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Brauer-Manin obstruction for Markoff surfaces

JEAN-LOUIS COLLIOT-THÉLÈNE, DASHENG WEI AND FEI XU

Abstract. Ghosh and Sarnak have studied integral points on surfaces defined by
an equation x2 + y2 + z2 � xyz = m over the integers. For these affine surfaces,
we systematically study the Brauer group and the Brauer-Manin obstruction to
the integral Hasse principle. We prove that strong approximation for integral
points on any such surface, away from any finite set of places, fails, and that, for
m 6= 0, 4, the Brauer group does not control strong approximation.

Mathematics Subject Classification (2010): 11G35 (primary); 11D25, 14F22
(secondary).

1. Introduction

Fix m 2 Z. Let d := m � 4. Let Um ⇢ A3Z be the affine scheme over Z defined by
the equation

x2 + y2 + z2 � xyz = m. (1.1)

It is equivalently defined by the equation

(2z � xy)2 � 4d = (x2 � 4)(y2 � 4), (1.2)

by the equation

(x � y � z + 2)2 � d = (x + 2)(y � 2)(z � 2), (1.3)

as well as similar ones obtained by permutation of coordinates.
The surface Um = Um ⇥Z Q over Q is called a Markoff surface. Unless

otherwise mentioned, we assume m 6= 0 and d 6= 0. These are the conditions for
Um to be smooth.
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In [10], A. Ghosh and P. Sarnak have studied the setUm(Z) of integral solutions
of such equations. A key tool is the action of the automorphism group 0 generated
by the following three types of elements:

(a) The Vieta involution: (x, y, z) 7! (yz � x, y, z);
(b) The sign change: (x, y, z) 7! (�x,�y, z);
(c) The permutations of x, y, z.

We denote Um(AZ) =
Q

p Um(Zp), where p runs through all primes and 1, and
Z1 = R. Let

Um(AZ)• =
Y

p<1

Um(Zp) ⇥ ⇡0(Um(R))

where ⇡0(Um(R)) is the set of connected components of Um(R). Let

Um(AZ)Br• ⇢ Um(AZ)•

be the subset consisting of elements which are orthogonal to Br(Um) for the Brauer-
Manin pairing

Um(AZ)• ⇥ Br(Um) ! Q/Z
(see [6, Section 1]). This is called the (reduced) Brauer-Manin set of Um .

Here are some of the main results from [10]:

(0) Um(AZ) = ; if and only if m ⌘ 3 mod 4 or m ⌘ ±3 mod 9. Other values of
m are called “admissible”;

(1) For m admissible and “generic” ( [10, p. 3], see Proposition 6.1 below), fol-
lowing Markoff, Hurwitz and Mordell, Ghosh and Sarnak develop a reduction
theory: there exists a bounded fundamental domain in R3 for integral solu-
tions. In particular the set Um(Z)/0 is finite;

(2) Suppose that m is not a square. Then Um(Z) is Zariski dense in Um if and only
if Um(Z) is not empty [10, (1.5)]. Zariski density still holds if m is a square
and contains an odd prime factor congruent to 1 modulo 4 [10, final comment
in Section 5.2.1];

(3) Strong approximation need not hold, i.e., Um(Z) need not be dense inUm(AZ)•
(see [10, page 21]). This uses the quadratic reciprocity law;

(4) There are infinitely many m’s such that Um does not satisfy the integral Hasse
principle. The examples in [10] are all of the shape d = r.v2, with r =
±2, r = 12, r = 20, and specific properties for the primes dividing v. The
arguments use quadratic reciprocity. They are in the same spirit as earlier
examples [6,7] accounted for by the integral Brauer-Manin obstruction. From
a historical point of view, it is interesting to note that examples very close to
those of [10] are already given in Mordell’s 1953 paper [17, Section 3];

(5) For “generic” values of m, reduction theory leads to examples where
Um(AZ) 6= ; but Um(Z) = ;. On the basis of intensive numerical experi-
ments, Ghosh and Sarnak suggest that there are many such examples that can-
not be explained by a reciprocity argument, i.e., for which, in our language,
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Um(AZ)Br• 6= ;. More precisely they predict a count for the set of m’s with
local solutions and no global solution which is much higher than what their
families of counterexamples produce.

The cubic surface Xm ⇢ P3Q given by the homogeneous equation

t (x2 + y2 + z2) � xyz = mt3

is smooth as soon as m 6= 0, 4. The surface Um = Um ⌦Z Q is the complement
in Xm of the hyperplane section H defined by plane section t = 0. Its geometric
fundamental group is trivial (Proposition 4.1). ThusUm , or rather the pair (Xm, H),
is in a strong sense a log K3 surface [11, Definition 2.4].

The search for integral points on Um bears some analogy with the search for
rational points on smooth, projective K3 surfaces W . For this latter situation, Sko-
robogatov has put forward the conjecture: The closure of the setW (Q) in the adelic
setW (AQ)• is just the Brauer-Manin setW (AQ)Br• . One may wonder whether there
is a similar result for integral points on log K3 surfaces U . Here some restriction
must be made. It may indeed happen that the set U(Z) is not empty but not Zariski
dense in U (Harpaz [11, Theorem 1.4]; Jahnel and Schindler [13, Theorem 2.6]).

Here are some questions raised by the paper of Ghosh and Sarnak.

(A) A first problem is to check that all counterexamples in [10] are of Brauer-
Manin type, and to search for as many families of counterexamples as possible.

This problem is best handled by solving problems (B) and (C):

(B) For arbitrary m, can one determine Br(Um)/Br(Q)? Is this quotient finite?
(C) For arbitrary m, can one determine Um(AZ)Br• ?
(D) When (how often) is the closure of Um(Z) equal to the Brauer-Manin set

Um(AZ)Br• ?

Here are the main results of our paper:

(a) We solve Problem (A), i.e., we check that the counterexamples to the integral
Hasse principle based on the quadratic reciprocity law in [10] are of Brauer-
Manin type, and we produce more families of counterexamples of the same
kind;

(b) We solve Problem (B) for all values ofm. This in principle solves Problem (C);
(c) Over an arbitrary ground field, we give generators for the algebraic part of the

Brauer group of U , and we systematically study the “transcendental part” of
the Brauer group of U ;

(d) We get a satisfactory answer to Problem (D). More precisely, we prove (see
Theorem 6.2):

Theorem 1.1. Let m 2 Z be any integer. Suppose Um(AZ) 6= ;. For any finite set
S of primes the image of the natural map Um(Z) !

Q
p/2S Um(Zp) is not dense.
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The proof of this theorem does not involve the Brauer group, it only uses reduction
theory. It should be compared with the statement at the bottom of page 2 of [10],
with reference to [3], that if d = m � 4 > 0 is a square, then Um “satisfies a form
of strong approximation”. See Remark 6.4 below.

As a corollary, one gets (see Corollary 6.6):

Corollary 1.2. Suppose m 6= 0, 4 and Um(AZ)Br• 6= ;. Then Um(Z) is not dense in
Um(AZ)Br• .

Since there are infinitely many m 6= 0, 4 such that Um(Z) is Zariski dense in Um
by [10, Section 5.2], we obtain infinitely many log K3 surfaces where integral points
are Zariski dense but are not dense in the integral Brauer-Manin sets (see Corol-
lary 6.7).

Such a behaviour had not been yet observed, even in the context of rational
points. If one allows discussion of density in the real locus, one may only compare
this with the examples of smooth projective surfaces X/Qwith the property that the
closure of X (Q) in X (R) does not coincide with a union of connected components
of the real locus X (R) [5, Section 5].

This work was started in Beijing in November 2017 and posted on arXiv in
August 2018. In a preprint posted on arXiv in July 2018, D. Loughran and V. Mi-
tankin [15] have made an independent study. With the restrictions m, d,md not
squares, they independently solve problem (B). Their paper also solves Problem
(A), produces some more types of counterexamples, and gives an asymptotic lower
bound for the number of integers m giving rise to such counterexamples. Our stock
of counterexamples enables us to produce a slightly better asymptotic lower bound
than [15, Theorem 1.5].

With the same restriction that m, d,md are not squares, towards Problem (C),
Loughran andMitankin establish the beautiful result that the only possible examples
with Um(AZ) 6= ; and Um(AZ)Br = ; satisfy that the class of d = m�4 inQ⇤/Q⇤2

lies in the subgroup spanned by ±1, 2, 3, 5. This finiteness result, which is in the
spirit of the finiteness of exceptional spinor classes in the study of the representation
of an integer by a ternary quadratic form (see [6, Remark 7.11]), explains why the
examples in [10] based on the quadratic reciprocity law were of a rather special
type. It is used in [15] to show that there are indeed far less values of m with
Brauer-Manin counterexamples than the number of values of m predicted by [10]
for counterexamples to the integral Hasse principle.
Notation. Let k be a field and k a separable closure of k. We let g = gk = Gal(k/k)
be the absolute Galois group. A k-variety is a separated k-scheme of finite type. If
X is a k-variety, we write X = X ⇥k k. We let k[X] = H0(X, OX ) and k[X] =
H0(X , OX ). If X is an integral k-variety, we let k(X) denote the function field of
X . If X is a geometrically integral k-variety, we let k(X) denote the function field
of X . We let Pic(W ) = H1Zar (W, Gm) = H1ét(W, Gm) denote the Picard group of a
scheme W . We let Br(W ) = H2ét(W, Gm) denote the Brauer group of a scheme W .
Suppose W is a smooth integral k-variety. The natural map Br(W ) ! Br(k(W ))
is injective, hence Br(W ) is a torsion group. An element of Br(k(W )) whose order
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is prime to the characteristic of k belongs to Br(W ) if and only if its residues at all
codimension 1 points of W vanish. We let

Br1(X) = Ker[Br(X) ! Br(X)]

denote the algebraic Brauer group of a k-variety X and we let Br0(X) ⇢ Br1(X)
denote the image of Br(k) ! Br(X). The image of Br(X) ! Br(X) is sometimes
referred to as the “transcendental Brauer group” of X .

Given a field F of characteristic zero containing a primitive n-th root of unity
⇣ = ⇣n , we have H2(F, µ⌦2

n ) = H2(F, µn) ⌦ µn. The choice of ⇣n then defines
an isomorphism Br(F)[n] = H2(F, µn) ⇠= H2(F, µ⌦2

n ). Given two elements
f, g 2 F⇥, they have classes ( f ) and (g) in F⇥/F⇥n = H1(F, µn). One denotes
( f, g)⇣ 2 Br(F)[n] = H2(F, µn) the class corresponding to the cup-product

( f ) [ (g) 2 H2(F, µ⌦2
n ).

Suppose F/E is a finite Galois extension with Galois group G. Given � 2 G
and f, g 2 F⇥, we have � (( f, g)⇣n ) = (� ( f ), � (g))� (⇣n) 2 Br(F). In particular, if
⇣n 2 E , then � (( f, g)⇣n ) = (� ( f ), � (g))⇣n . For all this, see [9, Section 4.6, Section
4.7] and in particular [9, Proposition 4.7.1].

Let R be a discrete valuation ring with field of fractions F and residue field  .
Let v denote the valuation F⇥ ! Z. Let n > 1 be an integer invertible in R.
Assume F contains a primitive n-th root of unity ⇣ . For f, g,2 F⇥, we have the
residue map

@R : H2(F, µn) ! H1(, Z/n) ⇠= H1(, µn) = ⇥/⇥n,

where H1(, Z/n) ⇠= H1(, µn) is induced by the isomorphismZ/n ' µn sending
1 to ⇣ . This map sends the class of ( f, g)⇣ 2 Br(F)[n] = H2(F, µn) to

(�1)v( f )v(g) class(gv( f )/ f v(g)) 2 ⇥/⇥n. (1.4)

For a proof of these well known facts, see [9]. Here are precise references. Residues
in Galois cohomology with finite coefficients are defined in [9, Construction 6.8.5].
Comparison of residues in Milnor K -Theory and Galois cohomology is given in
[9, Proposition 7.5.1]. The explicit formula for the residue in Milnor’s group K2 of
a discretely valued field is given in [9, Example 7.1.5].

Structure of the paper

Let k be a field of characteristic zero. Let m 2 k. Assume m(m � 4) 6= 0. Let
Xm ⇢ P3k be the smooth cubic surface defined by the projective equation

t (x2 + y2 + z2) � xyz = mt3.

LetU = Um ⇢ Xm be the smooth affine cubic surface defined by the affine equation

x2 + y2 + z2 � xyz = m.
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In Section 2 we study the Galois modules Pic(Xm),Pic(Um),Br(Um). We show
Br(Um) ' Q/Z(�1). In Section 3 we compute Br(Xm) = Br1(Xm) and the alge-
braic part Br1(Um) of Br(Um). In Section 4, we compute the transcendental part of
Br(Um), namely the quotient Br(Um)/Br1(Um). We then turn to the case k = Q and
m is an integer. In Section 5 we show how to compute the integral Brauer-Manin
obstruction for the affine scheme Um over Z defined by x2+ y2+z2�xyz = m.We
then show that the counterexamples to the integral Hasse principle for Um in [10]
may all be explained by a combination of integral Brauer-Manin obstruction and
reduction theory. We increase the stock of such counterexamples, thus leading to
an improvement on a counting result in [15]. In Section 6 we prove that strong ap-
proximation never holds for Markoff type surfaces. Section 7 is an appendix giving
the structure of the real locus Um(R) depending on the value of m 2 R.

2. Computation of Brauer groups I, general setting

Proposition 2.1. Let X be a smooth, projective, geometrically rational surface
over a field k of characteristic zero. Suppose thatU is an open subset of X such that
X \ U is the union of three distinct k-lines, by which we mean a smooth projective
curve isomorphic to P1k . Suppose any two lines intersect each another transversely
in one point, and that the three intersection points are distinct. Let L be one of the
three lines and V ⇢ L be the complement of the 2 intersection points of L with the
other two lines. Then the residue map

@L : Br(k̄(X)) ! H1(k̄(L), Q/Z)

induces a g-isomorphism

Br(U)
⇠=
�! H1(V , Q/Z) ' H1(Gm, Q/Z) ' Q/Z(�1).

Proof. Since X is smooth, the homology of the Bloch-Ogus complex

H2(k̄(X), Q/Z(1)) ! �x2X (1)H1(k̄(x), Q/Z) ! �x2X (2)H0(k̄(x), Q/Z(�1))

at the second term is H1Zar (X ,H2
X
(Q/Z(1))) by [2, (6.1) Theorem]. The spectral

sequence

E p,q
2 = H p

Zar (X ,Hq
X
(Q/Z(1))) ) H p+q

ét (X , Q/Z(1))

in [2, (6.3) Corollary] implies that H1Zar (X ,H2
X (Q/Z(1))) is a subgroup of

H3ét(X , Q/Z(1)). Since

H1ét(X , µn) = Pic(X)[n] = 0

for all n > 0 by the Kummer sequence, one has

H3ét(X , Q/Z(1)) = lim
�!
n
H3ét(X , µn) = 0

by Poincaré duality. Therefore the above Bloch-Ogus complex is exact.
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Since X is a smooth, projective, geometrically rational surface, Br(X) = 0 and
the following diagram of exact sequences

Br(X) = 0 // H2(k̄(X), Q/Z(1)) //

'

✏✏

�x2X (1)H1(k̄(x), Q/Z)

✏✏

0 // Br(U) // H2(k̄(U), Q/Z(1)) // �x2U (1)H1(k̄(x), Q/Z)

commutes by [4, (3.9)]. Let {L1, L2, L3} be the set of three lines in X \ U and
let {P1, P2, P3} be the set of three intersection points of L1, L2 and L3 such that
Pi 62 Li for 1  i  3. Set

Vi = Li \ {Pj } j 6=i 'k Gm

for 1  i  3. Combining the above diagram with the above Bloch-Ogus exact
sequence yields the following exact sequence, where the maps are given by the
residues

0 ! Br(U) ! �3
i=1H

1
ét(V i , Q/Z) ! �3

i=1H
0(k̄(Pi ), Q/Z(�1)).

For each i , we have Vi ' Gm . The residue map induces the following short exact
sequence

0 ! H1ét(V i , Q/Z) ! � j 6=i H0ét(k̄(Pj ), Q/Z(�1))
P

j 6=i
���! Q/Z ! 0.

After twisting by roots of unity, this simply follows from the exact sequence

1 ! k⇥
! k[Gm]⇥ ! Z � Z ! Z ! 0

induced by the map sending a rational function on Gm to its divisor at 0 and at1.
One thus has g-isomorphisms

Br(U) ' H1ét(V i , Q/Z) ' H1(Gm, Q/Z) ' Q/Z(�1)

for 1  i  3.

For cubic surfaces over an algebraically closed field k, one has the following
result.

Proposition 2.2. Let X ⇢ P3k be a smooth, projective, cubic surface over a field k of
characteristic zero. Suppose a plane P2k ⇢ P3k cuts out on X̄ three lines L1, L2, L3
over k̄. Let U ⇢ X be the complement of this plane. Then the map k̄⇥ ! k̄[U ]⇥ is
an isomorphism of Galois modules and the sequence

0 ! �3
i=1ZLi ! Pic(X) ! Pic(U) ! 0

is an exact sequence of Galois lattices.
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Proof. We may assume k = k̄. Let

aL1 + bL2 + cL3 = 0 2 Pic(X)

with a, b, c 2 Z. By the assumption that (Li .Li ) = �1 and (Li .L j ) = 1 for i 6= j ,
one has

�a + b + c = 0, a � b + c = 0, a + b � c = 0.

This implies that a = b = c = 0.
To complete the proof, one only needs to show that Pic(U) is torsion free.
Let e1, e2, · · · , e6 and l be given by [12, Chapter V, Proposition 4.8].
Suppose that one of L1, L2 and L3 is in {e1, · · · , e6}. Say that L1 = e1.

Consider the two disjoint sets of classes of lines on X :

{l � e1 � ei : 2  i  6} and {2l �
X

k 6=i
ek : 2  i  6}.

By inspecting the intersection property of L1, L2, L3, one sees that L2 is in one of
these sets, and L3 is in the other one. Without loss of generality, one can assume
that L2 = l � e1 � e2. Then

L3 = 2l �
X

k 6=2
ek .

By [12, Chapter V, Proposition 4.8], one concludes that Pic(X)/(�3
i=1ZLi ) is free.

Otherwise, all L1, L2 and L3 are in {l � ei � e j : 1  i < j  6}. Say

L1 = l � e1 � e2, L2 = l � e3 � e4 and L = l � e5 � e6.

Then Pic(X)/(�3
i=1ZLi ) is free by [12, Chapter V, Proposition 4.8].

Alternative completion of the proof. The first argument shows that L1, L2, L3 are
linearly independent. It also shows that k⇥ = k[U ]⇥. Since the determinant of
the system of equations is ±4, and Pic(X) is torsion free, the only torsion that
could exist in Pic(U) is 2-primary. Let us show there is no 2-torsion in Pic(U).
If there was, there would exist a principal divisor on X of the shape 2D + L1, or
2D+ L1 + L2, or 2D+ L1 + L2 + L3. By the well known configuration of the 27
lines on a cubic surface, there exists a line L on X which meets L1 in one point and
does not meet L2 or L3. Intersection with L rules out the three possibilities.

The following corollary applies to number fields and more generally to func-
tion fields of varieties over a number field.

Corollary 2.3. Let k be a field of characteristic zero such that in any finite field
extension there are only finitely many roots of unity. Let X ⇢ P3k be a smooth,
projective, cubic surface over k. Suppose a plane cuts out on X three nonconcurrent
lines. Let U ⇢ X be the complement of the plane section. Then the quotient
Br(U)/Br0(U) is finite.
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Proof. Let g = Gal(k/k) where k is an algebraic closure of k. Since k⇥
= k[U ]⇥,

we have an exact sequence

Br(k) ! Ker[Br(U) ! Br(U)g] ! H1
�
g,Pic(U)

�

by [6, Lemma 2.1]. Since Pic(U) is free of finite rank by Proposition 2.2,
H1(g,Pic(U)) is finite.

Let K ⇢ k be a field over which one of the three lines, call it L , is defined. Let
gK = Gal(k/K ). The isomorphism

Br(U)
⇠=
�! Q/Z(�1)

attached to the line L is gK -equivariant. We thus have

Br(U)g ⇢ Br(U)gK ' Q/Z(�1)gK .

Since there are finitely many roots of unity in K , the group Q/Z(�1)gK is finite
(use Lemma 2.4). Thus Br(U)g is finite. The result now follows from the above
exact sequence.

Lemma 2.4. Let k be a field of characteristic 0. Let g = Gal(k/k). Let µ1(k) =
Q/Z(1) be the subgroup of roots of unity in k⇥. Then Q/Z(�1)g is (noncanoni-
cally) isomorphic to µ1(k), the group of roots of unity in k.

Proof. We only need to show: Z/n ⇢ Q/Z(�1)g holds if and only if µn ⇢ k.
If µn ⇢ k, obviously Z/n ⇢ Q/Z(�1)g. On the other hand, let a 2 Q/Z(�1)

be of order n. For any � 2 g, then � (a) = �(� )�1a, here � is the cyclotomic
character. Therefore, if a is a fixed point, then (�(� ) � 1)a = 0 for any � 2 g, i.e.,
�(� ) � 1 ⌘ 0 mod n. This implies µn ⇢ k.

3. Computation of Brauer groups II, algebraic parts

For Markoff surfaces, one can further compute the algebraic part of Brauer groups
explicitly by using the equations.

Lemma 3.1. Let k be a field of characteristic zero and k an algebraic closure of k.
Let m 2 k and d = m � 4. Let Xm ⇢ P3k be defined by the equation

t
�
x2 + y2 + z2

�
� xyz = mt3.

Then Xm is smooth over k if and only if md 6= 0. If md 6= 0, fix a square rootp
m 2 k and a square root

p
d 2 k. Then the 27 lines on Xm are defined over

k(
p
m,

p
d) by the following equations

L1 : x = t = 0; L2 : y = t = 0; L3 : z = t = 0
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and 8
>>>>>>><

>>>>>>>:

l1(✏, �) : x = 2✏t, y � ✏z = �
p
dt

l2(✏, �) : y = 2✏t, z � ✏x = �
p
dt

l3(✏, �) : z = 2✏t, x � ✏y = �
p
dt

l4(✏, �) : x = ✏
p
mt, y = 1

2 (✏
p
m + �

p
d)z

l5(✏, �) : y = ✏
p
mt, z = 1

2 (✏
p
m + �

p
d)x

l6(✏, �) : z = ✏
p
mt, x = 1

2 (✏
p
m + �

p
d)y

with ✏ = ±1 and � = ±1. Moreover, the intersection numbers satisfy
�
li (✏, �).l j (✏, �)

�
= 0

for any fixed pair (✏, �), whenever 1  i 6= j  6.

Proof. For m = 4, the singular points are

(x : y : z : t) = (2" : 2⌘ : 2"⌘ : 1)

with " = ±1, ⌘ = ±1. For m = 0, there is only one singular point, namely
(0 : 0 : 0 : 1). Assume m 6= 0, 4. Any line L on Xm which is not in the plane t = 0
meets this plane in one point, and that point must be on one of the lines L1, L2, L3.
Say it is L1. The plane containing L and L1 is one of the planes through L1 which
intersects Xm in three lines. Writing down the planes through each Li with this
property (there are 5 such planes for each Li ) produces all lines on Xm , which are
indeed 27 in number.

For the sake of simplicity, wherever there is no ambiguity, for each i=1, . . . , 6
we shall write li = li (1, 1) .

Proposition 3.2. Let k be a field of characteristic zero and m 2 k \ {0, 4}. Set
d = m � 4. Let Xm ⇢ P3k be defined by the equation

t (x2 + y2 + z2) � xyz = mt3. (3.1)

If [k(
p
m,

p
d) : k] = 4, then

Br(Xm)/Br0(Xm) = Br1(Xm)/Br0(Xm) ⇠= Z/2

with a generator
⇢✓⇣ x

t

⌘2
� 4, d

◆
=

✓⇣ y
t

⌘2
� 4, d

◆
=

✓⇣ z
t

⌘2
� 4, d

◆�

over t 6= 0.
If d 62 k⇥2 and m 2 k⇥2, then

Br(Xm)/Br0(Xm) = Br1(Xm)/Br0(Xm) ⇠= (Z/2)2
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with two generators
⇢✓⇣ x

t

⌘2
� 4, d

◆
,
⇣⇣p

m �
x
t

⌘ ⇣ x
t

+ 2
⌘

, d
⌘�

over t 6= 0.
If d 2 k⇥2 or d · m 2 k⇥2, then Br(k) = Br1(Xm) = Br(Xm)

Proof. For ease of notation, we set X = Xm . Since X is geometrically rational, one
has Br(X) = Br1(X). One clearly has X (k) 6= ;. By the Hochschild-Serre spectral
sequence (see [6, Lemma 2.1]), one has an isomorphism

Br1(X)/Br0(X) ' H1(k,Pic(X)). (3.2)

By Lemma 3.1, the six lines li , i = 1, . . . , 6 on the cubic surface X are skew to
one another, hence may be simultaneously blown down to P2 (see [12, Chapter
V, Proposition 4.10]). The class ! of the canonical bundle on X coincides with
�3l +

P6
i=1 li , where l is the inverse image of the class of lines in P2. We have

the following intersection properties: (l.l) = 1 and (l.li ) = 0 for 1  i  6. The
classes l and li , i = 1, . . . , 6 form a basis of Pic(X).

Since

(L j .li ) =

(
1 i � j ⌘ 0 or 3 mod 6
0 otherwise

where L j are the lines in Lemma 3.1 with 1  j  3 and 1  i  6, one concludes
that

L j = l � l j � l j+3 (3.3)

in Pic(X) for 1  j  3 by [12, Chapter V, Proposition 4.8 (e)].

(1) Suppose d 62 k⇥2 and md 62 k⇥2.
There is � 2 Gal(k(

p
d,

p
m)/k) such that

� (
p
d) = �

p
d and � (

p
m) =

p
m.

Since the intersection numbers

(� l j (1, 1).li (1, 1)) = (l j (1,�1).li (1, 1)) =

(
0 i = j + 3
1 i 6= j + 3

(3.4)

and

(� l3+ j (1, 1).li (1, 1)) = (l3+ j (1,�1).li (1, 1)) =

(
0 i = j
1 i 6= j

(3.5)

for 1  j  3, one obtains

� l j = 2l �
X

i 6= j+3
li and � l3+ j = 2l �

X

i 6= j
li (3.6)
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in Pic(X) by [12, Chapter V, Theorem 4.9] for 1  j  3. This implies that

� l = 5l � 2
6X

i=1
li (3.7)

by (3.3). Then

ker(1+ � ) = h(l � l1 � l2 � l3), (l1 � l4), (l2 � l5), (l3 � l6)i (3.8)

and

(1� � )Pic(X)

=
⌦
2(l � l1� l2� l3), (l1� l4+ l3� l6), (l2� l5� l3+ l6), (l2� l5+ l3� l6)

↵ (3.9)

by (3.6), (3.7).
Given a finite cyclic group G = h� i and a G-module M , recall that we have

isomorphisms H1(G,M) ⇠= Ĥ�1(G,M), where the latter group is the quotient of
N� (M), the set of elements of M of norm 0, by its subgroup (1� � )M .

(1a) Suppose d /2 k⇥2 and m 2 k⇥2. Then

H1(k,Pic(X)) = H1(h� i,Pic(X)) ' Ĥ�1(h� i,Pic(X)) ⇠= (Z/2)2

by [18, (1.6.6) and (1.6.12) Proposition] and (3.8) and (3.9).

(2) Suppose m 62 k⇥2 and md 62 k⇥2.
There is ⌧ 2 Gal(k(

p
d,

p
m)/k) such that

⌧ (
p
m) = �

p
m and ⌧ (

p
d) =

p
d.

Since the intersection numbers

(⌧ l j+3(1, 1).li (1, 1)) = (l j+3(�1, 1).li (1, 1))

=

(
0 1  i  3 and i = j + 3
1 4  i  6 and i 6= j + 3

(3.10)

for 1  j  3, one obtains

⌧ l j+3 = l �
X

4i 6= j+36
li (3.11)

in Pic(X) by [12, Chapter V, Theorem 4.9] for 1  j  3. This implies that

⌧ l = 2l �
6X

i=4
li (3.12)
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by (3.3). Then

ker(1+ ⌧ ) =
⌦
l � l4 � l5 � l6

↵
and

ker(1� ⌧ ) =
⌦
l1, l2, l3, (l � l4), (l � l5), (l � l6)

↵ (3.13)

and
(1� ⌧ )Pic(X) = hl � l4 � l5 � l6i (3.14)

by (3.11), (3.12).

(2a) If m /2 k⇥2 and d 2 k⇥2, then
H1(k,Pic(X)) = H1(h⌧ i,Pic(X)) ' Ĥ�1(h⌧ i,Pic(X)) = 0

by [18, (1.6.6) and (1.6.12) Proposition] and (3.13) and (3.14).

If d 2 k⇥2 and m 2 k⇥2, then we also have H1(k,Pic(X)) = 0. Indeed, in that
case all 27 lines are defined over k and the action of the Galois group on Pic(X) is
the trivial action.

(3) Suppose that none of d, m, dm is a square, that is [k(
p
m,

p
d) : k] = 4.

Then
H1
�
k,Pic(X)

�
= H1

�
G,Pic(X)

�

by [18, (1.6.6) Proposition], where G = Gal(k(
p
m,

p
d)/k). Let �, ⌧ 2 G be as

above. Then one has the following exact sequence

0 ! H1
�
h� i,Pic(X)h⌧ i

�
! H1

�
G,Pic(X)

�
! H1

�
h⌧ i,Pic(X)

�
= 0

by [18, (1.6.6) and (1.6.12) Proposition] and (3.13) and (3.14). Since

ker(1+ � ) \ Pic(X)h⌧ i =
⌦
(l �l4� l2� l3), (l � l5� l1� l3), (l � l6� l1� l2)

↵

by (3.8), (3.13) and

(1� � )Pic(X)h⌧ i

=
⇥
(1� � )Pic(X)

⇤
\ Pic(X)h⌧ i

=
⌦
(2l � l1� 2l2� l3� l4� l6), (l2� l3� l5+ l6), (2l� 2l1� l2� l3� l5� l6)

↵

by (3.6), (3.7), (3.9), (3.13) and (3.14), one concludes that

H1(k,Pic(X)) = [ker(1+ � ) \ Pic(X)h⌧ i]/[(1� � )Pic(X)h⌧ i] ⇠= Z/2.

(4) Suppose m, d /2 k⇥2 and md 2 k⇥2, i.e., k(
p
m) = k(

p
d) 6= k.

Let ⇢ be the generator of Gal(k(
p
m)/k). Computing the intersection numbers

(⇢l j+3(1, 1).li (1, 1)) = (l j+3(�1,�1).li (1, 1)) =

(
1 1  i 6= j  3
0 otherwise



1270 JEAN-LOUIS COLLIOT-THÉLÈNE, DASHENG WEI AND FEI XU

for 1  j  3, one obtains

⇢l j+3 = l �
X

1i 6= j3
li (3.15)

for 1  j  3. Then

⇢l = 4l �
3X

i=1
li �

6X

i=1
li (3.16)

by (3.6) and (3.15). Since

ker(1+ ⇢) = (1� ⇢)Pic(X) =
⌦
(l � l2� l3� l4), (l � l1� l3� l5), (l � l1� l2� l6)

↵

by (3.6), (3.15) and (3.16), one concludes that

H1(k,Pic(X)) = H1(h⇢i,Pic(X)) ⇠= Ĥ�1(h⇢i,Pic(X)) = 0.

Nowwe produce concrete generators in Br1(X) for Br1(X)/Br(k)⇠=H1(k,Pic(X)).
If d 2 k⇥2 or md 2 k⇥2, we have just seen that Br1(X)/Br(k) = 0. Let us consider
the other cases.

Let U be the open subset of X defined by t 6= 0. Then equation (3.1) is
equivalent to

(2z � xy)2 � 4d = (x2 � 4)(y2 � 4) (3.17)

for U . Since
{x ± 2 = 0} \

�
(x ⌥ 2)(y2 � 4) = 0

 

is a closed subset of codimension � 2 on U , one obtains that (x ± 2, d) 2 Br1(U).
This implies that

B = (x2 � 4, d) = (y2 � 4, d) = (z2 � 4, d) 2 Br1(U).

The residues of B at the lines L1, L2 and L3 which form the complement of U in
X (cf. Lemma 3.1) are easily seen to be trivial. One thus has B 2 Br1(X).

If m 2 k⇥2, equation (3.1) is equivalent to

(2y �
p
mz)2 � dz2 = 4(x �

p
m)(yz � x �

p
m)

for U . Then (
p
m � x, d) 2 Br1(U) by the same argument as above. This implies

that
M = ((x + 2)(

p
m � x), d) 2 Br1(U).

Then M 2 Br1(X) by computing the residues of M at L1, L2 and L3 as above.
To show that these elements B and M are not constant, one uses the conic

fibration
⇡ : U ! A1; (x, y, z) 7! x .
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The generic fibre U⌘
⇡⌘
�! ⌘ induces

⇡⇤
⌘ : Br(⌘) ! Br(U⌘) with ker(⇡⇤

⌘ ) = (x2 � 4,m � x2)

by [9, Theorem 5.4.1].
If [k(

p
m,

p
d) : k] = 4, then the residue of (x2�4, d) at (x2�m) is different

from that of (x2 � 4,m � x2). This implies that ⇡⇤
⌘ (x2 � 4, d) is not constant by

the Faddeev exact sequence (see [9, Corollary 6.4.6]). Since ⇡⇤
⌘ (x2 � 4, d) is the

pull-back of B by the natural map U⌘ ! U , one concludes that B is not constant,
hence B generates Br1(X)/Br(k) = Z/2.

If d 62 k⇥2 and m 2 k⇥2, then we have the residues

@P(x2 � 4, d) =

(
d 2 k⇥/k⇥2 if P 2 {(x ± 2)}
1 2 k⇥/k⇥2 otherwise

and

@P((
p
m � x)(x + 2), d) =

(
d 2 k⇥/k⇥2 if P 2 {(x + 2), (x �

p
m)}

1 2 k⇥/k⇥2 otherwise

and

@P(x2 � 4,m � x2) =

(
d 2 k⇥/k⇥2 if P 2 {(x ± 2), (x ±

p
m)}

1 2 k⇥/k⇥2 otherwise

for all closed points P of P1. Then

⇡⇤
⌘ (x

2�4, d), ⇡⇤
⌘ ((

p
m�x)(x+2), d) and ⇡⇤

⌘ ((x
2�4, d)·((

p
m�x)(x+2), d))

are not constant by the Faddeev exact sequence. Therefore B and M have indepen-
dent classes in Br1(X)/Br(k) ⇠= (Z/2)2, hence generate that group.

Remark 3.3. If d 2 k⇥2, then Xm contains two skew k-rational lines, e.g., l1 and
l2. If d · m 2 k⇥2, then Xm contains the two lines l4(1, 1) and l4(�1,�1) defined
over the quadratic field extension k(

p
m), which are conjugate to each other and

do not meet. As for any smooth projective cubic surface with this property, this
implies that Xm is k-birational to projective space P2k . This general fact goes back
to L. Euler in the case of the diagonal cubic surface x3 + y3 + z3 + t3 = 0 and
a generalisation is due to B. Segre. Segre’s result was completed by Swinnerton-
Dyer’s paper [21]. Therefore Br(X) = Br(k). We keep this part of the computation
in Proposition 3.2 because some intermediate results will later be used.
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Theorem 3.4. Let k be a field of characteristic zero and let m 2 k \ {0, 4} and
d = m � 4. Let Um be the affine k-variety defined by (1.1).

If [k(
p
m,

p
d) : k] = 4 then

Br1(Um)/Br0(Um) ⇠= (Z/2)3

with the generators {(x � 2, d), (y � 2, d), (z � 2, d)}.
If d /2 k⇥2 and dm 2 k⇥2 then

Br1(Um)/Br0(Um) ⇠= (Z/2)2

with the generators {(x � 2, d), (y � 2, d)}.
If d /2 k⇥2 and m 2 k⇥2, then

Br1(Um)/Br0(Um) ⇠= (Z/2)4

with the generators {(x � 2, d), (y � 2, d), (z � 2, d), (x �
p
m, d)}.

Otherwise, i.e. if d 2 k⇥2, then Br1(Um) = Br0(Um).

Proof. We keep notation as in Lemma 3.1. For ease of notation, we set U = Um .
Let l 2 Pic(X) as in the proof of Proposition 3.2. Then Pic(U) is given by the
following quotient group

�
(�6

i=1Zli ) � Zl
�
/(l � l j � l j+3 : 1  j  3) ⇠= �4

i=1Z[li ] (3.18)

by Proposition 2.2 and formula (3.3). Here given a divisor D on X we denote
by [D] the image in Pic(U) of its class in Pic(X). By Proposition 2.2 we have
k⇥

= k[U ]⇥. The Hochschild-Serre spectral sequence (see [6, Lemma 2.1]) then
gives an injective homomorphism

Br1(U)/Br0(U) ,! H1(k,Pic(U)). (3.19)

In fact, it is an isomorphism since the smooth compactification X of U has ra-
tional points, hence also U (any smooth cubic surface over an infinite field k is
k-unirational as soon as it has a k-rational point).

• Case [k(
p
m,

p
d) : k] = 4. Let G = Gal(k(

p
m,

p
d)/k). Let � and ⌧ be the

generators of Gal(k(
p
m,

p
d)/k) satisfying

� (
p
d) = �

p
d, � (

p
m) =

p
m; ⌧ (

p
d) =

p
d, ⌧ (

p
m) = �

p
m.

Then in Pic(U) we have the following equalities

� ([li ]) = �[li ] (3.20)

for 1  i  4 by (3.6), ⌧ ([li ]) = [li ] for 1  i  3 and

⌧ ([l4]) = �[l1] + [l2] + [l3] � [l4] (3.21)
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by (3.11). Since Pic(U) is free and Gal(k̄/k(
p
m,

p
d)) acts on Pic(U) trivially,

one obtains that
H1(G,Pic(U)) ⇠= H1(k,Pic(U))

by [18, (1.6.6) Proposition]. Let H be the subgroup of G generated by � . Then

Pic(U)H = 0

by the equation (3.20). Therefore

H1(G,Pic(U)) ⇠= H1(H,Pic(U))G/H

by [18, (1.6.6) Proposition]. Since

H1(H,Pic(U)) ⇠= Ĥ�1(h� i,Pic(U)) ⇠= �4
i=1(Z/2)[li ]

by [18, (1.6.12) Proposition] and the equation (3.20), one concludes

H1(k,Pic(U)) ⇠= H1(H,Pic(U))G/H ⇠= �3
i=1(Z/2)[li ]

by (3.21).

• Case k(
p
m) = k(

p
d) 6= k. Let ⇢ be the generator of Gal(k(

p
m)/k). Since

(3.6) is still available, one has ⇢([li ]) = �[li ] for 1  i  3. By (3.15), one obtains

⇢([l4]) = [l1] � [l2] � [l3] + [l4].

Therefore

H1(k,Pic(U)) = H1(h⇢i,Pic(U)) ⇠= Ĥ�1(h⇢i,Pic(U)) ⇠= �2
i=1(Z/2)[li ].

• Case k(
p
d) 6= k(

p
m) = k. Let � be the generator of Gal(k(

p
d)/k). Since the

intersection formulae (3.4) and (3.5) are still available, one has � ([li ]) = �[li ] for
1  i  4. Then

H1(k,Pic(U)) = H1(h� i,Pic(U)) ⇠= Ĥ�1(h� i,Pic(U)) ⇠= �4
i=1(Z/2)[li ].

• The remaining case is d 2 k⇥2. If also m 2 k⇥2, then the Galois action on the
lattice Pic(U) is trivial, hence H1(k,Pic(U)) = 0. Suppose m /2 k⇥2. Let ⌧ be the
generator of Gal(k(

p
m)/k). Since

ker(1+ ⌧ ) =
⌦
[l1] � [l2] � [l3] + 2[l4]

↵

and
(1� ⌧ )([l4]) = [l1] � [l2] � [l3] + 2[l4]

by (3.21), one concludes that H1(k,Pic(U)) = 0.
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Let us now produce concrete elements in Br1(U). Using equation (1.2) one
sees that the quaternion class (x ± 2, d) is in Br1(U) by the same argument as
that in Proposition 3.2. Similar equations give the same result for (y ± 2, d) and
(z ± 2, d).

The plane t = 0 cuts out the three lines (L1, L2, L3), each with multiplicity 1.
The plane x ± 2t = 0 cuts out L1 and two lines each defined over k(

p
d). From

this we compute the residues:

@Li ((x ± 2t)/t, d) =

(
1 2 k⇥/(k⇥)2 i = 1
d 2 k⇥/(k⇥)2 i = 2 and 3.

Similarly, one has

@Li ((y ± 2t)/t, d) =

(
1 2 k⇥/(k⇥)2 i = 2
d 2 k⇥/(k⇥)2 i = 1 and 3

and

@Li ((z ± 2t)/t, d) =

(
1 2 k⇥/(k⇥)2 i = 3
d 2 k⇥/(k⇥)2 i = 1 and 2.

This computation of residues will enable us to establish independence modulo 2 of
various classes in Br1(U)/Br0(U).

Using equation (1.3) one gets
�
(x � 2)(y � 2)(z � 2), d

�
= (x2 � 4, d). (3.22)

When [K : k] = 4, the quaternion (x2� 4, d) is not constant by Proposition 3.2.
Therefore {(x�2,d), (y�2,d), (z�2,d)} is a set of generators of Br1(U)/Br0(U)⇠=
(Z/2)3.

When k(
p
d) = k(

p
m) 6= k, then {(x�2, d), (y�2, d)} is a set of generators

of Br1(U)/Br0(U) ⇠= (Z/2)2.
When m 2 k⇥2 and d 62 k⇥2, equation (1.1) can be written as

(2y �
p
mz)2 � dz2 = 4(x �

p
m)(yz � x �

p
m).

Then (x �
p
m, d) 2 Br1(U) by the same argument as that in Proposition 3.2.

Since (x �
p
m, d) has the same residues as (x � 2, d) at Li for 1  i  3, the

class (x �
p
m, d) in Br1(U)/Br0(U) is different from (x � 2, d), (y � 2, d) and

(z � 2, d) by Proposition 3.2. Since
�
(x �

p
m)(y � 2)(z � 2), d

�
=
�
(x �

p
m)(x + 2), d

�

is not a constant element by (1.3) and Proposition 3.2, one concludes that
�
(x � 2, d), (y � 2, d), (z � 2, d), (x �

p
m, d)

 

is a set of generators of Br1(U)/Br0(U) ⇠= (Z/2)4.
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Remark 3.5. Note that the classes {(x + 2, d), (y + 2, d), (z + 2, d)} in
Br1(Um)/Br0(Um) in Theorem 3.4 are not independent because (1.1) can also be
written as

(x + y + z + 2)2 � d = (x + 2)(y + 2)(z + 2). (3.23)

4. Computation of Brauer groups III, transcendental parts

Let k be a field of characteristic zero, and m 2 k \ {0, 4}. Let d = m � 4 6= 0. Let
X ⇢ P3k be the smooth cubic surface defined by the equation

t (x2 + y2 + z2) � xyz = mt3.

Let U be the affine open subvariety of X given by t 6= 0, i.e., by the affine equation

x2 + y2 + z2 � xyz = m.

By Proposition 2.1, we have Br(U) ' Q/Z. In this section, we determine the
transcendental Brauer group Br(U)/Br1(U) ⇢ Br(U) of U .

We here set
li = li (1, 1) and l�i = li (1,�1).

For computational reasons, in this section we contract X to P2k̄ over k̄ by sending
the 6 lines l�i to 6 points. The 3 lines {Li }3i=1 correspond to three lines in P2k̄ by
this contraction and each of these three corresponding lines passes through one pair
among the 6 points by [12, Chapter V, Theorem 4.9]. We let l� 2 Pic(X) be the
inverse of the class of a line in P2k̄ . The contraction induces an isomorphism

V := U \

(
6[

i=1
l�i

)

' Gm ⇥k̄ Gm

over k̄.
Though this will not be used in the paper, it is worth noticing the following

consequence.

Proposition 4.1. The (Grothendieck) geometric fundamental group ⇡1(U) is triv-
ial.

Proof. Recall char(k) = 0. Since V is open in U , the group ⇡1(U) is a quotient
of ⇡1(V ). The group ⇡1(Gm ⇥k̄ Gm) = Ẑ2 is Abelian. From the above isomor-
phism we conclude that ⇡1(U) is Abelian. It is thus isomorphic to the profinite
completion of the system of groups H1(U , Z/n). By Proposition 2.2, k⇥

' k[U ]⇥

and Pic(U) is torsion free. The Kummer sequence then gives the isomorphism
H1(U , Z/n) ' Pic(U)[n] = 0.
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Using Proposition 2.2 and Lemma 3.1, we get:

Pic(U) = ((�6
i=1Zl

�
i )�Zl�)/(l� � l�j � l�j+3 : 1  j  3) ⇠= �4

i=1Z[l�i ]. (4.1)

More precisely, the composite ✓ of the natural maps

�4
i=1Z[l�i ] ! Pic(X) ! Pic(U)

is an isomorphism. Under the inverse isomorphism ✓�1, the classes of l�i in Pic(U)

for i = 1, 2, 3, 4 are sent to [l�i ], the class of l�5 is sent to [l�1 ] � [l�2 ] + [l�4 ], and
the class of l�6 is sent to [l�1 ] � [l�3 ] + [l�4 ]. The composite map

Z[l�] � �6
i=1Z[l�i ] = Pic(X) ! Pic(U) ! �4

i=1Z[l�i ] = Z4

is given by

(�0,�1, · · · ,�6) 7! (�0+�1+�5+�6,�2��5,�3��6,�0+�4+�5+�6). (4.2)

As we shall see below, the restriction map Br(U) ! Br(V ) is an isomorphism.
At least over some field extension of k one may thus compute the transcendental
elements in Br(U) by pull-back of Br(Gm ⇥k̄ Gm) ' Q/Z.

Theorem 4.2. Let n be a positive integer and ⇣ 2 k̄ be a primitive n-th root of unity.
Keep notation as in Lemma 3.1 and Theorem 3.4. Then the unique cyclic group of
order n in Br(U) is generated by the cyclic algebra Rn =

� f
g , uv

�
⇣
of dimension n2,

where
8
>>><

>>>:

f = 1
2 (

p
m �

p
d � 2)xz +

p
dxt + (2�

p
m)yt +

p
dzt �

p
m ·

p
dt2

g = 1
2 (

p
m +

p
d � 2)yz �

p
dyt + (2�

p
m)xt �

p
dzt +

p
m ·

p
dt2

u = 1
2 (

p
m �

p
d � 2)xy +

p
dyt + (2�

p
m)zt +

p
dxt �

p
m ·

p
dt2

v = 1
2 (

p
m +

p
d � 2)xz �

p
dzt + (2�

p
m)yt �

p
dxt +

p
m ·

p
dt2.

Proof. By Bezout’s theorem (see [12, Chapter I, Theorem 7.7]), one has
8
>>><

>>>:

{ f = 0} \ X = L1 + L3 + l1(1,�1) + l3(1, 1) + l4(1,�1) + l6(1, 1)
{g = 0} \ X = L2 + L3 + l2(1,�1) + l3(1, 1) + l5(1,�1) + l6(1, 1)
{u = 0} \ X = L1 + L2 + l1(1, 1) + l2(1,�1) + l4(1, 1) + l5(1,�1)
{v = 0} \ X = L1 + L3 + l1(1, 1) + l3(1,�1) + l4(1, 1) + l6(1,�1)

where Li with 1  i  3 and l j (✏, �) with 1  j  6, ✏ = ±1 and � = ±1 are
given by Lemma 3.1. For instance, one checks that each of the lines appearing on
the right hand side of the first formula is contained in the projective quadric defined
by f = 0. Since the degree of f is 2 and that of the cubic surface is 3, Bezout’s
theorem implies that the multiplicity of each line in { f = 0} \ X is 1.



BRAUER-MANIN OBSTRUCTION FOR MARKOFF SURFACES 1277

This implies:
(
div( fg ) = L1 � L2 + l1(1,�1) � l2(1,�1) + l4(1,�1) � l5(1,�1)
div(uv ) = L2 � L3 + l2(1,�1) � l3(1,�1) + l5(1,�1) � l6(1,�1).

(4.3)

Let us first prove that the restriction map Br(U) ! Br(V ) is an isomorphism.
Indeed, the lines l�i = li (1,�1) are skew to one another, and each of them intersects
the plane t = 0 in just one point, call it Pi . Let mi := l�i \ {Pi } ⇠= A1k̄ . We thus
have an exact sequence

0 ! Br(U) ! Br(V ) ! �6
i=1H

1
ét(mi , Q/Z).

But H1ét(mi , Q/Z) = H1ét(A1k̄, Q/Z) = 0.We thus have Rn 2 Br(U).
The line L1 does not appear in the divisor of u/v. In the divisor of f/g it

appears with valuation 1. The residue of Rn at the generic point of L1 is thus given
by the class in k(L1)⇥/k(L1)⇥n of the rational function induced by u/v on L1.The
divisor of that function is a linear combination of points which in particular contains
L3 \ L1 with multiplicity �1. Thus the order of the residue is n, and Rn itself is of
order n, hence generates Br(U)[n].

The 27 lines are defined over any field E containing k(
p
d,

p
m). Over such

a field E , we may consider the complement V/E of the 6 lines l�i . The same
localisation argument together with the property H1ét(E, Q/Z) ' H1ét(A1E , Q/Z)
yields an exact sequence

0 ! Br(UE ) ! Br(V ) ! �6
i=1H

1(E, Q/Z).

We are interested in the computation of the transcendental Brauer group over the
ground field. For this, an explicit computation of residues at the generic points of
the lines l�i seems necessary.

Since f,g,u,v and each of the curves D= l�i are defined over K =k(
p
d,

p
m),

using formula (1.4) we can compute the residues @D(Rn) over any field E contain-
ing K and µn in

H1(E(D), Z/n) ' E(D)⇥/E(D)⇥n.

These residues, as explained above, actually take their values in E⇥/E⇥n .

Proposition 4.3. With notation as above:
For D = l�2 , @D(Rn) =

p
m+

p
d�2

p
m�

p
d�2

= �1
2 (

p
d +

p
m) 2 E⇥/E⇥n.

For D = l�5 , @D(Rn) =
p
m�

p
d

2 ·
p
m+

p
d�2

p
m�

p
d�2

= �1 2 E⇥/E⇥n.

@D(Rn) =

(
�1 2 E⇥/E⇥n D 2 {l�1 , l�3 )}
p
d�

p
m

2 2 E⇥/E⇥n D 2 {l�4 , l�6 }.
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Proof. In the course of our computations, we shall make tacit use of the equality
 p

d �
p
m

2

!

.

 p
d +

p
m

2

!

= �1. (4.4)

Let us compute @D(Rn) for D = l�2 . Since

g =


1
2

⇣p
m +

p
d � 2

⌘
y �

p
d
� ⇣

z � x +
p
d
⌘

+ (y � 2)

1
2

⇣p
m +

p
d � 2

⌘
x �

1
2
p
d
⇣p

m +
p
d
⌘�

and

u = (2�
p
m)(z � x +

p
d) + (y � 2)


1
2

⇣p
m �

p
d � 2

⌘
x +

p
d
�

,

one has

g
u

=

⇥1
2 (

p
m+

p
d�2)y�

p
d
⇤� z�x+

p
d

y�2
�
+
⇥1
2 (

p
m +

p
d�2)x� 1

2
p
d(

p
m+

p
d)
⇤

(2�
p
m)
� z�x+

p
d

y�2
�
+
⇥1
2 (

p
m �

p
d � 2)x +

p
d
⇤ .

Since
z � x +

p
d

y � 2
=

xz � y � 2
z � x �

p
d

by (1.1), one obtains that

@D(Rn)=�
v

u
·
g
f

=�
v

f
·
(
p
m� 2) · x(x�

p
d)�4

�2
p
d

+ 1
2 (

p
m +

p
d � 2)x � 1

2
p
d(

p
m +

p
d)

(2�
p
m) · x(x�

p
d)�4

�2
p
d

+ 1
2 (

p
m �

p
d � 2)x +

p
d

=
v

f
·
(
p
m� 2)[x(x�

p
d) � 4] � (

p
m+

p
d � 2)

p
dx + d(

p
m+

p
d)

(
p
m � 2)[x(x �

p
d) � 4] + (

p
m �

p
d � 2)

p
dx+2d

.

Since

f |D =
1
2
(
p
m�

p
d�2)x2+

p
d

3�

1
2
(
p
m �

p
d)

�
x+2(2�

p
m)�d�

p
m ·

p
d

and

v|D =
1
2
(
p
m+

p
d�2)x2�

p
d

1+

1
2
(
p
m +

p
d)

�
x+d+2(2�

p
m)+

p
m·

p
d,
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one concludes that

@D(Rn) =

p
m +

p
d � 2

p
m �

p
d � 2

= �
1
2
(
p
d +

p
m) 2 E(D)⇥/E(D)⇥n.

For D = l�5 , one has

g =


1
2
(
p
m +

p
d � 2)y �

p
d
�

·


z �

1
2
(
p
m �

p
d)x

�

+ (y �
p
m)


1
2
(2+

p
d �

p
m)x �

p
d
�

and

u = (2�
p
m)


z �

1
2
(
p
m �

p
d)x

�
+ (y �

p
m)


1
2
(
p
m �

p
d � 2)x +

p
d
�

.

Since
z � 1

2 (
p
m �

p
d)x

y �
p
m

=
xz � y �

p
m

z � 1
2 (

p
m +

p
d)x

by (1.1), one obtains that

@D(Rn)=�
v

f
·

1
2 (

p
m+

p
d)(

p
m�2)· (

p
m�

p
d)x2�4

p
m

�2
p
dx

+ 1
2 (2+

p
d�

p
m)x�

p
d

(2�
p
m) · (

p
m�

p
d)x2�4

p
m

�2
p
dx

+ 1
2 (

p
m �

p
d � 2)x +

p
d

=
v

f
·
(
p
m �

p
d)(

p
m � 2)x2 � 2dx + 2

p
m(

p
m +

p
d)(

p
m � 2)

(2
p
m � 4)x2 � 2dx + 4

p
m(

p
m � 2)

=
v

f
·
(
p
m �

p
d)x2 � 2(

p
m + 2)x + 2

p
m(

p
m +

p
d)

2x2 � 2(
p
m + 2)x + 4

p
m

.

Since

f |D =

p
m �

p
d � 2

p
m +

p
d

· x2 +

p
d
2

(
p
m �

p
d + 2)x +

p
m(2�

p
m �

p
d)

and

v|D =

p
m +

p
d � 2

p
m +

p
d

x2 �
p
d

1+

1
2
(
p
m �

p
d)

�
x +

p
m(

p
d �

p
m + 2),

one concludes that

@D(Rn) =

p
m �

p
d

2
·

p
m +

p
d � 2

p
m �

p
d � 2

= �1 2 E(D)⇥/E(D)⇥n.
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The other residues are

@D(Rn) =

(
�1 2 E(D)⇥/E(D)⇥n D 2 {l�1 , l�3 }
p
d�

p
m

2 2 E(D)⇥/E(D)⇥n D 2 {l�4 , l�6 }

by (4.3) and straightforward computations.

Lemma 4.4. Let K = k(
p
m,

p
d) ⇢ k̄. Then

Br(UK )/Br1(UK ) � (Z/n) if and only if µn ⇢ K and �1,
p
d �

p
m

2
2 K⇥n.

In this case, the element Rn 2 Br(V ) as defined in Theorem 4.2 belongs to the
group Br(UK ) ⇢ Br(V ), is of order n, and generates the n-torsion subgroup of
Br(UK )/Br1(UK ) ⇢ Br(Ū).

Proof. Note that under the hypothesis �1 2 K⇥n , formula (4.4) shows that the
condition

p
d�

p
m

2 2 K⇥n is independent of the choice of the square roots of d and
m in k̄.

If µn ⇢ K and �1, (
p
d �

p
m)/2 2 K⇥n , then Rn 2 Br(UK ) by Proposi-

tion 4.3 and it has image of order n in Br(U) ' Q/Z by Theorem 4.2. This proves
one implication.

Let us prove the converse statement. Assume (Z/n) ⇢ Br(UK )/Br1(UK ). The
isomorphism Br(U) ⇠= (Q/Z)(�1) given by Proposition 2.1 is Galois equivariant.
From Lemma 2.4, we then get µn ⇢ K .

Since the lines l�i in Lemma 3.1 are defined over K ⇢ k̄ for 1  i  6, the
open subset

V = UK \

(
6[

i=1
l�i

)

is defined over K . It satisfies Pic(Vk̄) = 0 since Vk̄ ⇠= G2
m,k̄ . One has the following

commutative diagram of exact sequences

0 // Br(K ) = Br1(UK ) //

✏✏

Br1(V )
@K

//

✏✏

�6
i=1H

1(K , Q/Z)l�i

=
✏✏

0 // Br(UK ) // Br(V )
@K

// �6
i=1H

1(K , Q/Z)l�i

(4.5)

by [4, Theorem 3.4.1, Remark 3.3.2], [20, Lemma 6.1] and Theorem 3.4 (which
gives Br(K ) = Br1(UK )). From Proposition 2.2 we know that k̄⇥ = k̄[U ]⇥ and
that Pic(U) is a lattice. From the exact sequence of lattices with trivial Galois action

1 ! k̄[V ]⇥/k̄⇥ div
��! �6

i=1Zl
�
i

 
�! Pic(U) ! 1,
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Galois cohomology gives the long exact sequence

0 = H1(K ,Pic(U)) ! H2(K , k̄[V ]⇥/k̄⇥)
div
��! �6

i=1H
2(K , Z)l�i

! H2(K ,Pic(U)).

That H1(K ,Pic(U)) = 0 follows from the fact that Pic(U) is a lattice with trivial
Gal(k̄/K ) action. The following diagram

H2(K , k̄[V ]⇥)
'

//

div
✏✏

Br1(V )

@K
✏✏

�6
i=1H

2(K , Z)l�i
�6
i=1H

1(K , Q/Z)l�i
'

oo

commutes up to sign by [4, Remark 3.3.2] and [6, Lemma 2.1].
Since V has K -points, the exact sequence

1 ! k̄⇥ ! k̄[V ]⇥ ! k̄[V ]⇥/k̄⇥ ! 1

splits as a sequence of Galois modules. From identification (4.1) one gets

H2(K ,Pic(U)) ' �4
i=1H

1(K , Q/Z)[l�i ].

One then obtains the following exact sequence

0 ! Br(K ) ! Br1(V )
@K�! �6

i=1H
1(K , Q/Z)l�i

�
�! �4

i=1H
1(K , Q/Z)[l�i ] (4.6)

which extends the first line of (4.5). Here � is induced by  . By (4.2), it is given
on (�1, · · · ,�6) 2 �6

i=1H
1(K , Q/Z)l�i

by the formula

�(�1, · · · ,�6) = (�1 + �5 + �6,�2 � �5,�3 � �6,�4 + �5 + �6).

By Proposition 4.3, one has

@K (Rn)=

 

�1,�
1
2
(
p
d+

p
m),�1,

p
d �

p
m

2
,�1,

p
d�

p
m

2

!

2�6
i=1K

⇥/K⇥n.

We now get:

�(@K (Rn))=

0

@
p
d�

p
m

2
,

p
d+

p
m

2
,

p
d+

p
m

2
,�

 p
d�

p
m

2

!21

A2�4
i=1K

⇥/K⇥n.

By Theorem 4.2, the class Rn 2 Br(V )[n] is of order n, since it is of order n by
going over to k̄.

By hypothesis, we have

Z/n ⇢ [Br(UK )/Br1(UK )][n] ⇢ Br(U)[n] ' Z/n.
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The restriction map Br(U)[n] ! Br(Vk̄)[n] is an isomorphism, and the last group
is spanned by the class of Rn , which comes from Rn 2 Br(V ). Thus there exists
B 2 Br(UK ) such that Rn and B have the same image in Br(U). Since Rn,B are
both contained in Br(V ), one concludes Rn � B 2 Br1(V ). Then

�
�
@K (Rn � B)

�
= �

�
@K (Rn)

�

=

0

@
p
d �

p
m

2
,

p
d +

p
m

2
,

p
d +

p
m

2
,�

 p
d �

p
m

2

!21

A2�4
i=1K

⇥/K⇥n

is trivial. This implies �1 and (
p
d �

p
m)/2 2 K⇥n .

Lemma 4.5. Let K =k(
p
m,

p
d). Suppose that Rn = ( f, g)⇣n belongs to Br(UK ).

Suppose µn ⇢ k. Then the image of B := CorK/k(Rn) 2 Br(U) in the subgroup
Br(U)/Br1(U)⇢ (Z/n) generates a cyclic group of order n1 = n/gcd(n, [K : k]).

Proof. In Br(U), one has

Resk/k̄(B) = Resk/k̄ � CorK/k(Rn) =
X

�

R�n ,

where � runs through the embeddings of K into k̄. Sinceµn ⇢ k, one has R�n = Rn .
Therefore Resk/k̄(B) = [K : k] · Rn in Br(U), and the proof is completed.

Lemma 4.6. Let K = k(
p
m,

p
d). Suppose µn ⇢ k. Let n1 = n/gcd(n, [K : k]).

1) Assume �1 2 K⇥n and (
p
d �

p
m)/2 2 K⇥n . Then the element B :=

CorK/k(Rn) belongs to Br(U) and generates the cyclic subgroup of order n1
of Br(U)/Br1(U);

2) Suppose n is odd. Then Br(U)/Br1(U) � (Z/n) if and only if (
p
d �

p
m)/2

is in K⇥n . In that case, the element B := CorK/k(Rn) belongs to Br(U)[n]
and generates the cyclic subgroup of order n of Br(U)/Br1(U).

Proof.

1) Suppose �1 and (
p
d �

p
m)/2 2 K⇥n , then Rn 2 Br(UK ) by the computa-

tion of residues in Proposition 4.3. By Lemma 4.5, the image of B 2 Br(U)
in Br(U)/Br1(U) is cyclic of order n1;

2) Suppose n is odd. Then n=n1 and�12K⇥n . The sufficiency follows from 1).
The converse follows from

Z/n ⇢ Br(U)/Br1(U) ⇢ Br(UK )/Br1(UK ) ⇢ Br(U).

and Lemma 4.4.
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Lemma 4.7. Let F = k(
p
d) and G = Gal(F/k). Then Br(U) ! Br(UF )G is

surjective.

Proof. We may assume that F/k is of degree 2. We know that F⇥ = H0(UF , Gm)
by Proposition 2.2. This implies

H3(G, H0(UF , Gm)) = H3(G, F⇥) = H1(G, F⇥) = 0

by periodicity of the cohomology of cyclic groups and by Hilbert’s theorem 90. The
spectral sequence

E p,q
2 = H p(G, Hq(UF , Gm)) ) H p+q(U, Gm).

then gives an exact sequence

Br(U) ! Br(UF )G ! H2(G,Pic(UF )),

which by periodicity of the cohomology of cyclic groups for Tate cohomology
groups reads

Br(U) ! Br(UF )G ! Ĥ0(G,Pic(UF )).

a) Suppose F 6= k(
p
m). Since k[U ]⇥ = k⇥, the map Pic(UF ) ,! Pic(U)gF

is injective (in fact, it is an isomorphism since U(F) 6= ;). This implies that
Pic(UF )G ,! Pic(U)g is injective. Since

Pic(U)g = Pic(UK )Gal(K/k) = 0

with K = F(
p
m) by (3.20) in the proof of Theorem 3.4, one has Pic(UF )G = 0,

hence Ĥ0(G,Pic(UF )) = 0.

b) Suppose F = k(
p
m). Let ⇢ be the generator of G. By the computation in

Theorem 3.4 for the case k(
p
d) = k(

p
m) 6= k, the group Pic(UF )G is generated

by
2[l4] + [l1] � [l2] � [l3] = (1+ ⇢)[l4],

hence Ĥ0(G,Pic(UF )) = 0.

Let K = k(
p
d,

p
m). Define

I =

(

n 2 N : µn ⇢ k and � 1,
p
d �

p
m

2
2 K⇥n

)

. (4.7)

If p, q are coprime integers, then µpq ⇢ k if and only if µp ⇢ k and µq ⇢ k.
Similarly, for p and q coprime integers, and ⇢ 2 K⇥, one has ⇢2K⇥pq if and only
if ⇢ 2 K⇥p and ⇢ 2 K⇥q . Going over to primary components, one concludes that
if p, q are integers in I , then the least common multiple [p, q] of p and q is in I .
Therefore I is a directed set with respect to divisibility. The following theorem is
the main result of this section.
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Theorem 4.8. Let K = k(
p
d,

p
m). Let

I =

(

n 2 N : µn ⇢ k and � 1,
p
d �

p
m

2
2 K⇥n

)

.

Then
Br(U)/Br1(U) ⇠= lim

�!
n2I

Z/n.

In particular, if I is finite, for instance if k is a number field, then

Br(U)/Br1(U) ⇠= Z/N ,

where N is the biggest integer in I .

Proof. One has Br(U)/Br1(U) ⇢ Q/Z(�1)g by Proposition 2.1. Hence the group
Br(U)/Br1(U) is a subgroup of the Abelian group Q/Z. We thus only need to
show:

Z/n ⇢ Br(U)/Br1(U) if and only if n 2 I (4.8)

and we only need to show this for n a power of a prime number.
Suppose Br(U)/Br1(U) � Z/n. Then µn ⇢ k by Proposition 2.1 and Lem-

ma 2.4. We have

Br(U)/Br1(U) ⇢ Br(UK )/Br1(UK ) ⇢ Br(U).

Thus Z/n ⇢ Br(U)/Br1(U) implies Z/n ⇢ Br(UK )/Br1(UK ). Then n 2 I fol-
lows from Lemma 4.4. This establishes one direction of the equivalence (4.8).

Suppose n 2 I is an odd integer. Lemma 4.6 gives the reverse direction in (4.8)
in a very precise form, namely the image of the element CorK/k(Rn) 2 Br(U)[n]
generates the cyclic subgroup of order n of Br(U)/Br1(U).

To complete the proof of the theorem, it is now enough to prove:

n = 2s and n 2 I =) Br(U)/Br1(U) � Z/n. (4.9)

Since �1 2 K⇥n , one concludes that µ2n ⇢ K . Fix a primitive 2n-th root of unity
⇣2n 2 K . Essentially the same computations as in Proposition 4.3 give:

@D

✓
f
g

,�
u
v

◆

⇣2n

=

8
>>>>>><

>>>>>>:

p
d+

p
m

2 2 K (D)⇥/K (D)⇥2n D = l�2
�1 2 K (D)⇥/K (D)⇥2n D = l�3p
m�

p
d

2 2 K (D)⇥/K (D)⇥2n D = l�4p
d�

p
m

2 2 K (D)⇥/K (D)⇥2n D = l�6
1 2 K (D)⇥/K (D)⇥2n D 2 {l�1 , l�5 } .

(4.10)

Let F = k(
p
d). If K/F is of degree 2, let ⌧ be the generator of Gal(K/F). If F/k

is of degree 2, let � denote the generator of Gal(F/k). We break up the discussion
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according to the structure of the field extension K/k. In each case, we shall produce
an explicit element B 2 Br(UF ) which is of order n over the algebraic closure and
which is invariant under Gal(F/k). Lemma 4.7 will then ensure that it comes from
a class in Br(U) whose image in Br(U)/Br1(U) is of order n.

• Suppose [K : k] = 4. Let

B = CorK/F

✓
f
g

,�
u
v

◆

⇣2n

+ CorK/F

 
u1
v1

,

p
d �

p
m

2

!

⇣2n

2 Br(F(X))

where u1 = y � 2t and v1 = x + 1
2 (

p
d �

p
m)y � z +

p
mt . Since

{u1 = 0} \ X = L2 + l�2 + l2
{v1 = 0} \ X = l�6 + ⌧ (l�4 ) + l2

by Bezout’s theorem, one obtains that

@D

 
u1
v1

,

p
d �

p
m

2

!

⇣2n

=

p
d �

p
m

2
2 K (D)⇥/K (D)⇥2n (4.11)

for D 2 {l�2 , ⌧ (l�4 ), l�6 }. Since (
p
d �

p
m)/2 2 K⇥n , we have

�1 = NK/F ((
p
d �

p
m)/2) 2 F⇥n and µ2n ⇢ F.

When D is defined over F , the corestriction map

H1(K (D), Z/2n) = K (D)⇥/K (D)⇥2n
CorK/F
����! H1(F(D), Z/2n)

= F(D)⇥/F(D)⇥2n

is given by norm. Since the residue maps commute with corestriction, the residues
of B at D 2 {l�i }3i=1 are trivial by (4.10) and (4.11).

Suppose we have D 2 {l�i } with i 2 {4, 5, 6}. Then D is not defined over F .
One can identify K (D) with F(D) where D is the integral divisor on XF which is
the image of the divisor D on XL via the projection map XL ! XF . We shall say
that D is below D. Then ⌧ induces an isomorphism from K (⌧D) to F(D).

For D below l�4 , one has

@D(B) =

p
m �

p
d

2
·

 p
d +

p
m

2

!�1

=

 p
m �

p
d

2

!2
2 F(D)⇥/F(D)⇥2n

by (4.10), (4.11) and the above identification. For D below l�6 , one has

@D(B) = 1 2 F(D)⇥/F(D)⇥2n
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by (4.10), (4.11) and the above identification. Sincep
d �

p
m

2
2 K⇥n ⇢ K (D)⇥n = F(D)⇥n,

the class @D(B) is trivial in H1(F(D), Z/2n). We thus get
B 2 Br(UF ). (4.12)

Note that µ2n ⇢ F . Then B is of order n in Br(U) by Lemma 4.5 (replacing k
by F).

Since we have µn ⇢ k, Proposition 2.1 shows that the Galois group Gal(k/k)
acts trivially on the unique subgroup of order n in Br(U). This implies thatB�B� 2
Br1(UF ), and Br1(UF ) = Br(F) by Theorem 3.4. Let A = B � B� 2 Br(F). We
shall prove that A = 0, hence B = B� .

We need to distinguish two subcases.
Subcase a). Suppose µ2n ⇢ k. By evaluating B and B� at the special point
(�2, 0,

p
d) in U(F), one obtains

A = CorK/F

 
�2

p
d(

p
m �

p
d)

�m +
p
md + 2

p
m

,
�

p
m

p
d � 2

!

⇣2n

� CorK/F

 
�2

p
d

p
d �

p
m + 2

,
2

p
m �

p
d

!

⇣2n

+ CorK/F

 
2

p
d �

p
m + 2

,

p
d �

p
m

2

!

⇣2n

� CorK/F

 
2

p
d �

p
m + 2

,
�

p
d �

p
m

2

!

⇣2n

in Br(F). Since (↵,�)⇣2n = (↵�1,��1)⇣2n in Br(K ) for ↵,� 2 K⇥, and we have
((1� ↵)�1,↵)⇣2n = 0 for any ↵ 6= 0, 1 in K , one has

 
�2

p
d(

p
m �

p
d)

�m +
p
md + 2

p
m

,
�

p
m

p
d � 2

!

⇣2n

=

 

�

p
m(

p
m +

p
d � 2)

4
p
d

,�

p
d � 2
p
m

!

⇣2n

=

0

@�

p
m(

p
m +

p
d � 2)

4
p
d

·

 

1+

p
d � 2
p
m

!�1

,�

p
d � 2
p
m

1

A

⇣2n

=

 

�
m
4
p
d

,�

p
d � 2
p
m

!

⇣2n

in Br(K ).
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Similarly, one has
 

�2
p
d

p
d �

p
m + 2

,
2

p
m �

p
d

!

⇣2n

=

 p
d �

p
m + 2

�2
p
d

,

p
m �

p
d

2

!

⇣2n

=

0

@
p
d �

p
m + 2

�2
p
d

·

 

1�

p
m �

p
d

2

!�1

,

p
m �

p
d

2

1

A

⇣2n

=

 
�1
p
d

,

p
m �

p
d

2

!

⇣2n

.

Therefore

A = CorK/F

 

�
m
4
p
d

,�

p
d � 2
p
m

!

⇣2n

� CorK/F

 
�1
p
d

,

p
m �

p
d

2

!

⇣2n

+ CorK/F

0

@ 2
p
d �

p
m + 2

,

 p
d �

p
m

2

!21

A

⇣2n

=

 

�
m
4
p
d

,
m � 4

p
d

�m

!

⇣2n

+

✓
�
1

p
d

,�1
◆

⇣2n

.

Since (↵,�↵)⇣2n = 0 in Br(F) for any ↵ 2 F⇥, one has
 

�
m
4
p
d

,
m � 4

p
d

�m

!

⇣2n

=

 

�
m
4
p
d

,
m
4
p
d

·
m � 4

p
d

�m

!

⇣2n

=

✓
�

m
4
p
d

, 1�
m
4
p
d

◆

⇣2n

=

✓
�1, 1�

m
4
p
d

◆

⇣2n

=

 

�1,
(
p
d � 2)2

�4
p
d

!

⇣2n

=

✓
�1,

1
�4

p
d

◆

⇣2n

=

✓
�1,�

1
p
d

◆

⇣2n

.

One concludes that A = 0.

Subcase b). Suppose µ2n 6⇢ k. Since µ2n ⇢ F and [F : k] = 2, one actually has
F = k(⇣2n). Note that µn ⇢ k, one gets ⇣ �2n = ⇣ 1+n2n . Considering the action of
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Galois group on the cyclic algebra (a, b)⇣2n for a, b 2 K (U)⇥, one has

(a, b)�⇣2n = (a� , b� )⇣ �2n .

Since the character given by b� and ⇣ �2n is the (n + 1)-th power of the character
given by b� and ⇣2n , one concludes

(a� , b� )⇣ �2n = (n + 1)(a� , b� )⇣2n

in Br(K (U)).
By evaluating B and B� at the special point (�2, 0,

p
d) in U(F), one con-

cludes

A = CorK/F

 
�2

p
d(

p
m �

p
d)

�m +
p
md + 2

p
m

,
�

p
m

p
d � 2

!

⇣2n

� (1+ n)CorK/F

 
�2

p
d

p
d �

p
m + 2

,
2

p
m �

p
d

!

⇣2n

+ CorK/F

 
2

p
d �

p
m + 2

,

p
d �

p
m

2

!

⇣2n

� (1+ n)CorK/F

 
2

p
d �

p
m + 2

,
�

p
d �

p
m

2

!

⇣2n

in Br(F). Since
2

p
m �

p
d

,
�

p
d �

p
m

2
2 K⇥n,

one obtains

n

 
�2

p
d

p
d �

p
m + 2

,
2

p
m �

p
d

!

⇣2n

= n

 
2

p
d �

p
m + 2

,
�

p
d �

p
m

2

!

⇣2n

= 0

in Br(K ). Therefore the computation in Subcase a) is still available and A = 0.
We have thus proved B 2 Br(UF )G . By Lemma 4.7, this implies that B is in

the image of Br(U) ! Br(UF ).

• Suppose m 2 k⇥2 and d /2 k⇥2. Then F = K . Let B = Rn as in Theorem 4.2.
ThenB 2 Br(UF ) by Lemma 4.4. By Proposition 2.1, we have R�n �Rn 2 Br1(UF ).
By Theorem 3.4, we have Br(F) = Br1(UF ). Thus R�n = Rn + A 2 Br(F(U))
with A 2 Br(F). By evaluating Rn and R�n at the special point (�

p
m, 0, 0), one

concludes that A = 0. Therefore Rn 2 Br(UF )G and the result again follows from
Lemma 4.7.
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• Suppose d 2 k⇥2 and m /2 k⇥2. Let

B = CorK/k

✓
f
g

,�
u
v

◆

⇣2n

+ CorK/k

 
u1
v1

,

p
d �

p
m

2

!

⇣2n

where
u1 = y � 2 and v1 = x +

1
2
�p

d �
p
m
�
y � z +

p
m.

The result follows from (4.12) and F = k.

• Suppose md 2 k⇥2 and d /2 k⇥2. Recall that n = 2s > 1. By the definition of I ,
one has

p
d�

p
m

2 = (↵+�
p
d)2 where ↵,� 2 k⇥. Therefore we have ↵2+d�2 = 0.

This implies
p

�d 2 k. Therefore F = k(
p
d) = k(

p
�1) 6= k, hence

p
�1 62 k,

so n = 2 by the definition of I .
Let B = R2 in Theorem 4.2. Then B 2 Br(UF ) by Lemma 4.4. Let ⇢ be the

generator of Gal(F/k). By Proposition 2.1 and Theorem 3.4, there exists

A 2 Br1(UF ) = Br(F) such that R⇢2 = R2 + A.

By evaluating R2 and R�2 at the special point (�2, 0,
p
d) and a similar computation

as in case [K : k] = 4, one concludes

A = �

 
�2

p
d(

p
m �

p
d)

�m +
p
md + 2

p
m

,

p
m

p
d � 2

!

�1

+

 
�2

p
d

p
d +

p
m + 2

,
2

p
m +

p
d

!

�1

= �

 
�2

p
d(

p
m �

p
d)

�m +
p
md + 2

p
m

,
�

p
m

p
d � 2

!

�1

+ 0 = �

 

�
m
4
p
d

,�

p
d � 2
p
m

!

�1

= �

 

�
m
4
p
d

,
(
p
d � 2)2

m

!

⇣4

= �

 

�
m
4
p
d

,
m � 4

p
d

m

!

⇣4

=

 

�
4
p
d

m
, 1�

4
p
d

m

!

⇣4

=

 

�1, 1�
4
p
d

m

!

⇣4

=

 

�1,
(
p
d � 2)2

m

!

⇣4

in Br(F), where ⇣4 is a primitive 4-th root of unity. Note that
p

�1,
p
m 2 F . Thus

we have A = 0. Therefore R2 2 Br(UF )G and the result follows from Lemma 4.7.

• The case K = k follows from Lemma 4.4.

Corollary 4.9. Suppose that k is a field with an ordering. Then we have an inclu-
sion Br(U)/Br1(U) ⇢ Z/2. If d is positive in that ordering, then Br1(U) = Br(U).
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Proof. Let n 2 I . By (the easy part of the proof of) Theorem 4.8, we have µn ⇢ k
and �1 2 K⇥2. If k can be ordered, this implies n 2 {1, 2}. If d is positive with
respect to an ordering, then d and m = d + 4 are both positive in the real closure R
of k with respect to this ordering. There is an embedding K ⇢ R. Thus �1 is not a
square in K . This implies I = {1}.

Corollary 4.10. Let k be a field of characteristic zero. If�1 /2 k⇥2 and�d /2 k⇥2,
then the quotient Br(U)/Br1(U) has no 2-primary part. If moreover k admits an
ordering then Br1(U) = Br(U).

Proof. The hypothesis is equivalent to
p

�1 62 k(
p
d). Suppose 2 2 I . By (the

easy part of the proof of) Theorem 4.8, we then have

p
�1 2 K⇥ and

p
d �

p
m

2
2 K⇥2

with K = k(
p
m,

p
d). Since

p
�1 62 k(

p
d), one has k(

p
d) 6= K and one hasp

m 62 k(
p
d). Therefore

�1 = NK/k(
p
d)

 p
d �

p
m

2

!

2 k(
p
d)⇥2

which contradicts �d /2 k⇥2.

Remark 4.11. In the case k = Q, we find that Br1(U) = Br(U) if �d /2 Q⇥2.
Remark 4.12. Suppose�1 /2 k⇥2. There exist � , � 2 k⇥ be such that � 2+ �2 = 1
and � 6= ±�. Set u = 4� � and v = 2(�2 � � 2). Then u2 + v2 = 4. Let d = �u2
and m = 4 � u2 = v2. Fix i :=

p
�1 2 k̄. Then K = k(

p
d,

p
m) = k(i) is of

degree 2 over k, contains
p

�1 and we have:

(
p
d �

p
m)/2 = (ui � v)/2 = � 2 � �2 + 2� �i = (� + �i)2 2 K⇥2.

For U = Um , the hard part of the proof of Theorem 4.8 then gives the inclusion
Z/2 ⇢ Br(U)/Br1(U). If k = Q, it then gives Br(U)/Br1(U) = Z/2.

Remark 4.13. Suppose m 2 k⇥2 and d /2 k⇥2, so that K = k(
p
d) 6= k. Suppose

n 2 I is a power of 2. If n = 2, assume µ4 ⇢ k. Then we can write down an
explicit element in Br(U) whose image generates the cyclic subgroup of order n of
Br(U)/Br1(U).

Indeed, by assumption we have µn ⇢ k and �1,↵ 2 K⇥n where we have set
↵ = (

p
d �

p
m)/2. Let

�1 2 H1
�
Gal(k(µ4n)/k

�
, Q/Z) and �2 2 H1

�
Gal(k(

p
d, 2np↵)/k

�
, Q/Z)
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be such that the restrictions of �1 and �2 to

Gal(K (µ4n)/K ) and Gal
�
k(

p
d, 2np↵)/k(

p
d)
�

are respective generators of these groups. Then the element

B = CorK/k

✓
f
g

,
u
v

◆

⇣2n

+
�
(x � 2)(y �

p
m)(z � 2),�1

�

+
�
(x �

p
m)(y � 2)(z �

p
m),�2

�

is in Br(U)[2n], where ⇣2n is a primitive 2n-th root of unity. Under the assumption
µ4 ⇢ k if n = 2, the image of B is of order n in Br(U).

5. Failure of the integral Hasse principle

In this section we explain that all examples which do not satisfy the Hasse prin-
ciple in [10] can be accounted for by integral Brauer-Manin obstruction or by the
combination of integral Brauer-Manin obstruction with the reduction theory.

Given a scheme U over Z, and U := U ⇥Z Q, we let U(AZ) =
Q

p U(Zp),

where p runs through all primes and1, and Z1 = R. We let

U(AZ)• =
Y

p<1

U(Zp) ⇥ ⇡0(U(R))

where ⇡0(U(R)) is the set of connected components ofU(R). We have the Brauer-
Manin pairing

U(AZ)• ⇥ Br(U) ! Q/Z.

The (reduced) Brauer-Manin set is the left kernel of this pairing. Note that the
Legendre symbol takes values in±1 but the Hilbert symbols used below take values
0 or 1/2 in Q/Z.

5.1. Integral Brauer-Manin obstructions

Let m 6= 0, 4 be an integer and d = m � 4. Let Um be the scheme over Z defined
by equation (1.1) and Um = Um ⇥Z Q.

Lemma 5.1. If p is an odd prime with (p, d) = 1, then each element in the follow-
ing set

{(x ± 2, d), (y ± 2, d), (z ± 2, d)} ⇢ Br(Um)

vanishes over Um(Zp) and (x2 � 4, d) = (y2 � 4, d) = (z2 � 4, d) vanishes over
Um(Qp). If d > 0, these elements vanish over Um(R).
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Proof. One only needs to consider the case that
� d
p
�

= �1. Since (1.1) is equivalent
to (1.2) over Z, one concludes that

ordp(x2p � 4) = ordp(y2p � 4) = 0

for all Mp = (xp, yp, z p) 2 Um(Zp). By symmetry, one further obtains

ordp(x2p � 4) = ordp(y2p � 4) = ordp(z2p � 4) = 0

for all Mp = (xp, yp, z p) 2 Um(Zp). This implies that the three elements
(x ± 2, d), (y ± 2, d), (z ± 2, d) vanish over Um(Zp).

If (xp, yp, z p) 2 Um(Qp) \ Um(Zp), one of xp, yp, z p 2 Qp \ Zp. Without
loss of generality, we assume that xp 2 Qp \ Zp. Then ordp(x2p � 4) is even and
(x2p � 4, d)p = 0. The result follows.

Lemma 5.2. If m < 0, then |x | > 2, |y| > 2, |z| > 2 for any (x, y, z) 2 Um(R).

Proof. Let (x, y, z) 2 Um(R). Suppose |x |  2. Then

m = (y � xz/2)2 + (1� x2/4)z2 + x2 � 0

which contradicts m < 0. So |x | > 2. Similarly |y| > 2, |z| > 2.

Remark 5.3. Let f : Um ! A2 be the morphism defined by projecting (x, y, z)
to (x, y). Therefore the image of Um(R) by f is the subset

W := {(x, y) 2 R2 : (x2 � 4)(y2 � 4) + 4(m � 4) � 0} ⇢ R2.

The connected components of Um(R) are just the preimages of connected compo-
nents of W by f . The four lines x = ±2 and y = ±2 divide the plane R2 into nine
parts. Considering the signature of (x2 � 4)(y2 � 4) on the nine parts, we have

#⇡0(Um(R)) = #⇡0(W ) =

8
><

>:

1 if m � 4
5 if 0  m < 4
4 if m < 0.

All connected components of Um(R) are unbounded except the connected com-
ponent defined by |x |, |y| < 2 when 0  m < 4, and the bounded connected
component becomes a single point (0, 0, 0) when m = 0. If m < 4, 0 permutes the
four unbounded components transitively. Full details are given in Section 7.

Let B1 = (x � 2, d), B2 = (y � 2, d), B3 = (z � 2, d) in Br1(Um). By
Theorem 3.4, for m not a square, these three elements generate Br1(Um)/Br0(Um).
Let B = (B1,B2,B3). One can define the evaluation of B over Um(Zp) by

B(Mp) =
�
B1(Mp),B2(Mp),B3(Mp)

�
2 (Q/Z)3
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for Mp 2 Um(Zp) and

B(Um(Zp)) = {B(Mp) : Mp 2 Um(Zp)} ⇢ (Q/Z)3

for p  1. By the symmetry of the coordinates of (1.1), the symmetric group S3
acts on B(Um(Zp)) by coordinate permutation.

Lemma 5.4. If m ⌘ 1 mod 8, then

B(Um(Z2)) =
�
(1/2, 1/2, 0), (1/2, 0, 1/2), (0, 1/2, 1/2)

 
.

Proof. Since m ⌘ 1 mod 8, one obtains that d ⌘ 5 mod 8 and by (1.1) there is one
and only one coordinate of any point in Um(Z2) belonging to Z⇥

2 .
The remaining two coordinates belong to 4Z2 by (1.1). The result follows

from the straightforward computation of the Hilbert symbols and the symmetry of
the coordinates.

Lemma 5.5. If p = 3 or p = 5 and ordp(d) is odd, then

B(Um(Zp))=

8
>>><

>>>:

{(1/2, 0, 0), (0, 1/2, 0), (0, 0, 1/2)} for p=3 and ord3(d) = 1
(12Z/Z)3 for p=3 and ord3(d) � 3
(12Z/Z)3 \ (0, 0, 0) for p=5 and ord5(d) = 1
(12Z/Z)3 for p=5 and ord5(d) � 3.

Proof.
•Assume p = 3 and ord3(d) = 1. Since (1.1) is equivalent to equation (1.2) and its
variants by coordinate permutations, any point in U(Z3)must have two coordinates
in 3Z3 and the remaining coordinate in Z⇥

3 by (1.2). Without loss of generality, we
assume x, y 2 3Z3 and z 2 Z⇥

3 . Therefore

(x � 2, d)3 = (y � 2, d)3 = 0 and (x + 2, d)3 = 1/2.

By (3.22), one has (z � 2, d)3 = 1/2, hence B((x, y, z)) = (0, 0, 1/2). The result
follows by permutation of the coordinates.

• Assume p = 3 and ord3(d) � 3. Let d = 32n+1d0 with d0 2 Z⇥
3 and n � 1.

By Hensel’s lemma, there is ⇠ 2 Z⇥
3 such that

4⇠ + 32n+1⇠2 = d0.

This implies:

(32n+1⇠, d)3 = (3⇠, d)3 = (3d0, d)3 = (3d0, 3d0)3 = (�1, 3d0)3 = 1/2.

Then for M3 = (0, 0, 2+ 32n+1⇠) 2 Um(Z3) we have B(M3) = (0, 0, 1/2).
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By Hensel’s lemma, for any a 2 Z⇥
3 , there is ⇠ 2 Z⇥

3 such that

⇠2 � (4a + 3a2)⇠ = 32n�1d0.

This implies:

⇠ 2 a(Z⇥
3 )2 and (3⇠, d)3 = (3a, d)3 = (�ad0, 3d0)3.

Take
M3 = (2+ 3⇠, 2+ 3a, 2+ 3a) 2 Um(Z3).

Then

B(M3) =

(
(0, 0, 0) if ad0 2 2+ 3Z3
(1/2, 1/2, 1/2) if ad0 2 1+ 3Z3 .

Since there is ⇠ 2 Z⇥
3 such that

⇠2 + d0(4� 3d0)⇠ = 32n�1d0

by Hensel’s lemma, one obtains:

�⇠ 2 d0(Z⇥
3 )2 and (3⇠, d)3 = (�3d0, 3d0)3 = 0.

Then

M3 = (�2+ 3d0,�2+ 3d0, 2+ 3⇠) 2 Um(Z3) and B(M3) = (1/2, 1/2, 0).

The result follows by permutation of the coordinates.

• Assume p = 5 and ord5(d) = 1. One can use the lifting of smooth points of
Um(Z/5) as in [15, Proposition 5.7] to show that B can take all possible values over
Um(Z5) except (0, 0, 0). We prove (0, 0, 0) 62 B(Um(Z5)).

By (1.2), there is at most one coordinate of a point in Um(Z5) which is con-
gruent to 3 mod 5. If that is the case, the sum of the two remaining coordinates is
congruent to 0 mod 5 as one sees by reducing (1.1) over Z/5. By inspecting cases,
one sees that B cannot take the value (0, 0, 0) over such points.

By (1.2), there is at most one coordinate of a point in Um(Z5) which is con-
gruent to 2 mod 5. If that is the case, both remaining coordinates are congruent
to 1 or 4 mod 5 simultaneously as one sees by reducing (1.1) over Z/5. One
only needs to show that B cannot take the value (0, 0, 0) when both remaining
coordinates are congruent to 1 mod 5. Without loss of generality, we assume that
(x5, y5, z5) 2 Um(Z5) satisfies x5 ⌘ y5 ⌘ 1 mod 5 and z5 ⌘ 2 mod 5. Since
(x5 � 2, d)5 = (y5 � 2, d)5 = 0, one obtains that (z5 + 2, d)5 = 0 by (1.3). By
Proposition 3.2, one has

(x25 � 4, d)5 = (y25 � 4, d)5 = (z25 � 4, d)5 = 1/2.

This implies (z5 � 2, d)5 = 1/2.
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The only remaining possibility which one needs to consider is that all coordi-
nates of the points in Um(Z5) are congruent to 1 mod 5. This is impossible as one
sees by reducing (1.1) over Z/5.
• Assume p = 5 and ord5(d) � 3. One only needs to show (0, 0, 0) 2 B(Um(Z5)).
Let d = 52n+1d0 with (d0, 5) = 1 and n � 1. There is ⇠ 2 Z⇥

5 such that

⇠2 + d0(4� 5d0)⇠ = 52n�1d0

by Hensel’s lemma. This implies that ⇠⌘�d0 mod 5 and (5⇠,d)5=(�5d0,5d0)5=0.
Then

M5 = (2+ 5⇠,�2+ 5d0,�2+ 5d0) 2 Um(Z5) and B(M5) = (0, 0, 0)

as required.

The following proposition extends [10, Proposition 8.1(i) and Proposition 8.2],
propositions which only involve elements in Br(X).

Proposition 5.6. Let U be the scheme over Z given by

x2 + y2 + z2 � xyz = 4+ rv2, (5.1)

where r 2Z is one of 2,�2,�3, 12,�12 and all prime factors of v are congruent to
8
>>>>><

>>>>>:

±1 mod 8 when r = 2
±1 mod 12 and v2 ⌘ 25 mod 32 when r = 12
1 or 3 mod 8 when r = �2
1 mod 3 when r = �3
1 mod 3 when r = �12

and v 6= ±1 when r = �2,�3. Let

B = (x2 � 4, r) = (y2 � 4, r) = (z2 � 4, r) 2 Br1(U)

with U = U ⇥Z Q. Then
U(AZ)B = ;.

Proof. When r = ±2, for any M2 = (x2, y2, z2) 2 U(Z2), one of x2, y2, z2 is a
unit of Z2 by (5.1). For example, if x2 is a unit, then

x22 � 4 ⌘ 5 mod 8 and
�
x22 � 4,±2

�
2 = 1/2.

Under the assumption v 6= ±1 when r = �2, by Lemma 5.2, (x21 � 4,±2)1 = 0.
For Mp 2 U(Zp), one has

B(Mp) =

(
1/2 if p = 2
0 otherwise
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by Lemma 5.1 and the given condition for v. This implies
X

p1

B(Mp) = 1/2 6= 0,

hence
U(AZ)B = ;.

Suppose r = �3,±12. For any local solution M3 = (x3, y3, z3) 2 U(Z3), there is
at least one coordinate of M3 belonging to 3Z3. Otherwise, suppose x3 and y3 are
in Z⇥

3 . Then (x23 � 4)(y23 � 4) 2 9Z3. A contradiction is derived by (5.1). Since
(↵2 � 4, r)3 = 1/2 for ↵ 2 3Z3, one concludes that B(M3) = 1/2.

When r = 12, then B = (x2 � 4, 3) = (y2 � 4, 3) = (z2 � 4, 3). Since
we have

� 3
p
�

= (�1)
1
2 (p�1)

� p
3
�

= 1 for any p ⌘ ±1 mod 12 by the quadratic
reciprocity law, by Lemma 5.1, one only needs to consider p = 2. Similarly, for
r = �3,�12, since

��3
p
�

=
� p
3
�

= 1 for p ⌘ 1 mod 3, by Lemma 5.2 one reduces
to the computation for p = 2.

We claim that for any local solution M2 = (x2, y2, z2) 2 U(Z2), there is at
least one coordinate of M2 in Z⇥

2 for r = �3,±12. This is clear for r = �3 since
v is odd. Suppose r = ±12, otherwise, we can write x2 = 2⇠, y2 = 2⌘ and z2 = 2�
with ⇠, ⌘, � 2 Z2 and obtain the following equation

(⇠2 � 1)(⌘2 � 1) = (� � ⇠⌘)2 � rv2/4 (5.2)

by (5.1). Since±3 62 Z⇥2
2 , one concludes that ⇠ and ⌘ are in 2Z2 by (5.2). Similarly,

� 2 2Z2.
Suppose r =�12. The left hand side of (5.2) is⌘ 1 mod 4, but the right hand

side is⌘ 3 mod 4, which is impossible. So there is at least one coordinate of M2
in Z⇥

2 .
Suppose r = 12. Write ⇠ = 2⇠1, ⌘ = 2⌘1 and � = 2�1 with ⇠1, ⌘1, �1 2 Z2.

One obtains that

(4⇠21 � 1)(4⌘21 � 1) = 4(�1 � 2⇠1⌘1)2 � 3v2. (5.3)

If all ⇠1, ⌘1 and �1 are in 2Z2, then �3 2 Z⇥2
2 by (5.3), which is impossible.

If two of {⇠1, ⌘1, �1} are in 2Z2 and the remaining one is in Z⇥
2 , we can write

⇠1 = 2a, ⌘1 = 2b with a, b 2 Z2

and �1 2 Z⇥
2 by symmetry. Then by (5.3)

4� 3v2 ⌘ (16a2 � 1)(16b2 � 1) ⌘

8
><

>:

1 mod 32 when a 2 2Z2, b 2 2Z2
�15 mod 32 when ab 2 2Z2
152 mod 32 when ab 2 Z⇥

2 .
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This implies

v2 ⌘

8
><

>:

1 mod 32 when a 2 2Z2, b 2 2Z2
17 mod 32 when ab 2 2Z2
1 mod 32 when ab 2 Z⇥

2

which contradicts the assumption on v.
If two of {⇠1, ⌘1, �1} are in Z⇥

2 and the remaining one is in 2Z2, we can assume
�1 2 2Z2 and ⇠1, ⌘1 2 Z⇥

2 by symmetry. This implies that �3 2 (Z⇥
2 )2 by (5.3),

which is impossible.
If all ⇠1, ⌘1 and �1 are in Z⇥

2 , then 3 · 3 ⌘ 4� 3v2 mod 32 by (5.3). Therefore
v2 ⌘ 9 mod 32 which contradicts the assumption on v.

Therefore the above claim follows, i.e., there is at least one coordinate of M2
in Z⇥

2 . Since (↵22 � 4,±3)2 = (�3,±3)2 = 0 for ↵2 2 Z⇥
2 , one concludes that B

vanishes over U(Z2). For Mp 2 U(Zp), one has

B(Mp) =

(
1/2 if p = 3,
0 otherwise.

This implies X

p1

B(Mp) = 1/2 6= 0,

hence U(AZ)B = ;.

Remark 5.7. The element B = (x2 � 4, r) 2 Br(U) actually belongs to Br(X).
Let S be the finite set of primes which divide 2d = 2rv2. For a prime p /2 S, the
element B vanishes not only on U(Zp) but also on U(Qp) (Lemma 5.1). From
m > 4 and m < 0 we get that B vanishes on U(R) (Lemma 5.1 and Lemma 5.2).
The above proof then shows that

"
Y

p2S
U(Zp) ⇥

Y

p/2S
U(Qp)

#B

is empty. In particular, assuming there are Qp-points everywhere locally, we get
that U(Q) does not meet the open subset of

Q
p2S U(Zp) which is orthogonal to

the element B. This represents a lack of weak approximation – which is a stronger
result than the same statement for U(Z).

On the other hand, for m 6= 0, 4, it is a special case of a theorem of Salberger
and Skorobogatov [19] that the smooth cubic surface given by

t (x2 + y2 + z2) � xyz = mt3

satisfies weak approximation with Brauer–Manin obstruction.
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Remark 5.8. There is an error in the proof of [10, Proposition 8.1 (i)]. A contra-
diction is derived from the fact that q ⌘ ±5 mod 8 and {±2} is a quadratic residue
modulo q. However, when q ⌘ 3 mod 8, then �2 is a quadratic residue modulo q
and this is not a contradiction. The corresponding result should be modified. More-
over, the additional requirement that v 2 {0,±3,±4} mod 9 can be replaced by the
local condition in [10, Proposition 6.1].

Proposition 8.3 in [10] can be improved as follows:

Proposition 5.9. Let v be an integer all prime factors of which are congruent to
±1 mod 5. Let U be the scheme over Z given by the equation

x2 + y2 + z2 � xyz = m = 4+ 20v2

and let U = U ⇥Z Q. Then U(AZ)Br1(U) = ;.

The smallest positive such v is v = 11, which gives m = 4+ 20v2 = 2424.

Proof. We only consider the following subset A of Br1(U)

�
(x ± 2, 5), (y ± 2, 5), (z ± 2, 5)

 
.

Then each element � 2 A vanishes over U(Zp) for p 6= 2, 5 by Lemma 5.1 and the
property ( 5p ) = ( p5 ) = 1 for p ⌘ ±1 mod 5.

Let M5 = (x5, y5, z5) 2 U(Z5). By permutation of the coordinates and reduc-
tion of the equation

(x2 � 4)(y2 � 4) = (2z � xy)2 � 80v2

modulo 25, one sees that there is at most one coordinate of M5 which is congruent
to ±2 mod 5.

We consider

V = (x25 � 4, 5)5 = (y25 � 4, 5)5 = (z25 � 4, 5)5.

We have two possibilities:

a5) At least one of the coordinates is ±1 mod 5, then V = 1/2. Therefore half of
the elements in A vanish at M5 and the other half do not vanish.

b5) Two coordinates of M5 are in 5Z5 and the remaining one is ±2 mod 5. In
this case, V = 0. Without loss of generality, we assume x5, y5 2 5Z5. Then
z25 ⌘ 4 + 20 mod 25 by the given equation. This implies that z5 ⌘ ±7 mod 25.
Therefore

(x5 ± 2, 5)5 = (y5 ± 2, 5)5 = 1/2 and (z5 ± 2, 5)5 = 0.

Thus for any point M5 2 U(Z5) at most 3 of the elements in A vanish at M5.
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Let now M2 = (x2, y2, z2) 2 U(Z2). Recall that (2, 5)2 = 1/2 and (u, 5)2 = 0
for any u 2 Z⇥

2 .

a2) If one coordinate, say x2, belongs to Z⇥
2 , then each of x2 ± 2 is in Z⇥

2 hence
(x2 ± 2, 5)2 = 0. From the given equation we immediately see that if M2 has one
coordinate in Z⇥

2 , then it has at least 2. This then implies that at least 4 elements in
A vanish at M2.

b2) If no coordinate of M2 is in Z⇥
2 , then one can write

x2 = 2⇠, y2 = 2⌘, z2 = 2� with ⇠, ⌘, � 2 Z2

and the equation gives

(⇠2 � 1)(⌘2 � 1) = (� � ⇠⌘)2 � 5v2.

Since 5 62 Z⇥2
2 , one concludes that ⇠ and ⌘ are in 2Z2. Similarly, � 2 2Z2. For

each element in the set

{(x ± 2, 5), (y ± 2, 5), (z ± 2, 5)}

the value it takes on M2 is of the shape (2u, 5)2 with u 2 Z⇥
2 . We see that all

elements in A take the value 1/2 at M2.
It is then an easy matter to see that in whichever combination of one of a5), b5)

with one of a2), b2), there exists an element � 2 B such that �(M5) + �(M2) 6= 0.
Hence for any adèle {Mp} 2 U(AZ) there exists an element � 2 A with the property

X

p
�(Mp) 6= 0 2 Q/Z.

5.2. Combination of Brauer-Manin obstruction with the reduction theory

Lemma 5.10. Suppose m 6= 0, 4 and d = m � 4. Let p be an odd prime such that
ordp(d) is even and positive. Then there is a point (xp, yp, z p) 2 Um(Zp) such
that

(xp � 2, d)p = (yp � 2, d)p = (z p � 2, d)p = 0.

Proof. For any odd prime p and a 6= ±2 in the finite field Fp, the point (a, a, 2) is
a smooth point of the affine variety over Fp defined by x2+ y2+ z2� xyz = 4. By
Hensel’s Lemma, there exists a point (xp, yp, z p) ⌘ (a, a, 2) mod p in Um(Zp).
Therefore

(xp + 2, d)p = (xp � 2, d)p = (yp � 2, d)p = 0.

By (3.22), one has (z p � 2, d)p = 0.

The following proposition points out that [10, Proposition 8.1 ii)] cannot be
explained only by Brauer-Manin obstruction.



1300 JEAN-LOUIS COLLIOT-THÉLÈNE, DASHENG WEI AND FEI XU

Proposition 5.11. Let U be the scheme over Z given by

x2 + y2 + z2 � xyz = 4+ 2l2w2, (5.4)

where w is an odd integer and l is a prime with l ⌘ ±3 mod 8.
If lw ⌘ ±4 mod 9, then U(AZ)Br 6= ;.

Proof. By [10, Proposition 6.1], the condition lw ⌘ ±4 mod 9 impliesQ
p1 U(Zp) 6= ;. Since lw is odd, the integer 4+ 2l2w2 is not a square. There-

fore, by Corollary 4.9 and Theorem 3.4, the quotient Br(U)/Br0(U) is generated
by

{(x � 2, 2), (y � 2, 2), (z � 2, 2)}. (5.5)

By Lemma 5.1, for p - 2lw, the three elements in (5.5) vanish over U(Zp). By
Lemma 5.10, there is a Zp-point Mp at which all three elements in (5.5) vanish for
any p | w and p 6= l. We fix such points.

We shall construct suitable local points Mp = (xp, yp, z p) for p = 2, l.
For p = 2, we take x2 = y2 = 1. By Hensel’s Lemma, there is z2 2 Z⇥

2
satisfying

z2 � z = 2+ 2l2w2. (5.6)

Then (x2 � 2, 2)2 = (y2 � 2, 2)2 = 0 and

(z2 � 2, 2)2 = (�1� r, 2)2 =
1
2
,

where r is the other root of (5.6) with ord2(r) = ord2(2+ 2l2w2) = 2.
Over the finite field Fl , we can choose (a, b, c) 2 Fl ⇥ F⇥

l ⇥ F⇥
l satisfying

a2 � 4bc = 2w2. Obviously a � b � c 6= 0, otherwise we have (b � c)2 = 2w2,
which is impossible since (2l ) = �1. Therefore (b, c, a� b� c) is a solution of the
equation

(x 0 + y0 + z0)2 � 4x 0y0 = 2w2 mod l

with x 0y0z0 6= 0, hence by Hensel’s lemma there is a solution (↵l ,�l , �l) of the
equation

(x 0 + y0 + z0)2 � x 0y0(4+ l · z0) = 2w2

over Zl with �l 2 Z⇥
l . Then

(xl , yl , zl) = (�2+ ↵l l,�2+ �l l, 2+ �l l) 2 Um(Zl)

with
(xl � 2, 2)l = (yl � 2, 2)l = 0 and (zl � 2, 2)l = 1/2.

One concludes that
(xp, yp, z p)p1 2 U(AZ)Br,

as desired.
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If w = 1 in Proposition 5.11 and l is a sufficiently large prime, one can still
prove that equation (5.4) has no integral solutions by combining Brauer-Manin ob-
struction with the reduction theory as given in [10, Proposition 8.1 ii)]. In fact, we
produce more counterexamples.
Proposition 5.12. The equation

x2 + y2 + z2 � xyz = 4+ rl2

has no integral solution in each of the following cases:

i) r = 2 and l � 13 is a prime with l ⌘ ±4 mod 9;
ii) r = 12 and l � 37 is a prime, l2 ⌘ 25 mod 32 and 1+ 3l2 is not a sum of two

squares (e.g., l = 37, 43, ...);
iii) r = �2 and l � 13 is a prime;
iv) r = �3 and l � 17 is a prime;
v) r = �12 and l � 37 is a prime.

Proof. Let us first check that in each of the above cases, m = 4 + rl2 is “generic”
as defined in [10], i.e., there is no integral solution with one of the coordinates of
absolute value 0, 1 or 2. This is automatic for m < 0, hence in cases (iii), (iv), (v).
In case i), see the proof of [10, Proposition 8.1]. In case ii), u2+3v2 = 4(m�1) =
4(3+ 12l2) is not solvable over Z because

�
� 3, 4(3+ 12l2)

�
3 = (�3, 1+ 4l2)3 = (�3, 5)3 = 1/2.

By our assumption, u2 + v2 = 4+ 12l2 is not solvable over Z. Since 12l2 is not a
square, 4+ 12l2 is generic.

Let us now suppose that one of the given equations has an integral solution.
In the cases i) and ii), by the reduction theory [10, Theorem 1.1], there is an

integral solution (x0, y0, z0) satisfying

3  |x0|  |y0|  |z0| and |x0|  (4+ rl2)
1
3 .

Suppose r = 2 and l � 13, or r = 12 and l � 37. We have |x0| + 2 < l. This
implies that x20 � 4 has no l-factor. We therefore have (x20 � 4, r)l = 0.

By the purely local computations in Proposition 5.6, in the case r = 2, we have
(x20 � 4, r)2 = 1/2. Then we have

(x20 � 4, r)p =

(
0 if p 6= 2
1/2 if p = 2.

Similarly, by the purely local computations in Proposition 5.6, if r = 12, we have

(x20 � 4, r)2 = 0 and (x20 � 4, r)3 = 1/2.

Therefore

(x20 � 4, r)p =

(
0 if p 6= 3
1/2 if p = 3.

This contradicts the Hilbert reciprocity law.
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In the cases iii), iv) and v), by the reduction theory ( [10, Theorem 1.1]), there
is an integral solution (x0, y0, z0) satisfying

3  x0  y0  z0 
1
2
x0y0.

We claim x0 < l � 2. Otherwise, we would have

�rl2 � 4 =x0y0z0 � x20 � y20 � z20 � x0y0z0 � x20 � y20 �
1
2
x0y0z0

=
1
2
x0y0z0 � x20 � y20 �

1
2
(l � 2)y20 � 2y20

=
1
2
(l � 6)y20 �

1
2
(l � 6)(l � 2)2.

If r = �2 and l � 13, or r = �3 and l � 17, or r = �12 and l � 37. This is
impossible. This implies that x20 � 4 has no l-factor and thus (x20 � 4, 2)l = 0.

By the purely local computations in Proposition 5.6, in the case r = �2 we
have (x20 � 4, r)2 = 1/2. Then

(x20 � 4, r)p =

(
0 if p 6= 2
1/2 if p = 2.

This contradicts the Hilbert reciprocity law.
By the purely local computations in Proposition 5.6, if r = �3,�12, one has

(x20 � 4, r)2 = 0 and (x20 � 4, r)3 = 1/2.

So

(x20 � 4, r)p =

(
0 if p 6= 3
1/2 if p = 3.

This contradicts the Hilbert reciprocity law.

The following lemma is an extension of the previous proposition. One needs
this extension in order to get the lower bound in Theorem 5.14.

Lemma 5.13. Let r = 2,�2,�3,�12. Let a > 0 be an integer and l be a prime.
Let m = 4 + ra2l2. Suppose a > 0 is prime to r and that the Hilbert symbol
(p, r)p = 0 for any prime divisor p of a. In the case r = 2, suppose moreover
al ⌘ ±4 mod 9.

Then there exists a positive constant ✓r > 0 only depending on r , such that, if
a < ✓r l1/2 and l is large enough (depending on ✓r ), then the equation

x2 + y2 + z2 � xyz = 4+ ra2l2

has no integral solution.
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Proof. Assume there is an integral solution.
i) Suppose r = 2. By the last part of the proof of [10, Proposition 8.1], it is clear
that 4+ ra2l2 is ”generic”. By the reduction theory [10, Theorem 1.1], there is an
integral solution (x0, y0, z0) satisfying

3  |x0|  |y0|  |z0| and |x0| 
�
4+ 2a2l2

� 1
3 .

If ✓2 < 1/
p
2, then

|x0| 
�
4+ 2a2l2

� 1
3 < (4+ 2✓22 l

3)1/3 < l � 2,

the last inequality holds for l large enough. This implies that x20 � 4 has no l-factor.
Therefore (x20 � 4, 2)l = 0. By similar purely local computations as in Proposition
5.12, we conclude that the integral Brauer-Manin set of the equation

x2 + y2 + z2 � xyz = 4+ ra2l2

is empty, hence this equation has no integral solution.
ii) Suppose r = �2,�3,�12. By the reduction theory [10, Theorem 1.1], there is
an integral solution (x0, y0, z0) satisfying

3  x0  y0  z0  x0y0/2.

We have

�ra2l2 � 4 =x0y0z0 � x20 � y20 � z20 � x0y0z0/2� x20 � y20
�(x0/2� 1)y20 � x20 � x0 · x20/2� x20 � x20 = x30/2� 2x20 .

If we choose 0 < ✓r < 1/
p

�2r , then x0 < l � 2 for l large enough. Therefore
(x20 � 4, r)l = 0. By purely local computations as in Proposition 5.12, we conclude
that the integral Brauer-Manin set of the equation

x2 + y2 + z2 � xyz = 4+ ra2l2

is empty, hence this equation has no integral solution.

The following result improves upon the lower bound
p
N (log N )�1 in [15,

Theorem 1.5].

Theorem 5.14. Let Um be the affine scheme over Z defined by the equation

x2 + y2 + z2 � xyz = m.

We have

#{m 2 Z : 0 < m < N , Um(AZ)Br 6= ; but Um(Z) = ;} �
p
N (log N )�1/2;

#{m 2 Z : �N < m < 0, Um(AZ)Br 6= ; but Um(Z) = ;} �
p
N (log N )�1/2

as N ! +1.
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Proof.
a) To prove the first asymptotic inequality, we restrict attention to positive integers
m = 4 + 2a2l2 with l a prime, l ⌘ 19 mod 72 and a an odd positive integer
satisfying

(⇤) : a ⌘ ±4 mod 9 and all prime divisors of a are congruent to ±1 mod 8 .

Fix ✓2 < 1/
p
2 as in the proof of Lemma 5.13. By this lemma, if a < ✓2l1/2 and l

is large enough, then the equation

x2 + y2 + z2 � xyz = 4+ 2a2l2

has no integral solution. By Proposition 5.11, we have Um(AZ)Br 6= ; for the above
values of m.

Let

NB = #{m 2 Z : 0 < m < N , Um(AZ)Br 6= ; but Um(Z) = ;}.

By Lemma 5.13, one obtains

NB �
X

l<
p
N , l⌘19 mod 72

#{a : a < ✓2
p
l, a <

p
N/ l, a satisfies (⇤)}

�
X

✓
�2/3
2 N1/3<l<N1/2, l⌘19 mod 72

#{a : a <
p
N/ l, a satisfies (⇤)}

�
X

✓
�2/3
2 N1/3<l<N5/12, l⌘19 mod 72

#{a : a <
p
N/ l, a satisfies (⇤)}.

By a well known lemma (e.g., [15, Section 5.8]), one has

#{a < N : a satisfies (⇤)} s cN (log N )�1/2 as N ! +1,

where c > 0 is a constant. Using [1, page 156, Ex. 6], we obtain

NB �
X

✓
�2/3
2 N1/3<l<N5/12, l⌘19 mod 72

p
N (log

p
N � log l)�1/2l�1

�
p
N (log N )�1/2

X

✓
�2/3
2 N1/3<l<N5/12, l⌘19 mod 72

l�1

�
p
N (log N )�1/2

✓
log log(N5/12) � log log(N1/3)

� log
✓
1�

2 log(✓2)
log N

◆
+ O((log N )�1)

◆

=
p
N (log N )�1/2

�
log(5/4) + O((log N )�1)

�
�

p
N (log N )�1/2

as N ! +1.
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b) To prove the second asymptotic inequality, we now restrict attention to integers
m = 4�2a2l2 and apply Lemma 5.13 to the case r = �2. Since

p
�1 62 Q(

p
d) =

Q(
p

�2), Corollary 4.10 gives Br(Um) = Br1(Um). The result follows from an
argument entirely analogous to the previous one.

6. Strong approximation always fails

Let Um be the scheme over Z defined by the equation

x2 + y2 + z2 � xyz = m. (6.1)

The following proposition complements [10, Theorem 1.1 (i)] (see also the discus-
sion below [10, Lemma 2.1]), which goes back to Markoff, Hurwitz, Mordell. The-
orem 1.1(i) of [10] contains the further information that if m 2 Z is “generic”, i.e.,
there no point on Um(Z) with x = 0, 1, 2, then 0 acts transitively on the solutions
and it describes an explicit fundamental set for the set of integral solutions.

Proposition 6.1. If m > 0, then any integral point in Um(Z) is 0-equivalent to an
integral point (x0, y0, z0) 2 Um(Z) such that

3  x0  y0  �z0 or x0 = 0, 1, 2. (6.2)

Proof. For a given integral point, if its 0-orbit contains an integral point with the
coordinate x = 0, 1, 2, then the proof is completed. Therefore, we may assume
there is no integral point in the 0-orbit with x = 0, 1, 2. By changing sign of
two coordinates and permutation of the coordinates, one only needs to consider the
generic case, i.e., 0-orbits of integral points such that for any point (x, y, z) in the
orbit we have

min{|x |, |y|, |z|} � 3.
By changing sign of two coordinates simultaneously, we only need to consider the
following two cases: two coordinates of (x, y, z) are positive and the remaining one
is negative; or all coordinates of (x, y, z) are positive.

Suppose that there is an integral point (x, y, z) 2 Um(Z) such that two coor-
dinates of (x, y, z) are positive and the remaining one is negative. Then the result
follows from changing sign of two coordinates so that all of them are negative, per-
mutation of the coordinates so as to get |x |  |y|  |z| and then change of sign of
x and y.

Now we consider an integral point (x, y, z) 2 Um(Z) such that 3  x  y  z.
If z  1

2 xy, then one obtains

z =
1
2

✓
xy �

q
x2y2 � 4(x2 + y2 � m)

◆

by solving (1.1) for z. This implies
q
x2y2 � 4(x2 + y2 � m) = xy � 2z  xy � 2y.
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Therefore one has
(x � 2)y2  x2 � m

by squaring. From x � 3 and m > 0 one concludes y2 < x2. A contradiction is
derived.

For any integral point (x, y, z) 2 Um(Z) with 3  x  y  z, we thus
have z > 1

2 xy. Applying the Vieta involution, one obtains a new integral point
(x, y, xy� z) which satisfies xy� z < z. If xy� z  2, since we are in the generic
case wemust have xy�z  �3, so we have a situation with two coordinates positive
and one negative, and we conclude as above. Suppose xy � z � 3. We obtain a
new integral point (x1, y1, z1) in the 0-orbit of (x, y, z) with positive coordinates
and x1 + y1 + z1 < x + y + z. This process must stop, that is we reach a situation
with two coordinates positive and one negative.

The main result of this section is the following theorem.

Theorem 6.2. Let m be any integer. Suppose Um(AZ) 6= ;. For any finite set S of
primes, the image of the natural map Um(Z) !

Q
p/2S Um(Zp) is not dense.

Proof. For any sets of primes S1 � S2, if Um(Z) is not dense in
Q

p 62S1 Um(Zp),
then Um(Z) is not dense in

Q
p 62S2 Um(Zp). One can thus enlarge S if necessary.

i) Supposem 6= 0. Wemay assume S contains 2 and1. Let S0 = {p prime : p | m}
and R =

Q
p2S\S0 p. Let a be a positive integer prime to m such that

a2R2 � 2aR � m � 0 and aR >
p

|m| + 9. (6.3)

Let d 0 = a2R2 � m and e0p = ordp(d 0).
Denote

V✏,1,d 0 :=
Y

p|d 0

n
(xp, yp, z p) 2 Um(Zp) : (xp, yp, z p) ⌘ (✏aR, 0, 0) mod pe

0
p
o

,

V✏,2,d 0 :=
Y

p|d 0

n
(xp, yp, z p) 2 Um(Zp) : (xp, yp, z p) ⌘ (0, ✏aR, 0) mod pe

0
p
o

,

V✏,3,d 0 :=
Y

p|d 0

n
(xp, yp, z p) 2 Um(Zp) : (xp, yp, z p) ⌘ (0, 0, ✏aR) mod pe

0
p
o

,

where ✏ = ±1. Let

V✏,d 0 =
3[

i=1

[

✏=±1
V✏,i,d 0 .

It is clear that V✏,d 0 is 0-invariant, where 0 is the group defined in Section 1. Since
d 0 has no prime factor in S[S0, we can take the local point (x 0

p, 0, 0) ofUm(Zp)with
x 0
p ⌘ aR mod pe

0
p for any p | d 0 by Hensel’s lemma. Obviously,

Q
p|d 0(x 0

p, 0, 0)
lies in V1,1,d 0 . Therefore V✏,d 0 is a non-empty open subset of

Q
p|d 0 Um(Zp).
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a) Suppose m > 0. Assume that Um(Z) is dense in
Q

p/2S Um(Zp). Then we have
Um(Z)\V✏,d 0 6= ;. By Proposition 6.1, there is a point (x0, y0, z0) 2 Um(Z)\V✏,d 0

such that
3  x0  y0  �z0 or x0 = 0, 1, 2. (6.4)

Since (x0, y0, z0) 2 V✏,d 0 , we have

(x0, y0, z0) ⌘ (±aR, 0, 0), (0,±aR, 0) or (0, 0,±aR) mod d 0.

If x0 > 0, then

x0 � min{d 0, d 0 � aR, aR} = aR >
p
m + 9 > 3 (6.5)

by (6.3). Hence 3  x0  (m � 27)1/3 by (6.1) and (6.4). We have the inequalityp
m + 9 > (m � 27)1/3. By (6.5) a contradiction is derived. Therefore

x0 = 0, y20 + z20 = m and (y0, z0) ⌘ (±aR, 0) or (0,±aR) mod d 0,

which is impossible by (6.3). Therefore Um(Z) is not dense in
Q

p|d 0 Um(Zp), hence
is not dense in

Q
p/2S Um(Zp).

b) Suppose m < 0. Assume that Um(Z) is dense in the set
Q

p/2S Um(Zp). Then
we have Um(Z) \ V✏,d 0 6= ;. By [10, Theorem 1.1 (ii)], there is an integral point
(x0, y0, z0) 2 Um(Z) \ V✏,d 0 such that

3  x0  y0  z0  x0y0/2.

By [10, Lemma 2.2], one has 3  x0 
p

|m| + 9. Since (x0, y0, z0) 2 V✏,d 0 , we
have

(x0, y0, z0) ⌘ (±aR, 0, 0), (0,±aR, 0) or (0, 0,±aR) mod d 0,

Since x0 > 0, then

x0 � min{d 0, d 0 � aR, aR} = aR >
p
m + 9

by (6.3), which contradicts x0 
p

|m| + 9. Therefore Um(Z) is not dense inQ
p|d 0 Um(Zp), hence is not dense in

Q
p/2S Um(Zp).

ii) Suppose m = 0.
We can choose a prime l /2 S and l⌘1 mod 4. Then there exists �2Z⇥

l such that
�2 = �1. Therefore (�l, l, 0) 2 U0(Zl). If U0(Z) is dense in

Q
p/2S U0(Zp), then

there is an integral point (x0, y0, z0) ⌘ (�l, l, 0) mod l2. Therefore (x0, y0, z0) 6=
(0, 0, 0) and x0, y0, z0 are all divisible by l. Since U0(Z) has just two orbits (0, 0, 0)
and (3, 3, 3) (see [10, Section 3.1]), (x0, y0, z0) is contained in the orbit (3, 3, 3).
One has l | 3 since x0, y0, z0 are all divisible by l, which is impossible. Therefore
U0(Z) is not dense in

Q
p/2S U0(Zp). The proof is completed.
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We can ask for a lighter version of strong approximation: could it be that the
reduction map Um(Z) ! Um(Z/ l) is surjective for almost all primes l? Form not a
square, the following proposition gives a conditional negative answer. Indeed it is a
special case of Schinzel’s conjecture that under this hypothesis onm the polynomial
x2 � m 2 Z[x] represents infinitely many primes as x varies in Z.

Proposition 6.3. Assume that m is not a square and that the polynomial x2 �m in
Z[x] represents infinitely many primes. Then there exist infinitely many primes l for
which there is a point in Um(Z/ l) of the shape (x, 0, 0) with x 6= 0 which is not in
the image of Um(Z) ! Um(Z/ l).

Proof. Let l be a prime of the shape l = a2 � m with m 2 Z and a is a positive
integer prime to m, such that

a2 � 2a � m � 0 and a >
p

|m| + 9. (6.6)

By the above conjecture, there exists infinitely many such pairs (l, a). Denote

Vl := {(±a, 0, 0), (0,±a, 0), (0, 0,±a)} ⇢ (Z/ l)3,

here a is the image of a in Z/ l. It is clear that Vl ⇢ Um(Z/ l) is 0-invariant.
We will assume m > 0 (the case m < 0 can be proved similarly). Assume

that the map Um(Z) ! Um(Z/ l) is surjective. Then there is an integral point
Ex 2 Um(Z) \ Vl . By Proposition 6.1 ( [10, Theorem 1.1 (ii) and Lemma 2.2] for
m < 0), there is an integral point (x0, y0, z0) 2 Um(Z) \ Vl such that

3  x0  y0  �z0, or x0 = 0, 1, 2.

Since (x0, y0, z0) 2 Vl , we have

(x0, y0, z0) ⌘ (±a, 0, 0), (0,±a, 0) or (0, 0,±a) mod l,

hence, if x0 > 0,
x0 � min{l, l � a, a} = a >

p
m + 9 (6.7)

by (6.6). Since
p
m + 9 > 3, one has x0 6= 1, 2. If 3  x0  y0  �z0,

hence 3  x0  (m � 27)1/3 by (6.1). But (x0, y0, z0) 2 Vl , one has the inequality
x0 >

p
m + 9 > (m�27)1/3 by (6.7), which is a contradiction to x0  (m�27)1/3.

Therefore

x0 = 0, y20 + z20 = m and (y0, z0) ⌘ (±a, 0) or (0,±a) mod l.

Then
(y0, z0) ⌘ (±a, 0) or (0,±a) mod l

implies |y0| or |z0| � min{l � a, a} = a, hence a2  m, which is impossible by
(6.6). Therefore Um(Z) ! Um(Z/ l) is not surjective.
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Remark 6.4. When comparing the above results with [3], one should note that the
failures of strong approximation described here correspond to points (xp, yp, z p) 2
Um(Zp) whose reduction modulo p has two coordinates equal to 0, hence which
geometrically lift to points whose 0-orbit is finite.

Lemma 6.5. Let k be a number field. Let U be a smooth geometrically connected
variety over k such that Br(U)/Br0(U) is finite. Let v run through the places
of k. Suppose U is an integral model of U over ok with U(Aok )

Br 6= ;, here
U(Aok ) =

Q
v|1U(kv) ⇥

Q
v<1 U(ov). Let pr f : U(Aok ) !

Q
v<1 U(ov) be the

natural projection.
If U(ok) is dense in pr f (U(Aok )

Br), then there exists a finite set S of places
containing 1k such that the natural map U(ok) !

Q
v /2S U(ov) has dense image.

Proof. Suppose B1, · · · ,Bn generate Br(U)/Br0(U). Then, there exists a finite set
S of places containing 1k such that B1, · · · ,Bn vanish on U(ov) for any v /2 S.
Since U(Aok )

Br 6= ;, the natural projection U(Aok )
Br !

Q
v /2S U(ov) is surjective.

So, if U(ok) is dense in pr f (U(Aok )
Br), then U(ok) is dense in

Q
v /2S U(ov).

The above lemma is the exact analogue of the well known statement: if X is
projective over a number field k and Br(X)/Br(k) is finite, and X (k) is dense in
X (Ak)Br and non-empty, then weak weak approximation holds for X .

Corollary 6.6. Suppose m 6= 0, 4 and Um(AZ)Br 6= ;. Then Um(Z) is not dense
in pr f (Um(AZ)Br), where pr f : Um(AZ) !

Q
p<1 Um(Zp) is the natural projec-

tion.

Proof. By Theorem 3.4 and 4.8, Br(Um)/Br0(Um) is finite. The proof follows from
Theorem 6.2 and Lemma 6.5.

Corollary 6.7. Let pr f : Um(AZ) !
Q

p<1 Um(Zp) be the natural projection.
Assume that Um(Z) 6= ;.

If m > 4 is not a square, or m is a square with a prime factor congruent to
1 mod 4, orm < 0, then Um(Z) is Zariski dense but is not dense in pr f (Um(AZ)Br).

Proof. By [10, Section 5.2], Um(Z) is Zariski dense. The result follows from Corol-
lary 6.6.

Let X be a smooth, projective and geometrically connected variety over a num-
ber field k such that Br(X)/Br0(X) is finite and the Brauer-Manin set of X is not
empty. It is well known that X (k) is Zariski dense in X if X (k) is dense in its
Brauer-Manin set. Indeed this then follows from weak weak approximation. Let
S � 1k be a finite subset of �k , oS the ring of S-integers of k. Let U be a smooth
geometrically connected variety U over k, U an integral model over oS . We denote

U(AoS ) =
Y

v2S
U(kv) ⇥

Y

v 62S
U(ov)

where kv and ov are the completion of k and oS with respect to v 2 �k respectively.
One has the following integral analogy.
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Proposition 6.8. Let U be a smooth geometrically connected variety over a num-
ber field k such that Br(U)/Br0(U) is finite. Suppose U is an integral model
of U over oS with U(AoS )

Br 6= ;. If U(oS) is dense in prS(U(AoS )
Br) where

prS : U(AoS ) !
Q

v 62S U(ov) is the natural projection, then U(oS) is Zariski
dense in U .
Proof. Let N be a non-empty Zariski open subset of U and fix a finite set B ⇢
Br(U) generating Br(U)/Br0(U). There is a sufficiently large finite subset S0 � S
of �k such that N (ov) 6= ;, N is smooth over ov and each element in B vanishes
over U(ov) for all v 62 S0.

Take v0 62 S0. Then the open subset

N (ov0) ⇥
Y

v 62(S[{v0})

U(ov) ⇢ prS
�
U(AoS )

Br�

has non-empty intersection with U(oS) by the assumption. This implies that

U(ov0) � U(oS) \N (ov0) 6= ;.

ThereforeN \ U(oS) 6= ; as desired.

As we have seen in this section, the converse of Proposition 6.8 does not hold.

7. Appendix: the real locus

We here provide details for Remark 5.3. The following lemma should be well
known. We provide the proof for convenience of the reader.

Lemma 7.1. Let X be a topological space with a covering {Xi } of connected sub-
sets of X . Assume that for any two elements Y and Z in {Xi }, there are X1, · · · , Xk
in {Xi } satisfying

Y \ X1 6= ;, X1 \ X2 6= ;, · · · , Xk�1 \ Xk 6= ;, Xk \ Z 6= ;

where Y , X1, · · · , Xk, Z are the topological closures of Y, X1, · · · , Xk, Z in X
respectively. Then X is connected.

Proof. Suppose that X is not connected. Then X contains a non-empty, open and
closed subset D 6= X . Since {Xi } is a covering of X , there is Z in {Xi } such that
Z 6⇢ D.

On the other hand, one has

D \ Xi = ; or Xi ⇢ D (7.1)

for each element Xi in {Xi } by the connectedness of Xi . Since D is not empty, there
is Y in {Xi } such that Y ⇢ D by (7.1). By the assumption, there are X1, · · · , Xk in
{Xi } satisfying

Y \ X1 6= ;, X1 \ X2 6= ;, · · · , Xk�1 \ Xk 6= ;, Xk \ Z 6= ;.
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Therefore X1 ⇢ D by (7.1). Applying (7.1) repeatedly, one gets

X2 ⇢ D, · · · , Xk ⇢ D.

Finally, one concludes that Z ⇢ D by (7.1). A contradiction is derived.

Recall that Um is the affine scheme over R defined by the equation

x2 + y2 + z2 � xyz = m. (7.2)

Proposition 7.2. For m 2 R, the number of connected components of Um(R) is
given by

#⇡0(Um(R)) =

8
><

>:

1 for m � 4
5 for 0  m < 4
4 for m < 0.

More precisely:

• When m < 0, the connected components of Um(R) are
8
>>><

>>>:

{(x, y, z) 2 Um(R) : x � 2, y � 2}
{(x, y, z) 2 Um(R) : x  �2, y � 2}
{(x, y, z) 2 Um(R) : x  �2, y  �2}
{(x, y, z) 2 Um(R) : x � 2, y  �2}.

They are unbounded and transitively permuted by 0;
• When 0  m < 4, the connected components of Um(R) are

8
>>>>><

>>>>>:

{(x, y, z) 2 Um(R) : x � 2, y � 2}
{(x, y, z) 2 Um(R) : x  �2, y � 2}
{(x, y, z) 2 Um(R) : x  �2, y  �2}
{(x, y, z) 2 Um(R) : x � 2, y  �2}
{(x, y, z) 2 Um(R) : �2  x  2, �2  y  2}.

The first four components are unbounded and 0 permutes them transitively. The
last component is bounded and reduced to the point (0, 0, 0) if m = 0;

• When 4  m, then Um(R) is connected and unbounded.

Proof. Since (7.2) is equivalent to

(2z � xy)2 = (x2 � 4)(y2 � 4) + 4(m � 4),
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one concludes that the following closed subsets of Um(R)

8
>>>>>>>>>>>>>><

>>>>>>>>>>>>>>:

D1 = {(x, y, z) 2 Um(R) : x � 2, y � 2}
D2 = {(x, y, z) 2 Um(R) : �2  x  2, y � 2}
D3 = {(x, y, z) 2 Um(R) : x  �2, y � 2}
D4 = {(x, y, z) 2 Um(R) : x  �2, �2  y  2}
D5 = {(x, y, z) 2 Um(R) : x  �2, y  �2}
D6 = {(x, y, z) 2 Um(R) : �2  x  2, y  �2}
D7 = {(x, y, z) 2 Um(R) : x � 2, y  �2}
D8 = {(x, y, z) 2 Um(R) : x � 2, �2  y  2}
D9 = {(x, y, z) 2 Um(R) : �2  x  2, �2  y  2}

are connected with Um(R) =
S9

i=1 Di .
When m � 4, then D9\ Di 6= ; for 1  i  8. ThereforeUm(R) is connected

by Lemma 7.1.
When m < 4, then D2 = D4 = D6 = D8 = ;. Moreover D9 = ; if and

only if m < 0. In this case, one obtains that D1, D3, D5, D7 are the connected
components of Um(R), which are unbounded. Using (x, y, z) 7! (�x,�y, z) and
(x, y, z) 7! (�x, y,�z) one sees that 0 transitively permutes these 4 components.
For 0  m < 4, one has D9 \ Di = ; for i = 1, 3, 5, 7. Therefore D9 is a bounded
connected component of Um(R).
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