. By Claim 7.3, we can
take a point vy, v’ € Q3 such that C = C(vy, v'). Then we have T,, Q> N Q? =

Let vy € Q3 be a point of Q3 such that (vy, v2) ¢ Q3 and TU2Q3HCHT = .
Set Q; = T,, Q3 N Q3 and Q C Ble;,m) Q? be the proper transform of Q;
for i = 1,2. Then by Claim 7.3, Q1, Q> are the singular fibers of the quadric
fibration Blc (y,,v,) Q? — P! Recall that Q; N Q? = C is a smooth conic. Hence
01 N Q? does not contain the vertex of Q1 and hence we have C n T ~ @,1 NnT.
Therefore, T does not pass through the vertex of Q1. Set 7 = g(Q1). Seeing the
fiber (Qy, T, = (Ql, T N Q1) and using Theorem 6.3, we obtain an example of a
sextic del Pezzo fibration having fibers of type (1, j).

Example 7.6 (Singular fibers of type (n2) and (n4)). We fix an isomorphism
Q? ~ P! x IF" and let /, and [, be the two rulings. We may assume that 7 €
|l,+21p|. Let g,: T — P! be the restriction of the first projection to 7 . Take a point
p1 € T. Then we have Tpl@ = l,+1p and hence TMQ NT =T, QnQ’NT =
la+1)NT = P11+ 8, l(ga (p1)) as effective Cartier divisors on T

Let pp € Q®bea general point such that C(py, p2) is smooth conic. Let
0, =T, Q*nQ3,q: Q =Blc Q? — P! the quadric fibration, and Ql the proper
transform of Q;. Then Q 1 is a singular g-fiber with the vertex p; and Q1 NT =~
TN (la+1p) = p1+ 85" (8a(p1).

If p; is a unramified (respectively ramified) point of 7 — IF’I then we obtain
an example of a sextic del Pezzo fibration having fibers of type (n2) (respectively
(n4)) by seeing the fiber (Q1, T N Q1) and using Theorem 6.3.

The proof of Theorem F is complete. O

Appendix
A. Relative universal extensions of sheaves

This appendix is devoted to proving Theorem 3.9.

First of all, we recall the notion of relative Ext sheaves and organize some basic
properties. Let f: X — Y be a proper morphism between noetherian schemes X
and Y. Let F and G be coherent sheaves on X and £ a coherent sheaf on Y.
We denote the i-th cohomology of the right derived functor of f,Hom(F, —) by
Ext} (F, —). We call this sheaf Ext} (F, G) the relative Ext sheaf (cf. [14]).
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Note that Sxtj}((’)x, G) = R'f.G by the definition. Moreover, composing
natural canonical morphisms

fiHom(F,G) ® € — fiu (Hom(F,G) ® f*E) — fiHom(F,G ® f*E),

we obtain a natural morphism é’xt}(]—", g® f*€) — Ext}(}", g) ® £. By the
projection formula, this is isomorphic when & is locally free.
Consider the following three spectral sequences:

R fExt)(F.G® *€) = Ext/(F.G® f*E),
H'(Y, Ext}(F,G ® f*E)) = Ext(F,G @ 7€), (A.D)
H' (X, Ext!(F,G® f*E)) = Ext'T/(F, G ® f*E).
These spectral sequences give the following three natural morphisms:
a: Extp(F.G® f*E) — fulxt'(F,G® f*E),
B': Ext'(F,G® f*€) > HO(Y,Ext [ (F.G ® f*E)), (A2)
v ExtN(F,G @ f*€) - HU(X, Ext"(F, G ® f*E)).

Additionally, we define E , B, and y as in the following commutative diagram:

’

v

/ 0 o
Ext\(FG ® £+6) > HOY.Ext(FG ® NI H0y, f.xt (FG® 1*€))

} |

e~ HO(Y. Ext}(F. Q) ® &) — HOWY, fu6x1\(F.G) ® E)

’ ! |
\) Hom(&V, Ext}(}", ) —o= Hom(&Y, FLlxt (F, Q)
adjoint\L:
- y Hom(f*EY, Ext'(F, G)),

(A3)

where all vertical arrows are the natural morphisms. Note that all of the vertical
arrows are isomorphic when & is locally free.

Remark A.1. For an element € Ext'(F,G ® f*&), it is easy to verify that the
composite morphism

Fre LY preal(F. S e Foo) S ex (F.G) A

is nothing but y(r) € Hom(f*EY, Ext!(F,G)), where e: f* f.€xt'(F,G) —
Ext'(F, G) is the natural morphism.
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Definition A.2. Put £ = 5xt}- (F,G)V. Consider the composition

* \4 E 4
T Bxt'(F, G ® f*Extj(F.G)Y) > HOY, Ext [(F, G) ® Ext;(F. G)Y) AS)

4 Hom(é’xt}(}-, g, Sxt}(]:, 9)),

where E is the morphism in (A.3) and 6 is the natural morphism.
We say that an element 7 € Ext'(F, G® f*Ext {(F, §)) is universal if t(t) =
id. If ¢ is universal, then we say that the corresponding extension

0—>G® fextp(F.G) > H —F—0 (A.6)

is an f-universal extension of F by G. When Y = Speck for a field k, H; is just
called a universal extension of F by G.

The following lemma is a criterion for the existence of a locally free f-univer-
sal extension of F by G.

Lemma A.3. Suppose the following conditions hold:

(1) Ext}- (F, Q) is locally free;

(2) H2(Y, f;Hom(F.G) ® ExtH(F.G)") = 0;

(3) X is regular, G is locally freé, and hd(Fy) < 1foranyx € X;
4) eo fra: f*Ext}(}", G) — Ext\(F, G) is surjective (see (A 4)).

Then there exists a locally free f-universal extension H of F by G.

Proof. First, we prove that the conditions (1) and (2) imply the existence of an f-
universal extension. By (A.5), it is enough to see that ¢ and B are surjective. By (1),
the morphism 6 in (A.5) is surjective. Moreover, the surjectivity of g is equivalent
to that of B’, which is defined in (A.2) by the spectral sequence (A.1). Using this
spectral sequence, (1), and (2), we deduce that B’ is surjective. Therefore, there
exists an f-universal extension H,.

Now H; fits into the exact sequence (A.6). Since we assume that X is regular
and G is locally free in (3), H, is locally free if and only if Ext (H;, G) = 0 for any
i > 1. By taking Hom (—, G) of the sequence (A.6), we obtain an exact sequence

Hom(G ® f*Exth(F,G)".G) > Ext'(F.G) — Ext'(H;,G) — 0.

Since hd(Fy) < 1 for all x € X, we have Ext! (H,;, G) = 0 for any i > 2. Hence
it is enough to show that § is surjective. Let v: f*Sxt}(]—", G) > Hom(G ®
f*é’)cz‘]lr (F,$)V, G) be the natural map.

Recall y(t) € Hom( f*sxz} (F.G),Ext'(F,G)) as in (A.3). Then it holds
that § o v = y (¢). Hence it suffices to show that y (¢) is surjective. To see this fact,
we recall the diagram (A .4). By (1) and the universality, the morphism f*8(¢) is
isomorphic. By (4), € o f*« is surjective. Then by Remark A.1, y (¢) is surjective,
which completes the proof. O
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The following lemma is an important property of a universal extension.

Lemma A4. Let X be a proper geometrically connected geometrically reduced
scheme over a field. Let F and L be a coherent sheaf and an invertible sheaf on X
respectively. Suppose that there exists a universal extension of F by L:

0— LRExt'(F, L)Y - H—>F —0. (A7)
If there are no surjections F — L, then there are no surjections H — L.

Proof. To obtain a contradiction, assume that there are no surjections 7 — L and
there is a surjection a: H — L. We consider the following commutative diagram:

0 — L ® Ext'(F, L)V H F 0

S S

where b is the composition of the morphisms £ ® Ext! (F, £)¥ — H and a. Since
there are no surjections & — L, we have b # 0. Hence b splits. Letting V be
the linear subspace of Ext! (F, £)" such that Kerb = £ ® V, we obtain an exact
sequence 0 > L ® V — Kera — F — 0. Then the exact sequence (A.7)
is the push-forward of this exact sequence, which implies that id: Ext!(F, £) —
Ext! (F, L) factors through V, which is a contradiction. Hence we are done. L

Proof of Theorem39. Let f: X — Y and Z C X be as in Theorem 3.9. We
first prove that there is a locally free f-universal extension H of 77 by wy. It is
enough to check that (1) — (4) in Lemma A.3 hold for ¥ =77 and § = wy. (2)
and (3) immediately hold from our assumption. We show (1). Considering the
higher direct images of the exact sequence 0 — Z; — Ox — Oz — 0, we have
the exact sequence 0 — Oy — f,0z — R'f.7, — R'f.Ox — 0. Hence
R! £, T is locally free since so is R' f,Ox and f| is finite flat by our assumption.
Since every fiber of f and f|z are Cohen-Macaulay, [14, Theorem (21)] gives the
following:

0— (R' f,O0x)" — (R' f.Tp)¥ —— (£,02)" (f:0x)—>0

00— Ext}(O)(, a)f) — (c,‘xt]]»(.’z—z, a)f) — 8)6112;(02, a)f) — gxt%((,)x, a)f).
(A.8)

Hence (1) follows. We show (4). When we identify (f.Oz)" with fiwz/y, the
natural map « in (A.4) can be identified with @ in (A.8). Set & := Cok(Oy —
f+«Oz). Then we have Sa = £V by (A.8). By [4, Theorem 2.1 (ii)], the composition
of the natural maps f*EY — f* fuwz/;y — wz,y is surjective, which implies (4).
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Then Lemma A.3 gives a locally free f-universal extension H of 77 by wy.

Tensoring O(—K x), we obtain a locally free f-universal extension F of Zz(—Kx)
by Ox. Identifying Sxt} (Zz,w5)" with R! .7, we obtain the exact sequence
(3.5). For each y € Y, the restriction of the exact sequence (3.5) to X is also
exact since f and f|z are flat. Since Extz(Imev,wxy) = HO(Xy,ImeV) =0
holds, the natural morphism Ext} Tz, 0r)Qk(y) — Ext! (Izmxy, wy,) is isomor-
phic by [3, Satz 3]. Thus F]| x, 1s also a universal extension of Izmxy(—K x,) by

o x, - Since there are no surjections from Zzn X, (—K Xy) to O Xy the property (2) of

Theorem 3.9 follows from Lemma A 4 if X, is reduced. The proof is complete. [
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