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Brauer-Manin obstruction for Markoff surfaces

JEAN-LOUIS COLLIOT-THELENE, DASHENG WEI AND FEI XU

Abstract. Ghosh and Sarnak have studied integral points on surfaces defined by
an equation xZ+ y2 +72— xyz = m over the integers. For these affine surfaces,
we systematically study the Brauer group and the Brauer-Manin obstruction to
the integral Hasse principle. We prove that strong approximation for integral
points on any such surface, away from any finite set of places, fails, and that, for
m # 0, 4, the Brauer group does not control strong approximation.

Mathematics Subject Classification (2010): 11G35 (primary); 11D25, 14F22
(secondary).

1. Introduction

Fixm € Z.Letd :=m — 4. LetU,, C A% be the affine scheme over Z defined by
the equation
x4y 422 —xyz =m. (1.1)

It is equivalently defined by the equation
2z —xy)? —4d = (x* =4 (y? — 9), (12)
by the equation
x—y—z+2%—d=@x+2)(y-2)(—2), (1.3)

as well as similar ones obtained by permutation of coordinates.

The surface U,, = U, xz Q over Q is called a Markoff surface. Unless
otherwise mentioned, we assume m # 0 and d # 0. These are the conditions for
U,, to be smooth.
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In[10], A. Ghosh and P. Sarnak have studied the set {4, (Z) of integral solutions
of such equations. A key tool is the action of the automorphism group I" generated
by the following three types of elements:

(a) The Vieta involution: (x, y, z) — (yz — x, ¥, 2);
(b) The sign change: (x, y, 2) — (—x, —y, 2);
(c) The permutations of x, y, z.
We denote Uy, (Az) =[] » Un(Zp), where p runs through all primes and oo, and
Zoo = R. Let
Un(Az)e = [ | Un(Zyp) x 70(Un(R))

p<00

where 7o (U, (R)) is the set of connected components of U, (R). Let
Un(A2)S" C Un(Az),

be the subset consisting of elements which are orthogonal to Br(U,,) for the Brauer-
Manin pairing
Un(Az)e x Br(Up) — Q/Z

(see [6, Section 1]). This is called the (reduced) Brauer-Manin set of U, .

Here are some of the main results from [10]:

0) U, (Az) = @ if and only if m = 3 mod 4 or m = £3 mod 9. Other values of
m are called “admissible’;

(1) For m admissible and “generic” ( [10, p. 3], see Proposition 6.1 below), fol-
lowing Markoff, Hurwitz and Mordell, Ghosh and Sarnak develop a reduction
theory: there exists a bounded fundamental domain in R for integral solu-
tions. In particular the set {4, (Z)/ T is finite;

(2) Suppose that m is not a square. Then U, (Z) is Zariski dense in U, if and only
if Uy, (Z) is not empty [10, (1.5)]. Zariski density still holds if m is a square
and contains an odd prime factor congruent to 1 modulo 4 [10, final comment
in Section 5.2.1];

(3) Strong approximation need not hold, i.e., U, (Z) need not be dense in U, (Az)
(see [10, page 21]). This uses the quadratic reciprocity law;

(4) There are infinitely many m’s such that I, does not satisty the integral Hasse
principle. The examples in [10] are all of the shape d = r.v?, with r =
+2,r = 12, r = 20, and specific properties for the primes dividing v. The
arguments use quadratic reciprocity. They are in the same spirit as earlier
examples [6,7] accounted for by the integral Brauer-Manin obstruction. From
a historical point of view, it is interesting to note that examples very close to
those of [10] are already given in Mordell’s 1953 paper [17, Section 3];

(5) For “generic” values of m, reduction theory leads to examples where
Un(Az) # 0 but U, (Z) = B. On the basis of intensive numerical experi-
ments, Ghosh and Sarnak suggest that there are many such examples that can-
not be explained by a reciprocity argument, i.e., for which, in our language,
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Un(Az)BT #£ @, More precisely they predict a count for the set of m’s with
local solutions and no global solution which is much higher than what their
families of counterexamples produce.

The cubic surface X, C ]P’?Q given by the homogeneous equation

t()c2 + y2 + ZZ) —xyz = mt>

is smooth as soon as m # 0, 4. The surface U, = U, ®z Q is the complement
in X, of the hyperplane section H defined by plane section t = 0. Its geometric
fundamental group is trivial (Proposition 4.1). Thus U, , or rather the pair (X,,,, H),
is in a strong sense a log K3 surface [11, Definition 2.4].

The search for integral points on U, bears some analogy with the search for
rational points on smooth, projective K3 surfaces W. For this latter situation, Sko-
robogatov has put forward the conjecture: The closure of the set W (Q) in the adelic
set W(Aq), is just the Brauer-Manin set W(AQ)?I. One may wonder whether there
is a similar result for integral points on log K3 surfaces U. Here some restriction
must be made. It may indeed happen that the set /(Z) is not empty but not Zariski
dense in U (Harpaz [11, Theorem 1.4]; Jahnel and Schindler [13, Theorem 2.6]).

Here are some questions raised by the paper of Ghosh and Sarnak.

(A) A first problem is to check that all counterexamples in [10] are of Brauer-
Manin type, and to search for as many families of counterexamples as possible.

This problem is best handled by solving problems (B) and (C):

(B) For arbitrary m, can one determine Br(U,,)/Br(Q)? Is this quotient finite?

(C) For arbitrary m, can one determine Z/Im(AZ)?r?

(D) When (how often) is the closure of U, (Z) equal to the Brauer-Manin set
um (AZ)}Er?

Here are the main results of our paper:

(a) We solve Problem (A), i.e., we check that the counterexamples to the integral
Hasse principle based on the quadratic reciprocity law in [10] are of Brauer-
Manin type, and we produce more families of counterexamples of the same
kind;

(b) We solve Problem (B) for all values of m. This in principle solves Problem (C);

(c) Over an arbitrary ground field, we give generators for the algebraic part of the
Brauer group of U, and we systematically study the “transcendental part” of
the Brauer group of U;

(d) We get a satisfactory answer to Problem (D). More precisely, we prove (see
Theorem 6.2):

Theorem 1.1. Let m € 7 be any integer. Suppose Uy, (Az) # @. For any finite set
S of primes the image of the natural map Uy, (Z) — || S U (Zp) is not dense.
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The proof of this theorem does not involve the Brauer group, it only uses reduction
theory. It should be compared with the statement at the bottom of page 2 of [10],
with reference to [3], that if d = m — 4 > 0 is a square, then U, “satisfies a form
of strong approximation”. See Remark 6.4 below.

As a corollary, one gets (see Corollary 6.6):

Corollary 1.2. Suppose m # 0,4 and U,,(Az)E" # 0. Then Uy, (Z) is not dense in
um (AZ)].Br-

Since there are infinitely many m # 0, 4 such that U, (Z) is Zariski dense in U,
by [10, Section 5.2], we obtain infinitely many log K3 surfaces where integral points
are Zariski dense but are not dense in the integral Brauer-Manin sets (see Corol-
lary 6.7).

Such a behaviour had not been yet observed, even in the context of rational
points. If one allows discussion of density in the real locus, one may only compare
this with the examples of smooth projective surfaces X /(Q with the property that the
closure of X (Q) in X (R) does not coincide with a union of connected components
of the real locus X (R) [5, Section 5].

This work was started in Beijing in November 2017 and posted on arXiv in
August 2018. In a preprint posted on arXiv in July 2018, D. Loughran and V. Mi-
tankin [15] have made an independent study. With the restrictions m, d, md not
squares, they independently solve problem (B). Their paper also solves Problem
(A), produces some more types of counterexamples, and gives an asymptotic lower
bound for the number of integers m giving rise to such counterexamples. Our stock
of counterexamples enables us to produce a slightly better asymptotic lower bound
than [15, Theorem 1.5].

With the same restriction that m, d, md are not squares, towards Problem (C),
Loughran and Mitankin establish the beautiful result that the only possible examples
with U, (A7) # ¥ and U,, (A7)B" = @ satisfy that the class of d = m —4 in Q*/Q*?
lies in the subgroup spanned by *1, 2, 3, 5. This finiteness result, which is in the
spirit of the finiteness of exceptional spinor classes in the study of the representation
of an integer by a ternary quadratic form (see [6, Remark 7.11]), explains why the
examples in [10] based on the quadratic reciprocity law were of a rather special
type. It is used in [15] to show that there are indeed far less values of m with
Brauer-Manin counterexamples than the number of values of m predicted by [10]
for counterexamples to the integral Hasse principle.

Notation. Let k be a field and k a separable closure of k. We let g = g; = Gal(k/ k)
be the absolute Galois group. A k-variety is a separated k-scheme of finite type. If
X is a k-variety, we write X = X xg k. We let k[X] = HO(X, Ox) and k[X] =
HO(X, Ox). If X is an integral k-variety, we let k(X) denote the function field of
X. If X is a geometrically integral k-variety, we let k(X) denote the function field
of X. We let Pic(W) = H%ar(W, Gn) = Hé]t(W, Gy,) denote the Picard group of a
scheme W. We let Br(W) = Hézt(W, Gy,) denote the Brauer group of a scheme W.
Suppose W is a smooth integral k-variety. The natural map Br(W) — Br(k(W))
is injective, hence Br(W) is a torsion group. An element of Br(k(W)) whose order
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is prime to the characteristic of k belongs to Br(W) if and only if its residues at all
codimension 1 points of W vanish. We let

Bri(X) = Ker[Br(X) — Br(X)]

denote the algebraic Brauer group of a k-variety X and we let Bro(X) C Bri(X)
denote the image of Br(k) — Br(X). The image of Br(X) — Br(X) is sometimes
referred to as the “transcendental Brauer group” of X.

Given a field F of characteristic zero containing a primitive n-th root of unity
¢ = ¢, we have H2(F, ,u;?z) = H%(F, Ur) ® . The choice of ¢, then defines
an isomorphism Br(F)[n] = H2(F, Un) = H2(F, ,u,‘?z). Given two elements
f, g € F*, they have classes (f) and (g) in F*/F*" = H'(F, j,). One denotes
(f, 8¢ €Br(F)[nl=H 2(F, ) the class corresponding to the cup-product

(f)U(g) € H*(F, u%?).

Suppose F/E is a finite Galois extension with Galois group G. Given o0 € G
and f, g € F*,wehave o ((f, 8)¢,) = (0(f),0(8))o(,) € Br(F). In particular, if
tn € E theno ((f, g)¢,) = (0 (f), 0(g))¢,. For all this, see [9, Section 4.6, Section
4.7] and in particular [9, Proposition 4.7.1].

Let R be a discrete valuation ring with field of fractions F and residue field « .
Let v denote the valuation F* — 7Z. Let n > 1 be an integer invertible in R.
Assume F' contains a primitive n-th root of unity ¢. For f, g, € F*, we have the
residue map

g : HA(F, py) — H'(c, Z/n) = H' (i, ) = 1 /™",

where H! (k, Z/n) = H'(k, w,) is induced by the isomorphism Z/n >~ u, sending
1 to ¢. This map sends the class of (f, g); € Br(F)[n] = H?(F, uy,) to

(_1)U(f)v(g) Class(gv(f)/fv(‘g)) € kX JKkx", (1.4)

For a proof of these well known facts, see [9]. Here are precise references. Residues
in Galois cohomology with finite coefficients are defined in [9, Construction 6.8.5].
Comparison of residues in Milnor K-Theory and Galois cohomology is given in
[9, Proposition 7.5.1]. The explicit formula for the residue in Milnor’s group K7 of
a discretely valued field is given in [9, Example 7.1.5].

Structure of the paper

Let k be a field of characteristic zero. Let m € k. Assume m(m — 4) # 0. Let
Xn C IP’,% be the smooth cubic surface defined by the projective equation

12+ y? + 25 — xyz = mt>.
LetU = U, C X,, be the smooth affine cubic surface defined by the affine equation

x2+y2+z2—xyz:m.
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In Section 2 we study the Galois modules Pic(X,,), Pic(U,,), Br(U,,). We show
Br(U,,) ~ Q/Z(—1). In Section 3 we compute Br(X,,) = Br;(X,,) and the alge-
braic part Bry (U,,) of Br(U,,). In Section 4, we compute the transcendental part of
Br(U,,), namely the quotient Br(U,,)/Br{ (U,,). We then turn to the case k = Q and
m is an integer. In Section 5 we show how to compute the integral Brauer-Manin
obstruction for the affine scheme U, over Z defined by x2 +y? 472 —xyz = m. We
then show that the counterexamples to the integral Hasse principle for U, in [10]
may all be explained by a combination of integral Brauer-Manin obstruction and
reduction theory. We increase the stock of such counterexamples, thus leading to
an improvement on a counting result in [15]. In Section 6 we prove that strong ap-
proximation never holds for Markoff type surfaces. Section 7 is an appendix giving
the structure of the real locus Uy, (R) depending on the value of m € R.

2. Computation of Brauer groups I, general setting

Proposition 2.1. Let X be a smooth, projective, geometrically rational surface
over a field k of characteristic zero. Suppose that U is an open subset of X such that
X \ U is the union of three distinct k-lines, by which we mean a smooth projective
curve isomorphic to IP’}(. Suppose any two lines intersect each another transversely
in one point, and that the three intersection points are distinct. Let L be one of the
three lines and V. C L be the complement of the 2 intersection points of L with the
other two lines. Then the residue map

a1 : Br(k(X)) - H'(k(L), Q/Z)

induces a g-isomorphism

Bi(U) = H'(V,Q/Z) = H' Gy, Q/Z) ~ Q/Z(-1).
Proof. Since X is smooth, the homology of the Bloch-Ogus complex

H?(k(X), Q/Z() — & o H'(k(x), Q/Z) — & o H(k(x), Q/Z(~1))

at the second term is Hy,, (X, H3(Q/Z(1))) by [2, (6.1) Theorem]. The spectral
sequence

Ey? = Hy, (X, HL(Q/Z(1) = HE™ (X, Q/Z(1))

in [2, (6.3) Corollary] implies that H}
H3(X, Q/Z(1)). Since

(X, H%(Q/Z(1))) is a subgroup of

ar

Hg (X, jt) = Pic(X)[n] = 0
for all n > 0 by the Kummer sequence, one has

Hg(X, Q/Z(1)) =lim Hz(X, ju) = 0

by Poincaré duality. Therefore the above Bloch-Ogus complex is exact.
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Since X is a smooth, projective, geometrically rational surface, Br(X) = 0 and
the following diagram of exact sequences

Br(X) = 0 — H2(k(X), Q/Z(1)) —= ®__zo H' (k(x), Q/Z)

: |

0 ——> Br(U) —> HX(k(U), Q/Z(1)) —= &, _zo H' (k(x), Q/Z)

commutes by [4, (3.9)]. Let {L1, Ly, L3} be the set of three lines in X \ U and
let { Py, P>, P3} be the set of three intersection points of Lj, Ly and L3 such that
P ¢ L;forl <i <3.Set

Vi=Li \{Pj}j%i ~k Gn

for 1 < i < 3. Combining the above diagram with the above Bloch-Ogus exact
sequence yields the following exact sequence, where the maps are given by the
residues

0 — Br(U) — ®;_ H{(V:,Q/Z) — ®;_ H (k(P;), Q/Z(—1)).

For each i, we have V; >~ (G,,. The residue map induces the following short exact
sequence

_ - Zj i
0 — HA(V;,Q/Z) — &, HY(k(P})), Q/Z(—1)) =25 Q/Z — 0.

After twisting by roots of unity, this simply follows from the exact sequence
1>k - kGu]* - ZdZ —7Z—0

induced by the map sending a rational function on G, to its divisor at 0 and at co.
One thus has g-isomorphisms

Br(U) ~ H\(V:,Q/Z) ~ H (G, Q/Z) ~ Q/Z(—1)
forl <i <3. O

For cubic surfaces over an algebraically closed field &, one has the following
result.

Proposition 2.2. Let X C ]P’z be a smooth, projective, cubic surface over a field k of
characteristic zero. Suppose a plane ]P’,% C ]P’,f cuts out on X three lines L1, Ly, L3

over k. Let U C X be the complement of this plane. Then the map k* — k[U1* is
an isomorphism of Galois modules and the sequence

0 — @;_,ZL; — Pic(X) — Pic(U) — 0

is an exact sequence of Galois lattices.
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Proof. We may assume k = k. Let
aLi+bLy+ cLz =0 € Pic(X)

with a, b, ¢ € Z. By the assumption that (L;.L;) = —1 and (L;.L;) = 1 fori # j,
one has
—a+b+c=0, a—b+c=0, a+b—c=0.

This implies thata = b = ¢ = 0.
To complete the proof, one only needs to show that Pic(U) is torsion free.
Letey, ez, -+, eq and [ be given by [12, Chapter V, Proposition 4.8].
Suppose that one of L, Ly and L3 is in {e1,---,es}. Say that L1 = e.
Consider the two disjoint sets of classes of lines on X:

{l—e1—e:2<i<6) and 20— ) er: 2<i <6).
k#i

By inspecting the intersection property of Ly, Ly, L3, one sees that L is in one of
these sets, and L3 is in the other one. Without loss of generality, one can assume

that L) =1 — e; — e>. Then
Ly=2-) e.

k22

By [12, Chapter V, Proposition 4.8], one concludes that Pic(X)/ (@?: \ZL;) is free.
Otherwise, all L1, Ly and Ly arein {{ —¢; —e; : 1 <i < j < 6}. Say

Li=l—e —e, Ly=1l—e3—e4 and L =1 — e5 — ¢;.

Then Pic(X)/ (@?: \ZL;) is free by [12, Chapter V, Proposition 4.8].

Alternative completion of the proof. The first argument shows that L1, L, L3 are
linearly independent. It also shows that k* = k[U]*. Since the determinant of
the system of equations is +4, and Pic(X) is torsion free, the only torsion that
could exist in Pic(U) is 2-primary. Let us show there is no 2-torsion in Pic(U).
If there was, there would exist a principal divisor on X of the shape 2D + L1, or
2D+ Ly + Ly,or2D + L + Ly + L3. By the well known configuration of the 27
lines on a cubic surface, there exists a line L on X which meets L in one point and
does not meet L, or L3. Intersection with L rules out the three possibilities. ]

The following corollary applies to number fields and more generally to func-
tion fields of varieties over a number field.

Corollary 2.3. Let k be a field of characteristic zero such that in any finite field
extension there are only finitely many roots of unity. Let X C IP’,% be a smooth,
projective, cubic surface over k. Suppose a plane cuts out on X three nonconcurrent
lines. Let U C X be the complement of the plane section. Then the quotient
Br(U)/Brg(U) is finite.
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Proof. Let g = Gal(k/k) where k is an algebraic closure of k. Since k= k[UT*,
we have an exact sequence

Br(k) — Ker[Br(U) — Br(U)%] — H'(g, Pic(U))

by [6, Lemma 2.1]. Since Pic(U) is free of finite rank by Proposition 2.2,
H'(g, Pic(D)) is finite.

Let K C k be a field over which one of the three lines, call it L, is defined. Let
gk = Gal(k/K). The isomorphism

Br(T) = Q/Z(-1)
attached to the line L is gx-equivariant. We thus have
Br(U)¢ C Br(U)%K ~ Q/Z(—1)%X.

Since there are finitely many roots of unity in K, the group Q/Z(—1)8¥ is finite
(use Lemma 2.4). Thus Br(U)8 is finite. The result now follows from the above
exact sequence. O

Lemma 24. Let k be a field of characteristic 0. Let g = Gal(k/k). Let 1o (k) =
Q/Z(1) be the subgroup of roots of unity ink . Then Q/Z(—1)$ is (noncanoni-
cally) isomorphic to s (k), the group of roots of unity in k.

Proof. We only need to show: Z/n C Q/Z(—1)8 holds if and only if , C k.

If u, C k,obviously Z/n C Q/Z(—1)8. On the other hand, leta € Q/Z(—1)
be of order n. For any o € g, then o(a) = ¥ (o) 'a, here x is the cyclotomic
character. Therefore, if a is a fixed point, then (x (6) — 1)a =0 forany o € g, i.e.,
x (o) — 1 =0 mod n. This implies u, C k. ]

3. Computation of Brauer groups II, algebraic parts

For Markoff surfaces, one can further compute the algebraic part of Brauer groups
explicitly by using the equations.

Lemma 3.1. Let k be a field of characteristic zero and k an algebraic closure of k.
Letm € kandd =m — 4. Let X,, C ]P’z be defined by the equation

t(x2 + y2 + zz) —Xyz = mt.

Then Xy, is smooth over k if and only if md # 0. If md # 0, fix a square root
Jm € k and a square root \Jd € k. Then the 27 lines on X, are defined over

k(y/m, ~/d) by the following equations

Li: x=1t=0; Ly: y=1t=0; Ly: z=t=0
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and
l1(€,8) 1 x =2et, y — ez = 8/dt

(e, 8) 1 y=2et, z —ex = 8/dt
I3(€,8) 1 z=2et, x —ey =8/dt
l4(€,8) : x = e/mt, y = F(e/m + 8/d)z
Is(e,8) : y =eymt, z = 5(ey/m + 8/d)x
lo(e,8) : z=e/mt, x = L(ey/m +8J/d)y

with € = £1 and § = x1. Moreover, the intersection numbers satisfy
(lie,8).1j(€,8)) =0

for any fixed pair (€, §), whenever 1 <i # j <6.

Proof. For m = 4, the singular points are
(x:y:z:t)=Qe:2n:2en:1)

with e = +1,n = £1. For m = 0, there is only one singular point, namely
(0:0:0:1). Assume m # 0, 4. Any line L on X,, which is not in the plane t = 0
meets this plane in one point, and that point must be on one of the lines Ly, L, L3.
Say it is L. The plane containing L and L is one of the planes through L which
intersects X, in three lines. Writing down the planes through each L; with this
property (there are 5 such planes for each L;) produces all lines on X,,,, which are
indeed 27 in number. O

For the sake of simplicity, wherever there is no ambiguity, foreachi=1,...,6
we shall write [; = [;(1,1) .

Proposition 3.2. Let k be a field of characteristic zero and m € k \ {0,4}. Set
d=m—4.Let X, C IP’,% be defined by the equation

1(x% + y2 +25) — xXyz = mt. 3.1
If [k(Jm, N/d) : k] = 4, then
Br(Xn)/Bro(Xm) = Bri(Xm)/Bro(Xm) = Z/2

with a generator

() =4a)= () -40)= () -2a)}

overt # 0.
Ifd € k% and m € k2, then

Br(X,,)/Bro(X;n) = Bri(X,)/Bro(X,) = (Z/2)*
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with two generators
(G —2a). (=) (G +2) )]
overt # 0.

Ifd € k% ord - m € k*2, then Br(k) = Bri(X,,) = Br(X,,)

Proof. For ease of notation, we set X = X,,,. Since X is geometrically rational, one
has Br(X) = Br;(X). One clearly has X (k) # (. By the Hochschild-Serre spectral
sequence (see [6, Lemma 2.1]), one has an isomorphism

Br;(X)/Bro(X) ~ H'(k, Pic(X)). (3.2)

By Lemma 3.1, the six lines /;,i = 1, ..., 6 on the cubic surface X are skew to
one another, hence may be simultaneously blown down to P2 (see [12, Chapter
V, Proposition 4.10]). The class w of the canonical bundle on X coincides with
=3l + 21'6=1 l;, where [ is the inverse image of the class of lines in P2. We have
the following intersection properties: ([.[) = 1 and ([.[;) =0 for 1 <i < 6. The
classesl and [;,i = 1, ..., 6 form a basis of Pic(X).
Since
1 i—j=0o0r3mod6

L;:.l)=
(-t {0 otherwise

where L ; are the lines in Lemma 3.1 with 1 < j <3 and 1 <i < 6, one concludes
that
Li=1—-1j—1j43 3.3)

in Pic(X) for 1 < j < 3 by [12, Chapter V, Proposition 4.8 (e)].

(1) Suppose d ¢ k*? and md ¢& k*2.
There is o € Gal(k(~/d, /m)/k) such that

o(Wd) = —d and o(/m) = /m.

Since the intersection numbers

. ‘ AR o i=j+3
(ol;1,1D).;,1)) =;1,-1).,;1,1)) = {1 P4 +3 34
and
1-111~11—z-1—11~11)—0 b= 35

for 1 < j < 3, one obtains

olj =2l — Z [; and 013+j=21—215 (3.6)
i#j+3 i#]j
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in Pic(X) by [12, Chapter V, Theorem 4.9] for 1 < j < 3. This implies that

6
ol =51-2)"1 (3.7)
i=1

by (3.3). Then

ker(l1 +o0) =(( =11 =l —13), (l1 = l4), (2 = I5), (I3 — l¢)) (3.8)
and
(1 — 0)Pic(X)
=20 —li—h—1), 1=+ 13—1s), (la— 15— I3+ 1s), (lb— Is+ 13— Is))
by (3.6), (3.7).
Given a finite cyclic group G = (o) and a G-module M, recall that we have

isomorphisms H'!(G, M) = H ~1(G, M), where the latter group is the quotient of
No (M), the set of elements of M of norm 0, by its subgroup (1 — o) M.

(1a) Suppose d ¢ k*? and m € k*?. Then

(3.9

H'(k, Pic(X)) = H'((¢), Pic(X)) ~ H™ ' (o), Pic(X)) = (Z/2)?
by [18, (1.6.6) and (1.6.12) Proposition] and (3.8) and (3.9).

(2) Suppose m & k** and md & k*>.
There is 7 € Gal(k(+/d, \/m)/k) such that

t(Vm) = —/m and t(v/d) = d.
Since the intersection numbers
(tljp3(1, 1)L (1, D) = (Ljp3(=1, 1).L; (1, 1))

0 I1<i<3andi=j+3 (3.10)
1 4<i<6andi#j+3

for 1 < j < 3, one obtains

thia=1— Y (3.11)
4<i#j+3<6

in Pic(X) by [12, Chapter V, Theorem 4.9] for 1 < j < 3. This implies that

6
tl=21-Y"1 (3.12)
i=4
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by (3.3). Then
ker(1+7)=(I— I3 —Is—Is) and

(3.13)
ker(1 — 1) = (1, 1o, 13, (L = I3), (L = I5), (I — Is))

and R
(1 -=1Pic(X) =1 —13 —I5 — I¢) (3.14)

by (3.11), (3.12).
(2a)If m ¢ k*? and d € k*?, then

H'(k, Pic(X)) = H'((r), Pic(X)) ~ H™'((r), Pic(X)) =0
by [18, (1.6.6) and (1.6.12) Proposition] and (3.13) and (3.14).

Ifd € k% andm € k2, then we also have H'!(k, Pic(X)) = 0. Indeed, in that
case all 27 lines are defined over k and the action of the Galois group on Pic(X) is
the trivial action.

(3) Suppose that none of d, m, dm is a square, that is [k(/m, ~/d) : k] = 4.
Then . -
H'(k, Pic(X)) = H'(G, Pic(X))

by [18, (1.6.6) Proposition], where G = Gal(k(y/m, ~/d)/k). Let o, T € G be as
above. Then one has the following exact sequence

0 — H'((0), Pic(X)™) - H'(G, Pic(X)) — H'((z), Pic(X)) =0
by [18, (1.6.6) and (1.6.12) Proposition] and (3.13) and (3.14). Since
ker(1+0) NPic(X)'™ = (I —ls— b—13), A —Is— 11— 13), (I — le— [} — 1))
by (3.8), (3.13) and

(1 — o)Pic(X)\®
= [(1 = 0)Pic(X)] N Pic(X) ™
=(Q@ -l —=2b—B3—14—1ls), (la—l3—Is+ 1), 2l — 21, — [ — I3— Is— [g))
by (3.6),(3.7),(3.9), (3.13) and (3.14), one concludes that

H'(k, Pic(X)) = [ker(1 4+ o) N Pic(X){1/[(1 — 0)Pic(X){7 = Z/2.

(4) Suppose m, d ¢ k** and md € kX2, i.e.,k(/m) = k(~/d) # k.
Let p be the generator of Gal(k(/m)/ k). Computing the intersection numbers

1 1<i#j<3
. L.DLA. 1) = {izr(—=1.—=D.L(1. 1) =
(plj+3(1, DL (1, 1) = (€ j43(=1, =1).L;(1, 1)) 0  otherwise
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for 1 < j < 3, one obtains

pligs=1— Y I (3.15)

for1 < j < 3. Then
3 6

pl=41—->"1; =Y I (3.16)

i=1 i=1
by (3.6) and (3.15). Since

ker(1+4p) = (1 — p)Pic(X) = (I —la—l3— 1), { —l1—13—15), (| =, —a—¢))
by (3.6), (3.15) and (3.16), one concludes that
H'(k, Pic(X)) = H'({p), Pic(X)) = H~'({p), Pic(X)) = 0.

Now we produce concrete generators in Bry (X) for Bry (X)/Br(k) = H Lk, Pic(X)).
Ifd € k% or md € k*%, we have just seen that Bry (X)/Br(k) = 0. Let us consider
the other cases.

Let U be the open subset of X defined by + # 0. Then equation (3.1) is
equivalent to

Qz—xy)? —4d = (* —H(Y* — 4 (3.17)

for U. Since
x£2=0Nn{xF2)(* -4 =0}

is a closed subset of codimension > 2 on U, one obtains that (x & 2, d) € Br(U).
This implies that

B=>—4,d)= (> —4,d) = (2> — 4,d) € Bri(U).

The residues of B at the lines L, L, and L3 which form the complement of U in
X (cf. Lemma 3.1) are easily seen to be trivial. One thus has B € Br(X).
If m € k*2, equation (3.1) is equivalent to

2y — Vmz)? — dz* = 4(x — /m)(yz — x — /m)

for U. Then (y/m — x, d) € Br;(U) by the same argument as above. This implies
that
M = ((x +2)(v/m — x),d) € Br|(U).

Then M € Br;(X) by computing the residues of M at L1, Ly and L3 as above.
To show that these elements B and M are not constant, one uses the conic
fibration
7:U— Al (x,y,2) —> x.
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The generic fibre U, I, n induces
n;‘ : Br(n) — Br(Uy) with ker(w,) = 2 —4,m—x%

by [9, Theorem 5.4.1].

If [k(/m, /d) : k] = 4, then the residue of (x> —4, d) at (x> — m) is different
from that of (x> — 4, m — x?). This implies that 71;7"()c2 — 4, d) is not constant by
the Faddeev exact sequence (see [9, Corollary 6.4.6]). Since n,;‘ (x2 — 4, d) is the

pull-back of B by the natural map U, — U, one concludes that B is not constant,
hence B generates Br) (X)/Br(k) = Z/2.

Ifd ¢ k2 and m € k*?, then we have the residues

dek*/k** if Pe{(x+2)

dp(x* —4,d) =
Pl ) {1 e k*/k*? otherwise

and

dek*/k** if Pe{(x+2),(x—Jm))
1 ek*/k*? otherwise

Ip((Vm —x)(x +2),d) = {

and

X X2 :
Op (% — dm — x%) = dek /k2 1fPe.{(xj:2),(xj:\/%)}
1 ek*/k* otherwise

for all closed points P of P'. Then

mr(P—4,d), mi(Vm—x)(x42).d) and 7 ((x*—4, d)-(Vm—x)(x+2). d))

are not constant by the Faddeev exact sequence. Therefore B and M have indepen-
dent classes in Bry(X)/Br(k) = (Z/ 2)2, hence generate that group. O

Remark 3.3. If d € k*2, then X,, contains two skew k-rational lines, e.g., 11 and
I, Ifd -m € k*2, then X,, contains the two lines /4(1, 1) and I4(—1, —1) defined
over the quadratic field extension k(. /m), which are conjugate to each other and
do not meet. As for any smooth projective cubic surface with this property, this
implies that X, is k-birational to projective space IP’,%. This general fact goes back
to L. Euler in the case of the diagonal cubic surface x3 + y> + z3 4+ 13 = 0 and
a generalisation is due to B. Segre. Segre’s result was completed by Swinnerton-
Dyer’s paper [21]. Therefore Br(X) = Br(k). We keep this part of the computation
in Proposition 3.2 because some intermediate results will later be used.
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Theorem 3.4. Let k be a field of characteristic zero and let m € k \ {0, 4} and
d =m — 4. Let Uy, be the affine k-variety defined by (1.1).
If [k(Jm, V/d) : k] = 4 then

Bri (Up)/Bro(Un) = (Z/2)°

with the generators {(x —2,d), (y —2,d), (z —2,d)}.
Ifd ¢ k*? and dm € k*? then

Bry (Up)/Bro(Up) = (Z,/2)*

with the generators {(x — 2,d), (y —2,d)}.
Ifd ¢ k** and m € k*?, then

Bry (Up)/Bro(Up) = (Z/2)*

with the generators {(x —2,d), (y —2,d), (z —2,d), (x —/m,d)}.
Otherwise, i.e. ifd € k*2, then Bry(Uy,) = Bro(Uy,).

Proof. We keep notation as in Lemma 3.1. For ease of notation, we set U = Up,.
Let [ € Pic(X) as in the proof of Proposition 3.2. Then Pic(U) is given by the
following quotient group

(@ ZI) @ ZL) /(1 —1j —1j43: 1 < j < 3) = &7 ZIL] (3.18)

by Proposition 2.2 and formula (3.3). Here given a divisor D on X we denote
by [D] the image in Pic(U) of its class in Pic(X). By Proposition 2.2 we have
k= k[U1*. The Hochschild-Serre spectral sequence (see [6, Lemma 2.1]) then
gives an injective homomorphism

Br;(U)/Bro(U) < H'(k, Pic(D)). (3.19)

In fact, it is an isomorphism since the smooth compactification X of U has ra-
tional points, hence also U (any smooth cubic surface over an infinite field k is
k-unirational as soon as it has a k-rational point).

e Case [k(y/m, /d) : k] = 4. Let G = Gal(k(y/m, ~/d)/k). Let o and T be the
generators of Gal(k(y/m, /d)/k) satisfying

o(Wd) = —vd, o(Jm)=m; t(Nd)=+d, t1(Jm)=—ym.
Then in Pic(U) we have the following equalities
o(liD) = —I[ll (3.20)
forl <i <4by(3.6),r([l;]]) =[li]1for1 <i <3 and

T([ls]) = =[]+ [l + [I3] — [l4] (3.21)
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by (3.11). Since Pic(U) is free and Gal(k/k(/m, ~/d)) acts on Pic(U) trivially,
one obtains that . B
H'(G, Pic(U)) = H'(k, Pic(U))

by [18, (1.6.6) Proposition]. Let H be the subgroup of G generated by . Then
Pic(0)? =0
by the equation (3.20). Therefore
HY(G, Pic(U)) = H'(H, Pic(U))°/#

by [18, (1.6.6) Proposition]. Since

H'(H,Pic(U)) = H™'((0), Pic(0)) = &7_,(Z/2)[li]
by [18, (1.6.12) Proposition] and the equation (3.20), one concludes

H'(k, Pic(U)) = H'(H, Pic(U)/" = @}_,(Z/2)[l;]

by (3.21).

e Case k(\/m) = k(v/d) # k. Let p be the generator of Gal(k(/m)/k). Since
(3.6) is still available, one has p([/;]) = —[/;]for 1 <i < 3. By (3.15), one obtains

p(la]) =[] = [l2] — 1131 + [a].
Therefore
H'(k, Pic(U)) = H'((p), Pic(U)) = H™'((p), Pic(U)) = &%, (Z/2)[L;].
e Case k(v/d) # k(\/m) = k. Let o be the generator of Gal(k(+/d)/k). Since the

intersection formulae (3.4) and (3.5) are still available, one has o ([/;]) = —[/;] for
1 <i <4.Then

H'(k, Pic(0) = H' (o), Pic(D)) = H™'((0), Pic(U)) = &/, (Z/2)[1i].
e The remaining case is d € kX2 If alsom € k*?, then the Galois action on the
lattice Pic(U) is trivial, hence H!(k, Pic(U)) = 0. Suppose m ¢ k*2. Let T be the
generator of Gal(k(/m)/k). Since
ker(1 + ) = ({111 — [l2] — [I5] + 2[la])

and
(I =)L) =[] = [I2] = [I3] + 2[l4]

by (3.21), one concludes that H'(k, Pic(U)) = 0.
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Let us now produce concrete elements in Bri(U). Using equation (1.2) one
sees that the quaternion class (x + 2,d) is in Brj(U) by the same argument as
that in Proposition 3.2. Similar equations give the same result for (y & 2, d) and
(zx2,d).

The plane ¢t = O cuts out the three lines (L1, L2, L3), each with multiplicity 1.
The plane x & 2t = 0 cuts out L1 and two lines each defined over k(+/d). From
this we compute the residues:

lek*/(k*)? i=1

ar, ((x £2t)/t,d) = {d c kX/(kX)2 i =2 and 3.

Similarly, one has

1ek*/(k*)? =2

o, ((y £20)/1,d) = {dEkX/(kX)z i =1and3

and
lek*/(k>*)? i=3

aLi((z:i:2t)/t,d)= {dekx/(kx)z i = 1and?2.

This computation of residues will enable us to establish independence modulo 2 of
various classes in Bry(U)/Bro(U).
Using equation (1.3) one gets

(x =2)(y =2)(z = 2),d) = (x* —4,d). (3.22)

When [K : k] = 4, the quaternion (x2— 4, d) is not constant by Proposition 3.2.
Therefore {(x—2,d), (y—2,d), (z—2,d)} is a set of generators of Br;(U)/Bro(U) =
(Z)2)3.

When k(v/d) = k(/m) # k,then {(x —2,d), (y—2,d)} is a set of generators
of Bri(U)/Bro(U) = (Z/2)2.

When m € k*? and d ¢ k*?, equation (1.1) can be written as

Qy — Vmz)? —dz* = 4(x — Vm)(yz — x — /m).

Then (x — \/m,d) € Br;(U) by the same argument as that in Proposition 3.2.
Since (x — 4/m, d) has the same residues as (x — 2,d) at L; for 1 < i < 3, the
class (x — 4/m, d) in Br{(U)/Bro(U) is different from (x — 2, d), (y — 2, d) and
(z — 2, d) by Proposition 3.2. Since

((x — V/m)(y =Dz — 2), d) = ((x — /m)(x +2),d)

is not a constant element by (1.3) and Proposition 3.2, one concludes that
{(x_zvd)a (y_Z,d), (Z_2’d)’ (x_ﬁ7d)}
is a set of generators of Bry(U)/Bro(U) = (Z/2)*. O
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Remark 3.5. Note that the classes {(x + 2,d), (y + 2,d), (z + 2,d)} in
Br{(U,;)/Bro(Uy,) in Theorem 3.4 are not independent because (1.1) can also be
written as

x4+y+z+2*—d=x+2)(y+2)(z+2). (3.23)

4. Computation of Brauer groups III, transcendental parts

Let k be a field of characteristic zero,and m € k \ {0,4}. Letd = m — 4 # 0. Let
X C IP’,% be the smooth cubic surface defined by the equation

t(x2 4 y* 425 — xyz = mt’.
Let U be the affine open subvariety of X given by ¢ # 0, i.e., by the affine equation
xz-l-y2+z2 —Xyz =m.

By Proposition 2.1, we have Br(U) ~ Q/Z. In this section, we determine the
transcendental Brauer group Br(U)/Bri(U) C Br(U) of U.
We here set
li =1;(1,1) and 7 =1[;(1, —1).

For computational reasons, in this section we contract X to IP’% over k by sending

the 6 lines /;” to 6 points. The 3 lines {L,-}?:1 correspond to three lines in ]P)% by
this contraction and each of these three corresponding lines passes through one pair
among the 6 points by [12, Chapter V, Theorem 4.9]. We let [~ € Pic(X) be the
inverse of the class of a line in IP’]%. The contraction induces an isomorphism

6
Ull_} ~ G, X,;Gm

over k.
Though this will not be used in the paper, it is worth noticing the following
consequence.

Proposition 4.1. The (Grothendieck) geometric fundamental group mi(U) is triv-
ial.

Proof. Recall char(k) = 0. Since V is open in U, the group 1 (U) is a quotient
of (V). The group 71(G,, x; G,) = 72 is Abelian. From the above isomor-
phism we conclude that 7y (U) is Abelian. It is thus isomorphic to the profinite
completion of the system of groups H (U, Z/n). By Proposition 2.2, kK~ kU™
and Pic(U) is torsion free. The Kummer sequence then gives the isomorphism
H'(U,7Z/n) ~ Pic(U)[n] = 0. O
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Using Proposition 2.2 and Lemma 3.1, we get:
Pic(U) = ((GB?ZIZli_)EBZl_)/(l_ =1 —lj_+3 l<j<3)= EB?:IZ[II._]. 4.1)
More precisely, the composite 6 of the natural maps

®_,ZII71 — Pic(X) — Pic(U)

is an isomorphism. Under the inverse isomorphism 6!, the classes of [ in Pic(U)
fori = 1,2, 3,4 are sent to [/; ], the class of I5 is sent to [/, ] — [/, ] + [/, ], and
the class of /¢ is sent to [/ ] — [/57] + [/, ]. The composite map

ZU™1® @5, ZII; 1 = Pic(X) — Pic(U) — ®F_,ZIl71 = 7Z*
is given by
(X0, X1, -+, x6) = (xo+x1+ x5+ X6, X2— X5, X3— X6, X0+ X4+ X5+ X6)- (4.2)

As we shall see below, the restriction map Br(U) — Br(V) is an isomorphism.
At least over some field extension of k one may thus compute the transcendental
elements in Br(U) by pull-back of Br(G,, x; G,,) =~ Q/Z.

Theorem 4.2. Let n be a positive integer and ¢ € k be a primitive n-th root of unity.

Keep notation as in Lemma 3.1 and Theorem 3.4. Then the unique cyclic group of

order n in Br(U) is generated by the cyclic algebra R, = (%, %) ¢ of dimension n?,

where
f:%(ﬁ—ﬁ—2)xz+\/c7xt+(2—\/17_1)yt+x/c721—\/rzw/gtz
g = S(Jm+d —2)yz — Jdyt + (2 — Jm)xt — Jdzt + Jm - /dr*
u=5(Jm—~d—2xy+Vdyt + 2 — /m)zt + Vdxt — Jm - /dr?
v:%(\/ﬁ+\/c_l—2)xz—x/c_lzt+(Z—M)yt—«/c_ixt—k\/ﬁ-\/c_itz.

Proof. By Bezout’s theorem (see [12, Chapter I, Theorem 7.7]), one has

{f=0NX=Li+ L3+ 4L, -1+, 1)+ 11, =1) + le(1, 1)
g=0INX=Ly+ L3+ LA, -1)+0,1)+I5(1, =1) + (1, 1)
fu=0NX=Li+Ly+0LA, D)+, —1)4+14(1,1) +I5(1,—1)
fv=0NX=Li+ L3+, 1)+13(1,—1)+14(1, 1) + (1, —1)

where L; with 1 <i <3 and/j(e,8) with1l < j < 6,¢ = L1 and § = %1 are
given by Lemma 3.1. For instance, one checks that each of the lines appearing on
the right hand side of the first formula is contained in the projective quadric defined
by f = 0. Since the degree of f is 2 and that of the cubic surface is 3, Bezout’s
theorem implies that the multiplicity of each line in {f =0} N X is 1.
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This implies:
div(p) =Ly = Ly+h(L =D =h(L =D +L(L —D =I5 =D
div(%) = Ly — Ly +b(1, =1) = (1, =D +1s(1, =1) = le(1, =D.

Let us first prove that the restriction map Br(U) — Br(V) is an isomorphism.
Indeed, the lines /;” = [; (1, —1) are skew to one another, and each of them intersects
the plane ¢+ = 0 in just one point, call it P;. Letm; := [ \ {P;} = A}E. We thus
have an exact sequence

0 — Br(U) — Br(V) — ®°_, H)\(m;, Q/Z).

But H),(m;, Q/Z) = H} (AL, Q/Z) = 0. We thus have R, € Br(U).

The line L does not appear in the divisor of u#/v. In the divisor of f/g it
appears with valuation 1. The residue of R,, at the generic point of L is thus given
by the class in k(L1)* /k(L1)*" of the rational function induced by u/v on L;.The
divisor of that function is a linear combination of points which in particular contains
L3 N Ly with multiplicity —1. Thus the order of the residue is n, and R, itself is of
order n, hence generates Br(U)[n]. L]

The 27 lines are defined over any field E containing k(~/d, «/m). Over such
a field E, we may consider the complement V/E of the 6 lines /;". The same

localisation argument together with the property Hélt(E, Q/7) ~ Hélt(A1 ,Q/7Z)
yields an exact sequence

0 — Br(Ug) — Br(V) — @°_,H'(E, Q/Z).

We are interested in the computation of the transcendental Brauer group over the
ground field. For this, an explicit computation of residues at the generic points of
the lines /;” seems necessary.

Since f,g,u,v and each of the curves D =I;" are defined over K =k(/d,\/m),
using formula (1.4) we can compute the residues dp (R,) over any field E contain-
ing K and pu, in

HY(E(D),Z/n) ~ E(D)*/E(D)*".

These residues, as explained above, actually take their values in E* /E>".

Proposition 4.3. With notation as above:

For D =13, 0p(Ry) = Y2 — —L(Jd + /) € E*/E*".

For D =15, 0p(Ry) = Y7200 SIS — 1 e pr/pn,

—1eEX/E*" D e, 7))
YA e EX/ B D e iy, Ig ),

Ip(Rp) = {
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Proof. In the course of our computations, we shall make tacit use of the equality

(ﬁ;ﬁ) : (\/37;\/%) =-1. (4.4)

Let us compute dp(R,) for D = I; . Since

=B(¢n—1+¢3_z)y_¢z}(z_x+ﬁ)

+- 2)[ (vm +va - )x——~/—<«/—+«/—)}
and

=2~ m)(z—x + )+ (y - 2)[ (vim = va - )x+\/3:|,

one has
g _[Wm+vd-2y-Vd|(= = +[%(ﬂ+ﬂ—2)x—§dd‘<ﬂ+\/ﬁ)]
u @ — /m) (5 + [L(m — VA = 2)x + V/d]
Since

i—x++d xz—y-2
y=2 z—x—+/d

by (1.1), one obtains that

IR == %

v (=) S L A - 2 — VA + V)
I - f) == YO (= VA= 2x+d
v (Ym=D)lx(x—Vd) - 4]—(¢_+¢Z—2)ﬂx+d(ﬁ+ﬁ)

f (Vm —2)[x(x — Vd) — 4] + (Vm — Vd — 2)x/dx+2d

Since
flp = %(ﬂ—«/ﬁ—z)x%\/ﬁ [3 — %(\/%— \/Z)} X+2Q2—/m)—d—/m-~d
and

vlp = %(ﬂ+¢2—2)x2—¢2 [1 + %(ﬂ"F \/E)} X+d+22—/m)+/m-d,
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one concludes that

_ﬁ+«/3—2_ 1 X xXn
Op(Rp) = m ——E(\/E‘i‘\/”_?) € E(D)"/E(D)™".

For D =I5, one has
:[%(ﬁ+«/ﬁ—2)y—x/c_ii|-[z—%(\/ﬁ—x/c_l)x}
+ (y — /m) [%(2+«/E—ﬂ)X—\/3:|
and
= @ ) [ = Wi Vx| = | (i V- D4V

Since
- sWm—Vdx _ xz—y—m
y—+/m 2 — 5(m+ Vd)x

by (1.1), one obtains that

v (MmN (m=2)- (f{—)f"“fh(zﬂ/ﬁ—ﬁ)x—\/ﬁ

Ip(Rp)=——-
2 — ) - WESDEASI Ly — -2 + VA
_ v (VYm = VA (Ym = 2)x* = 2dx + 2/m(Jm + Vd) (Vm —
o f (2/m — 4)x2 = 2dx + 4/m(Jm — 2)
v (Ym— f)x —2(f+2)x+2f(f+f)
o f —2(J/m +2)x +4ym
Since
_Jm-VA-2
f|D—m'x +T(\/%—\/C_l+2)x—}-«/%(2—ﬂ_\/f_1)
and
o = YN 2 Jd‘[l#(ﬂ—@}wﬂ(ﬁ—ﬂwx
Jm+/d 2

one concludes that

Vm—~d Jm+d-2
2 Vm—~d =2

dp(Ry) = =—-1€ E(D)*/E(D)™".
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The other residues are

3p(Ry) —1 € E(D)*/E(D)*" Defl, I3
D = _ _
VT 2 e (D) /E(DY Delly, g
by (4.3) and straightforward computations. O

Lemma 44. Let K = k(\/m,/d) C k. Then

d—
Br(Ug)/Bri(Uk) D (Z/n) ifandonlyif wu, C K and —1, @ e K™,

In this case, the element R, € Br(V) as defined in Theorem 4.2 belongs to the
group Br(Uk) C Br(V), is of order n, and generates the n-torsion subgroup of
Br(Uk)/Br1(Uk) C Br(U).

Proof. Note that under the hypothesis —1 € K*", formula (4.4) shows that the

condition M e K*"

is independent of the choice of the square roots of d and
mink.

If u, C K and —1, (v/d — /m)/2 € K*", then R, € Br(Ug) by Proposi-
tion 4.3 and it has image of order n in Br(U) ~ QQ/Z by Theorem 4.2. This proves
one implication.

Let us prove the converse statement. Assume (Z/n) C Br(Uk)/Br;(Uk). The
isomorphism Br(U) = (Q/Z)(—1) given by Proposition 2.1 is Galois equivariant.
From Lemma 2.4, we then get i, C K.

Since the lines /;” in Lemma 3.1 are defined over K C kforl <i < 6,the

open subset
6
V =Ug\ {Ul;}

i=1
is defined over K. It satisfies Pic(V;) = 0 since V; = Gi i One has the following
commutative diagram of exact sequences

0 —— Br(K) = Bry(Ug) — Bry (V) —*~ &0 H'(K, Q/Z),-

T e

0 ——Br(Ux) —— Br(V) —— &_ | H'(K, Q/2),-

by [4, Theorem 3.4.1, Remark 3.3.2], [20, Lemma 6.1] and Theorem 3.4 (which
gives Br(K) = Br;(Ug)). From Proposition 2.2 we know that k* = k[U]* and
that Pic(U) is a lattice. From the exact sequence of lattices with trivial Galois action

1= RV /< 4% @8 71= % Pic(@) — 1,

i=1"%
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Galois cohomology gives the long exact sequence
0= H'(K, Pic(@)) — HA(K, KIVI*/k*) > @f_ HX(K, ),

— H?*(K, Pic(D)).

That H' (K, Pic(U)) = 0 follows from the fact that Pic(U) is a lattice with trivial
Gal(k/K) action. The following diagram

H2(K,k[V]*) ———— Br(V)

| B

®°_ H*(K, Z)- = 9% H'K, Q/Z),-

commutes up to sign by [4, Remark 3.3.2] and [6, Lemma 2.1].
Since V has K-points, the exact sequence

1 = kX — k[V]* = k[V]*/k* — 1
splits as a sequence of Galois modules. From identification (4.1) one gets
H* (K, Pic(U)) = &;_ H' (K, Q/Z);-.
One then obtains the following exact sequence
0 — Br(K) — Bry (V) 2% e H'\(K, Q/Z)- 2, o}_ H' (K, Q/Z)y- (4.6)

which extends the first line of (4.5). Here ¢ is induced by ¢r. By (4.2), it is given
on (x1,---, x6) € ®°_,H' (K, Q/Z),~ by the formula

(X1, x6) = (X1 + X5+ X6, X2 — X5, X3 — X6s X4 + X5+ X6)-

By Proposition 4.3, one has

€@’ K*/K™".

aK(Rn):<—l,—%(\/3+\/a)’_l, \/g;ﬁ’_l’ ﬁ;ﬂ)

We now get:

¢ (9k (Rn)) =

Vd—m Jd+m ﬁ+ﬁ_<ﬁ—«/ﬁ
2 2 2 2

2
) e®!_ K*/K™".

By Theorem 4.2, the class R, € Br(V)[n] is of order n, since it is of order n by
going over to k.
By hypothesis, we have

Z/n C [Br(Uk)/Bri(Ug)lln] C Br(U)[n] =~ Z/n.
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The restriction map Br(U)[n] — Br(Vg)[n] is an isomorphism, and the last group
is spanned by the class of R,,, which comes from R,, € Br(V). Thus there exists
B € Br(Ug) such that R, and B have the same image in Br(U). Since R,,, B are
both contained in Br(V), one concludes R, — B € Br;(V). Then

¢ (0x (Ry — B)) = ¢(3x (Ry))
Vd—Jym A+ Jm A+ Jm _(ﬁ—ﬁ

2
4 X xXn
ed’ K K
2 2 2 2 ) Giz K/

is trivial. This implies —1 and (v/d — /m)/2 € K*". O

Lemma 4.5. Let K =k(\/m, /d). Suppose that R, = (f, g), belongs to Br(Uk).
Suppose w, C k. Then the image of B := Corg k(R,) € Br(U) in the subgroup
Br(U)/Bri(U) C (Z/n) generates a cyclic group of order ny = n/gcd(n, [K : k]).

Proof. In Br(U), one has

Resy ;(B) = Res ;o Corgx(Ry) = Y _RY,
o

where o runs through the embeddings of K into k. Since u, C k,one has R = R,.
Therefore Res, IR (B) = [K : k]- R, in Br(U), and the proof is completed. O

Lemma 4.6. Let K = k(\/m, v/d). Suppose i, C k. Let ny = n/gcd(n, [K : k)).

1) Assume —1 € K*" and (v/d — Jm)/2 € K*". Then the element B :=
Corg /k(Ry,) belongs to Br(U) and generates the cyclic subgroup of order n;
of Br(U) /Br; (U);

2) Suppose n is odd. Then Br(U)/Br(U) D (Z/n) if and only if(\/(? —Jm)/2
is in K*". In that case, the element B := Corg i(Ry,) belongs to Br(U)[n]
and generates the cyclic subgroup of order n of Br(U)/Br;(U).

Proof.

1) Suppose —1 and (v/d — \/m)/2 € K*", then R, € Br(Ug) by the computa-
tion of residues in Proposition 4.3. By Lemma 4.5, the image of B € Br(U)
in Br(U)/Br;(U) is cyclic of order ny;

2) Suppose n is odd. Then n=n and —1 € K*". The sufficiency follows from 1).
The converse follows from

Z/n C Br(U)/Br;(U) C Br(Uxg)/Br1(Ux) C Br(U).

and Lemma 4 4. 0
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Lemma 4.7. Let F = k(v/d) and G = Gal(F/k). Then Br(U) — Br(Ur)? is
surjective.

Proof. We may assume that F/k is of degree 2. We know that F* = HO(Ur, G,,)
by Proposition 2.2. This implies

H3*G, H'(Up,G,)) = H3 (G, F*) = H' (G, F*) =0

by periodicity of the cohomology of cyclic groups and by Hilbert’s theorem 90. The
spectral sequence

E}Y = HP(G, HY(Ur, Gy)) = H' (U, Gy).
then gives an exact sequence
Br(U) — Br(Up)® — H?*(G, Pic(Up)),

which by periodicity of the cohomology of cyclic groups for Tate cohomology
groups reads
Br(U) — Br(Ur)® — H°(G, Pic(Ur)).

a) Suppose F # k(y/m). Since k[U]* = k ', the map Pic(Ur) < Pic(U)*
is injective (in fact, it is an isomorphism since U(F) # ¢). This implies that
Pic(Up)¢ — Pic(U)8 is injective. Since

Pic(U)® = Pic(Ug)®*/P =

with K = F(y/m) by (3.20) in the proof of Theorem 3.4, one has Pic(Ur)¢ = 0,
hence H%(G, Pic(Ur)) = 0.

b) Suppose F = k(y/m). Let p be the generator of G. By the computation in
Theorem 3.4 for the case k(v/d) = k(y/m) # k, the group Pic(Ur)? is generated
by

2al + L] =[] =[] = (1 + p)llal,

hence H°(G, Pic(Uf)) = 0. O
Let K = k(v/d, /m). Define

Mel{xn

5 4.7)

Iz{neN:anCkand—l,

If p, g are coprime integers, then u,, C k if and only if u, C k and u, C k.
Similarly, for p and ¢ coprime integers, and p € K*, one has p € K*P4 if and only
if pe K*P and p € K*9. Going over to primary components, one concludes that
if p, g are integers in I, then the least common multiple [p, g] of p and ¢ is in 1.
Therefore I is a directed set with respect to divisibility. The following theorem is
the main result of this section.
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Theorem 4.8. Let K = k(+/d, \/m). Let

d —
I=1neN:u, Ckand —I,MGK”’}.
Then

Br(U)/Bri(U) = lim Z/n.
nel

In particular, if 1 is finite, for instance if k is a number field, then
Br(U)/Bri(U) = Z/N,
where N is the biggest integer in I .

Proof. One has Br(U)/Br(U) C Q/Z(—1)8 by Proposition 2.1. Hence the group
Br(U)/Br;(U) is a subgroup of the Abelian group Q/Z. We thus only need to
show:

Z/n C Br(U)/Bri(U) ifandonlyif nel 4.8)

and we only need to show this for n a power of a prime number.
Suppose Br(U)/Bri(U) D Z/n. Then u, C k by Proposition 2.1 and Lem-
ma 2.4. We have

Br(U)/Bri(U) C Br(Uk)/Bri(Ug) C Br(U).

Thus Z/n C Br(U)/Br;(U) implies Z/n C Br(Ug)/Bri(Ug). Then n € I fol-
lows from Lemma 4.4. This establishes one direction of the equivalence (4.8).
Suppose n € [ is an odd integer. Lemma 4.6 gives the reverse direction in (4.8)
in a very precise form, namely the image of the element Corg /x(R,) € Br(U)[n]
generates the cyclic subgroup of order n of Br(U)/Br; (U).
To complete the proof of the theorem, it is now enough to prove:

n=2"andn € I = Br(U)/Bri(U) D Z/n. (4.9)

Since —1 € K*", one concludes that 12, C K. Fix a primitive 2n-th root of unity
&n € K. Essentially the same computations as in Proposition 4.3 give:

YIS ¢ K(D)/K(D)¥ D =15
—1 € K(D)*/K(D)**" D=1
I (g —%) = Smd ¢ k(DY /K(DY* D=1 (4.10)
P ¢ k(DY KDY D=1
1 € K(D)*/K(D)**" De{l],I5}.

Let F = k(V/d). If K /F is of degree 2, let T be the generator of Gal(K/F). If F/k
is of degree 2, let o denote the generator of Gal(F/k). We break up the discussion
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according to the structure of the field extension K / k. In each case, we shall produce
an explicit element B € Br(Ur) which is of order n over the algebraic closure and
which is invariant under Gal(F/ k). Lemma 4.7 will then ensure that it comes from
a class in Br(U) whose image in Br(U)/Br;(U) is of order n.

e Suppose [K : k] = 4. Let

d— Jm
B = Corg/r <£, —E) + Corg/r ﬂ, u € Br(F (X))
8 Vg, w2 )

where u; =y — 2t and v) = x + 3(v/d — /m)y — z + /mt. Since

{u1=0}ﬂX=L2+l;+lz
{v1=0}ﬂX=l6_+‘L’(l4_)+lz

by Bezout’s theorem, one obtains that

o <’:_i @) _ M € K(D)*/K(D)**" @.11)
Son

for D € {l;, t(ly), g }. Since (Vd — J/m)/2 € K*", we have

—1 = Ng/r((Wd — /m)/2) € F*" and py, C F.

When D is defined over F, the corestriction map

HY(K(D),Z/2n) = K(D)*/K(D)**" Corwyr, HY(F(D),Z/2n)
= F(D)*/F(D)**"

is given by norm. Since the residue maps commute with corestriction, the residues
of Bat D € {I; }3_, are trivial by (4.10) and (4.11).

Suppose we have D € {[;} with i € {4,5, 6}. Then D is not defined over F.
One can identify K (D) with F (D) where D is the integral divisor on Xz which is
the image of the divisor D on X, via the projection map X; — Xr. We shall say
that D is below D. Then 7 induces an isomorphism from K (t D) to F (D).

For D below [, , one has

—1 2
ﬂ; Ja <ﬁ+ﬂ) _ <M> € F(DY*/F (D)™

op(B) = 7

by (4.10), (4.11) and the above identification. For D below [, one has
ap(B) = 1 € F(D)*/F(D)**"
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by (4.10), (4.11) and the above identification. Since
Vd —m
2
the class dp (B) is trivial in H'(F (D), Z/2n). We thus get
B € Br(Up). (4.12)

Note that 15, C F. Then B is of order n in Br(U) by Lemma 4.5 (replacing k
by F).

Since we have j,, C k, Proposition 2.1 shows that the Galois group Gal(k/ k)
acts trivially on the unique subgroup of order z in Br(U). This implies that B—B° e
Bri(Ur), and Br;(Ur) = Br(F) by Theorem 3.4. Let A = B — B° € Br(F). We
shall prove that A = 0, hence B = B°.

We need to distinguish two subcases.

E Kxn C K(D)xn — F(D)XI’L’

Subcase a). Suppose uz, C k. By evaluating B and B° at the special point
(=2, 0, +/d) in U(F), one obtains

A= Cor —2Vd(Jm —d) —
TR m+J_+2ff zm
— Cor ~2/d
o f \/_+2 f [ $on
2
+ Corg/F <\/3—\/ﬁ+2 >§2n
— Cor 2 —Vd - ym
e \/E_\/’?l—f_z’ 2 $on

in Br(F). Since (&, B)g,, = (@1, B¢, in Br(K) for o, B € K*, and we have
(1= o), a)g,, =0 forany a # 0, 1in K, one has

—2Jd(ym —d)  —/m

—m 4 /md +2ym’ Jd -2 o

_ J_(f+f 2) Vd -2

ﬂ Con
~ f<f+f 2 [, Va2 T Va2
B vm oJm .
_ ﬂ_ﬂ*
- 4\/3 ﬁ Con

in Br(K).
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Similarly, one has

—2J/d 2
Vd—m+2 Jm—d)

Vd —Jm+2 Jm—d
- _2[ , 2 Son
_(Va-vmt2 ([ ym-va\T ym-Vd
“\ 2vd 2 ’ 2
Son
\/3 §2n‘
Therefore
m  NJd-2 —1 Jm—+/d
A= CorK/F (——,—*) C0rK/F< s )
awd o m &2 Vd 2 &
2 Vd — Jm 2
+ CorgF \/c_i—\/%—{—Z’( 3 )

Con

Since (o, —at),, = 0 in Br(F) for any o € F*, one has

_m m —4/d [ m m 'm—4\/3
4ﬁ’ -m Con - 4\/3’ 4ﬁ -m Son

4f m)@,

One concludes that A = 0.

Subcase b). Suppose w2, ¢ k. Since wo, C F and [F : k] = 2, one actually has
F = k(&2,). Note that u, C k, one gets &5, = &5, 1+n . Considering the action of
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Galois group on the cyclic algebra (a, b),, fora, b € K(U)*, one has
(@ D), = @ D).

Since the character given by »% and ¢7 is the (n + 1)-th power of the character
given by b’ and &2, , one concludes

@a’, b");gn =m+1)(a’,b%),
in Br(K (U)).

By evaluating B and B at the special point (—2, 0, v/d) in U(F), one con-
cludes

A=Cor _2ﬁ(ﬁ_ﬁ) —/m
KIE\ o+ Vmd + 2ym’ Jd -2 o
—2/d 2
- C ,
( +n) 0rK/F<ﬁ_ﬁ+2 \/%_\/c_i)sz
2 Vd — Jm
C ;
+ OrK/F(\/L_i—\/E"i'Z 2 ){2’1
2 —Jd — ym
- C ,
(1+n)Cork,r («/g—ﬁ—FZ > );2
in Br(F). Since
2 ’ _\/g_ﬁern’
Jm—d 2

one obtains

n _2ﬁ 2 =n 2 _\/E_ﬁ =0
«/E—\/ri—}—Z’\/n?—\/g Czn_ \/E—\/n?—l—Z’ 2 Czn_

in Br(K). Therefore the computation in Subcase a) is still available and A = 0.
We have thus proved B € Br(Ur)¢. By Lemma 4.7, this implies that B is in
the image of Br(U) — Br(Uf).

e Suppose m € k*? and d ¢ k*2. Then F = K. Let B = R, as in Theorem 4.2.
Then B € Br(Ur) by Lemma 4.4. By Proposition 2.1, we have R —R,, € Br;(UF).
By Theorem 3.4, we have Br(F) = Brj(Ur). Thus R = R, + A € Br(F(U))
with A € Br(F). By evaluating R, and RJ at the special point (—4/m, 0, 0), one
concludes that A = 0. Therefore R, € Br(Ur)® and the result again follows from
Lemma 4.7.
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e Suppose d € k*? and m ¢ k*2. Let

d —
B=COrK/k<£,_z> F Coryi (12, YA =/
g v Son Lon

V] 2

where

1
uy=y—2 and v1=x+§(«/c_l—\/ﬁ)y—z+\/%.

The result follows from (4.12) and F = k.

e Suppose md € k*? and d ¢ k*?. Recall that n = 2° > 1. By the definition of I,
one has M = (a—i—,B«/H)z where a, 8 € k*. Therefore we have a2—|—d,32 =0.

This implies v/—d € k. Therefore F = k(~/d) = k(~/—1) # k, hence v/—1 ¢ k,
so n = 2 by the definition of /.

Let B = R in Theorem 4.2. Then 5 € Br(Ur) by Lemma 4 .4. Let p be the
generator of Gal(F/k). By Proposition 2.1 and Theorem 3.4, there exists

A € Br{(Ur) = Br(F) suchthat RY = R, + A.

By evaluating R, and Rg at the special point (—2, 0, \/3) and a similar computation
asin case [K : k] = 4, one concludes

g [ Z2AYm=—Va) ym \ [ -2vd 2
 \emtVmd+oym Vd-2) | \Vd+ym+2 Jm+d)

_(=2AYm =D —ym ) (om V-2
—m+md +2ym Nd-2) aa  Jmo)

_fm d=2*\ [ m m-4Jd

- 4ﬂ’ m §4_ 4\/6_1’ m Ca

— <_@ 1_@> — (_1 1_@) — <_1 —(ﬁ_z)z)
n m ta m Ca 7 " Ca

in Br(F), where ¢4 is a primitive 4-th root of unity. Note that «/—1, s/m € F. Thus
we have A = 0. Therefore R, € Br(Ur) and the result follows from Lemma 4.7.

e The case K = k follows from Lemma 4 4. O

Corollary 4.9. Suppose that k is a field with an ordering. Then we have an inclu-
sion Br(U)/Bri(U) C Z/2. If d is positive in that ordering, then Br;(U) = Br(U).
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Proof. Letn € I. By (the easy part of the proof of) Theorem 4.8, we have u,, C k
and —1 € K*?. If k can be ordered, this implies n € {1, 2}. If d is positive with
respect to an ordering, then d and m = d + 4 are both positive in the real closure R
of k with respect to this ordering. There is an embedding K C R. Thus —1 is not a
square in K. This implies / = {1}. O

Corollary 4.10. Let k be a field of characteristic zero. If —1 ¢ k*? and —d ¢ k*2,
then the quotient Br(U)/Bri(U) has no 2-primary part. If moreover k admits an
ordering then Br{(U) = Br(U).

Proof. The hypothesis is equivalent to v/—1 ¢ k(+/d). Suppose 2 € I. By (the
easy part of the proof of) Theorem 4.8, we then have

d —
v—1e K* and WGKX2

with K = k(/m, Jd). Since v/—1 & k(v/d), one has k(v/d) # K and one has
Jm & k(v/d). Therefore

d —
1= NK/k(ﬁ) <¥> c k(ﬁ)xz

which contradicts —d ¢ k*2. O

Remark 4.11. In the case k = Q, we find that Br(U) = Br(U) if —d ¢ Q2.
Remark 4.12. Suppose —1 ¢ k*2. There exist y, § € k* be such that y? + 8> = 1
and y # 8. Setu = 4y8 and v = 2(82 — y?). Then u? + v> = 4. Letd = —u?
andm = 4 —u? = v2. Fixi := «/—1 € k. Then K = k(~/d, /m) = k(i) is of
degree 2 over k, contains 4/ —1 and we have:

(Vd = Jm))2 = (i —v)/2 = y* — 8% +2y8i = (y + 8i)> € K*2.

For U = U,,, the hard part of the proof of Theorem 4.8 then gives the inclusion
7Z/2 C Br(U)/Bri(U). If k = Q, it then gives Br(U)/Br(U) = Z/2.

Remark 4.13. Suppose m € k*? and d ¢ k*?, so that K = k(~/d) # k. Suppose
n € I is a power of 2. If n = 2, assume w4 C k. Then we can write down an
explicit element in Br(U) whose image generates the cyclic subgroup of order n of
Br(U)/Bri(U).

Indeed, by assumption we have ,, C k and —1, « € K*" where we have set

o = (Vd — Jm)/2. Let
x1 € H'(Gal(k(nan)/k), Q/Z) and x» € H'(Gal(k(Vd, X/)/k), Q/Z)
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be such that the restrictions of x; and x» to

Gal(K (14,)/K) and Gal(k(vd, X/a)/k(Vd))

are respective generators of these groups. Then the element

B= Cor s (g 5) + (6 = D0 — vz -2, 1)
Son

v

+ ((x = Vm)(y — 2)(z — v/m), x2)

is in Br(U)[2n], where ¢, is a primitive 2n-th root of unity. Under the assumption
4 C k if n = 2, the image of B is of order n in Br(U).

5. Failure of the integral Hasse principle

In this section we explain that all examples which do not satisfy the Hasse prin-

ciple in [10] can be accounted for by integral Brauer-Manin obstruction or by the

combination of integral Brauer-Manin obstruction with the reduction theory.
Given a scheme U over Z, and U := U xz7 Q, we let U(Ay) = ]_[pL{(Zp),

where p runs through all primes and oo, and Zy, = R. We let

UAg)e = [ ] UZp) x mo(UR))

p<00

where 7o (U (R)) is the set of connected components of U (R). We have the Brauer-
Manin pairing
U(Az)e x Br(U) — Q/Z.

The (reduced) Brauer-Manin set is the left kernel of this pairing. Note that the
Legendre symbol takes values in 1 but the Hilbert symbols used below take values
Oor1/2in Q/Z.

5.1. Integral Brauer-Manin obstructions

Let m # 0, 4 be an integer and d = m — 4. Let U, be the scheme over Z defined
by equation (1.1) and U, = Uy, x7 Q.

Lemma 5.1. If p is an odd prime with (p, d) = 1, then each element in the follow-
ing set

vanishes over U, (7)) and (x? —4,d) = (y* — 4,d) = (z*> — 4, d) vanishes over
Un(Qp). If d > 0, these elements vanish over Uy, (R).
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Proof. One only needs to consider the case that (%) = —1. Since (1.1) is equivalent
to (1.2) over Z, one concludes that

ordy(xs —4) = ordy(y; —4) =0
forall M, = (xp, yp, 2p) € Un(Zp). By symmetry, one further obtains
ordy(x2 —4) = ord,(y2 —4) = ord,(z2 —4) =0

for all M, = (xp,yp,2p) € Un(Zp). This implies that the three elements
(x£2,d),(y £2,d), (z+2,d) vanish over Uy, (Z)).

If (xp, ¥p,2p) € Un(Qp) \Un(Zp), one of xp, yp,2p € Qp \ Z,. Without
loss of generality, we assume that x, € Q, \ Z,. Then ord, (x?, — 4) is even and
(x?) —4,d), = 0. The result follows. O

Lemma 5.2. Ifm < 0, then |x| > 2, |y| > 2, |z| > 2 forany (x, y, 2) € Uy, (R).
Proof. Let (x,y, z) € Uy, (R). Suppose |x| < 2. Then

m=(y—xz/2%+ (0 -x/H>+x>>0
which contradicts m < 0. So |x| > 2. Similarly |y| > 2, |z] > 2. O

Remark 5.3. Let f : U, — A? be the morphism defined by projecting (x, y, z)
to (x, y). Therefore the image of U, (R) by f is the subset

Wi={(x,y) e R>: x> =4 (> —4) +4(m — 4) > 0} C R%.

The connected components of Uy, (R) are just the preimages of connected compo-
nents of W by f. The four lines x = +2 and y = +2 divide the plane R into nine
parts. Considering the signature of (x> — 4)(y*> — 4) on the nine parts, we have

1 ifm>4
#o (U (R)) = #mg(W) = {5 if0<m<4
4 ifm < 0.

All connected components of U, (R) are unbounded except the connected com-
ponent defined by |x|, |y|] < 2 when 0 < m < 4, and the bounded connected
component becomes a single point (0, 0, 0) whenm = 0. If m < 4, " permutes the
four unbounded components transitively. Full details are given in Section 7.

Let B = (x —=2,d), By = (y —2,d), B3 = (z — 2,d) in Bry(Up). By
Theorem 3.4, for m not a square, these three elements generate Bry (U,,)/Bro(U,,).
Let B = (B1, By, B3). One can define the evaluation of B over U, (Z,) by

B(M,) = (Bi1(M,), Bo(M,), B3(M))) € (Q/Z)°
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for M), € Uy, (Zp) and

BUn(Zy)) = (B(M,) : M), € Un(Z,)} C (Q/Z)?

for p < co. By the symmetry of the coordinates of (1.1), the symmetric group S3
acts on B(Uy,(Zp)) by coordinate permutation.

Lemma 54. [fm = 1 mod 8, then
BU, (Z»)) = {(1/2, 1/2,0),(1/2,0,1/2), (0, 1/2, 1/2)}.

Proof. Since m = 1 mod 8, one obtains that d = 5 mod 8 and by (1.1) there is one
and only one coordinate of any point in U, (Z) belonging to Z5 .

The remaining two coordinates belong to 4Z; by (1.1). The result follows
from the straightforward computation of the Hilbert symbols and the symmetry of
the coordinates. O

Lemma 5.5. If p =3 or p =5 and ord,(d) is odd, then

{(1/2,0,0),(0,1/2,0), (0,0,1/2)} for p=3 andord3(d) =1

_ (%Z/Z)3 for p=3 and ord3(d) > 3
BU(Zp) = (3Z/7)3\ (0,0,0) for p=5 and ords(d) = 1
(3Z/Z)* for p=5 and ords(d) > 3.

Proof.

e Assume p = 3 and ord3(d) = 1. Since (1.1) is equivalent to equation (1.2) and its
variants by coordinate permutations, any point in {/(Z3) must have two coordinates
in 373 and the remaining coordinate in Z; by (1.2). Without loss of generality, we

assume x,y € 3Z3 and 7 € Z3X. Therefore
(x—2,d)3=((—-2,d)3=0and (x +2,d)3 = 1/2.

By (3.22), one has (z — 2, d)3 = 1/2, hence B((x, y, z)) = (0,0, 1/2). The result
follows by permutation of the coordinates.

e Assume p = 3 and ordz(d) > 3. Letd = 321+ 14y with dy € Z; andn > 1.
By Hensel’s lemma, there is & € Z3 such that

4%_ + 32n+1%_2 — dO'
This implies:
(3"t d)y = (38, d)s = (3do, d)3 = (3do, 3do)3 = (—1, 3do)3 = 1/2.

Then for M3 = (0,0, 2 4+ 32"*t1&) € U,,(Z3) we have B(M3) = (0,0, 1/2).
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By Hensel’s lemma, for any a € Zj , there is & € ZJ such that

£2 — (4a + 3aH)E = 32" 4.

This implies:
£ ea(Z)* and (3&,d)3 = (3a,d); = (—ady, 3do)3.
Take
Mz = (24 3£,2+3a,2+3a) € Upn(Z3).
Then

V=Va/2,1/2,1/2)  ifade € 1+375 .

Since there is & € Z3 such that
£% 4 do(4 — 3do)& = 37" dy
by Hensel’s lemma, one obtains:
—£ edy(ZY)* and (3¢, d)3 = (—3do, 3do)3 = 0.
Then
M3 = (=24 3do, —2 + 3dp, 2 + 3§) € Uy (Z3) and B(M3z) = (1/2,1/2,0).

The result follows by permutation of the coordinates.

e Assume p = 5 and ords(d) = 1. One can use the lifting of smooth points of
U (Z,/5) as in [15, Proposition 5.7] to show that B can take all possible values over
U (Zs) except (0,0, 0). We prove (0,0, 0) & BUy,(Zs)).

By (1.2), there is at most one coordinate of a point in U, (Zs) which is con-
gruent to 3 mod 5. If that is the case, the sum of the two remaining coordinates is
congruent to 0 mod 5 as one sees by reducing (1.1) over Z/5. By inspecting cases,
one sees that B cannot take the value (0, 0, 0) over such points.

By (1.2), there is at most one coordinate of a point in U, (Zs) which is con-
gruent to 2 mod 5. If that is the case, both remaining coordinates are congruent
to 1 or 4 mod 5 simultaneously as one sees by reducing (1.1) over Z/5. One
only needs to show that B cannot take the value (0, 0,0) when both remaining
coordinates are congruent to 1 mod 5. Without loss of generality, we assume that
(x5, y5, 25) € Unm(Zs) satisfies x5 = y5 = 1 mod 5 and zs = 2 mod 5. Since
(xs —2,d)s = (y5 — 2,d)s = 0, one obtains that (z5 + 2,d)s = 0 by (1.3). By
Proposition 3.2, one has

(xF —4,d)s = (y? —4,d)s = (22 — 4,d)s = 1/2.
This implies (z5 — 2, d)s = 1/2.
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The only remaining possibility which one needs to consider is that all coordi-
nates of the points in U4, (Zs) are congruent to 1 mod 5. This is impossible as one
sees by reducing (1.1) over Z/5.

e Assume p = 5 and ords(d) > 3. One only needs to show (0, 0, 0) € B(U,,,(Zs)).
Letd = 5*"*!dy with (do, 5) = 1 and n > 1. There is § € ZZ such that

£2 4+ do(4 — 5do)e = 57" dy

by Hensel’s lemma. This implies that §=—dy mod 5 and (5&,d)5=(—5dy,5dp)s =0.
Then

Ms = (2 4+ 5&, =2 + 5dy, —2 + 5dy) € U,,,(Zs) and B(Ms) = (0,0, 0)
as required. O

The following proposition extends [10, Proposition 8.1(i) and Proposition 8.2],
propositions which only involve elements in Br(X).

Proposition 5.6. Let U be the scheme over 7, given by
x2+y2+zz—xyz=4+rv2, .1)

wherer € Z is one of 2, —2, —3, 12, —12 and all prime factors of v are congruent to

41 mod 8 whenr =2
+1mod 12 and v> =25mod32 whenr = 12

1 or 3mod 8 whenr = =2
1 mod 3 whenr = =3
1 mod 3 whenr = —12

and v # 1 whenr = =2, 3. Let
B=x>—4,r)=(%—4,r)=(z> —4,r) € Br;(U)

withU =U x7 Q. Then
UA7)B = 0.

Proof. When r = £2, for any My = (x3, y2,22) € U(Z3), one of xp, y2,z2 is a
unit of Z, by (5.1). For example, if x; is a unit, then

x3—4=5mod8 and (x —4,+2),=1/2.

Under the assumption v 7= £1 whenr = —2, by Lemma 5.2, (x?>o —4,4+2) = 0.
For M), € U(Z,), one has

12 ifp=2

B(M,) =
(M) 0 otherwise
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by Lemma 5.1 and the given condition for v. This implies

> B(M,) =1/2 30,

pP=©

hence

UA7)E = 0.

Suppose r = —3, £12. For any local solution M3 = (x3, y3, z3) € U(Z3), there is
at least one coordinate of M3 belonging to 3Z3. Otherwise, suppose x3 and y3 are
in Z;. Then ()c32 — 4)(y32 —4) € 9Z3. A contradiction is derived by (5.1). Since
(a2 —4,r)3 = 1/2 for a € 3Z3, one concludes that B(M3) = 1/2.

When r = 12, then B = (x2 —4,3) = (y> —4,3) = (z> — 4,3). Since
we have (%) = (—1)%(1’_1)@) = 1 for any p = %1 mod 12 by the quadratic
reciprocity law, by Lemma 5.1, one only needs to consider p = 2. Similarly, for
r = -3, —12, since (_73) = (%) = 1 for p = 1 mod 3, by Lemma 5.2 one reduces
to the computation for p = 2.

We claim that for any local solution My = (x2, y2, z2) € U(Z,), there is at
least one coordinate of M in Z; for r = —3, £12. This is clear for r = —3 since
vis odd. Suppose r = 12, otherwise, we can write xp = 2£, y, = 2n and z5 = 26
with &, n, § € Z, and obtain the following equation

EX =D = 1) = —&n)? —rv?/d (5.2)

by (5.1). Since £3 ¢ 752, one concludes that & and n are in 27, by (5.2). Similarly,
8§ €27,.

Suppose » = —12. The left hand side of (5.2) is=1 mod 4, but the right hand
side is= 3 mod 4, which is impossible. So there is at least one coordinate of M,
inZ5.

2Suppose r = 12. Write € = 2&;,n = 251 and § = 281 with &1, n1, 81 € Z».
One obtains that

(4E2 — 1)(dn] — 1) = 4(8; — 261m1)% — 3v™. (53)

If all &, 7y and &) are in 275, then —3 € Z5? by (5.3), which is impossible.
If two of {&1, 1, 81} are in 2Z; and the remaining one is in ZZX , We can write

§1=2a, n1=2b with a,beZz

and §; € Z5 by symmetry. Then by (5.3)

1 mod 32 whena € 27Z,,b € 27>
4 —3v% = (16a> — 1)(16b> — 1) = { —15mod 32 when ab € 27,
152 mod 32 whenab € Z;.
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This implies
1 mod 32 whena € 27Z,,b € 27,
v>=117mod32 whenab ¢ 27
I mod32  whenab € Z5

which contradicts the assumption on v.

If two of {£, 01, 81} are in ZJ' and the remaining one is in 27, we can assume
81 € 27 and &1, 0y € Z5 by symmetry. This implies that —3 € (Z;)2 by (5.3),
which is impossible.

If all £;, n1 and &, are in ZZX ,then3 -3 =4 — 3v% mod 32 by (5.3). Therefore
v? = 9 mod 32 which contradicts the assumption on v.

Therefore the above claim follows, i.e., there is at least one coordinate of M,
in Z5 . Since (a% —4,43), = (=3,4+3), = 0 for ap € Z, one concludes that B
vanishes over U(Z,). For M), € U(Z,), one has

172 ifp=3,
By =)/ M=
0 otherwise.
This implies
> B(M,) =1/2 0,
p=0
hence U(Az)B = 0. O

Remark 5.7. The element B = (x%> — 4,r) € Br(U) actually belongs to Br(X).
Let S be the finite set of primes which divide 2d = 2rv>. For a prime p ¢ S, the
element B vanishes not only on U/(Z,) but also on U(Q,) (Lemma 5.1). From
m > 4 and m < 0 we get that B vanishes on U (R) (Lemma 5.1 and Lemma 5.2).
The above proof then shows that

B
[]‘[ UZp) x [ ] U(@p)}

peS pesS

is empty. In particular, assuming there are (Q,-points everywhere locally, we get
that U (Q) does not meet the open subset of [] pes U(Zp) which is orthogonal to
the element B. This represents a lack of weak approximation — which is a stronger
result than the same statement for U/ (7).

On the other hand, for m # 0, 4, it is a special case of a theorem of Salberger
and Skorobogatov [19] that the smooth cubic surface given by

t(x2 + y2 + zz) —Xyz = mt>

satisfies weak approximation with Brauer—Manin obstruction.
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Remark 5.8. There is an error in the proof of [10, Proposition 8.1 (i)]. A contra-
diction is derived from the fact that ¢ = 45 mod 8 and {£2} is a quadratic residue
modulo g. However, when ¢ = 3 mod 8, then —2 is a quadratic residue modulo ¢
and this is not a contradiction. The corresponding result should be modified. More-
over, the additional requirement that v € {0, &3, £4} mod 9 can be replaced by the
local condition in [10, Proposition 6.1].

Proposition 8.3 in [10] can be improved as follows:

Proposition 5.9. Let v be an integer all prime factors of which are congruent to
41 mod 5. Let U be the scheme over 7, given by the equation

X2+ yr+ 22— xyz =m =4+ 2007
andlet U =U x7 Q. Then U(Az)PnV) = ¢.
The smallest positive such v is v = 11, which gives m = 4 + 20v% = 2424

Proof. We only consider the following subset A of Br(U)
{(r£2,5, (¢ £2,9), @ £2,5)}.

Then each element 8 € A vanishes over U(Z)) for p # 2,5 by Lemma 5.1 and the
property (%) = (§) = 1for p ==+1mod>5.

Let M5 = (xs, ys, 25) € U(Zs). By permutation of the coordinates and reduc-
tion of the equation

(x2 = 4)(y* —4) = 2z — xy)> — 80v?

modulo 25, one sees that there is at most one coordinate of M5 which is congruent
to =2 mod 5.
We consider

V= (x2—4,55=(y? —4,5)5 = (z — 4,5)s.

We have two possibilities:

a5) At least one of the coordinates is &1 mod 5, then V = 1/2. Therefore half of
the elements in A vanish at M5 and the other half do not vanish.

b5) Two coordinates of Ms are in 5Zs and the remaining one is =2 mod 5. In
this case, V = 0. Without loss of generality, we assume x5, y5 € 5Zs. Then
zg = 4 4 20 mod 25 by the given equation. This implies that zs = £7 mod 25.
Therefore

(xs£2,5)s = (y5£2,5)5=1/2 and (z5 £2,5)5 =0.

Thus for any point M5 € U(Zs) at most 3 of the elements in A vanish at Ms.
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Letnow M, = (x2, y2, 22) € U(Z,). Recall that (2, 5), = 1/2 and (1, 5)7 =0
for any u € Z5 .

a2) If one coordinate, say x,, belongs to Z., then each of x, + 2 is in ZZX hence
(x2 £2,5)2 = 0. From the given equation we immediately see that if M, has one
coordinate in Z; , then it has at least 2. This then implies that at least 4 elements in
A vanish at M.

b2) If no coordinate of M5 is in ZZX , then one can write
xp =2, yp =21, 20 =28 with &,1n,8 € Z»
and the equation gives
E =D’ =1 =@ —&n* —50%

Since 5 ¢ ZQXZ, one concludes that & and 5 are in 2Z,. Similarly, § € 2Z;. For
each element in the set

{(x£2,5),(yx£2,5),(zx2,5)}

the value it takes on M> is of the shape (2u, 5), with u € Z;. We see that all
elements in A take the value 1/2 at M.

It is then an easy matter to see that in whichever combination of one of a5), b5)
with one of a2), b2), there exists an element 8 € B such that 8(Ms) + S(M>) # 0.
Hence for any adele {M,} € U(Az) there exists an element 8 € A with the property

D B(My) #£0 € Q/Z. O

p

5.2. Combination of Brauer-Manin obstruction with the reduction theory

Lemma 5.10. Suppose m # 0,4 andd = m — 4. Let p be an odd prime such that
ord,(d) is even and positive. Then there is a point (xp, yp, 2p) € Un(Zp) such
that

(xp—=2,d)p = (yp—2,d)p = (zp —2,d),, = 0.

Proof. For any odd prime p and a # %2 in the finite field IF,, the point (a, a, 2) is
a smooth point of the affine variety over I, defined by x24y>+7>—xyz =4. By
Hensel’s Lemma, there exists a point (x,, yp, 2p) = (a,a,2) mod p in Uy (Z)).
Therefore

xp+2,d)p=(xp—2,d)p =(yp —2,d)p, =0.

By (3.22), one has (z, — 2,d), =0. [

The following proposition points out that [10, Proposition 8.1 ii)] cannot be
explained only by Brauer-Manin obstruction.
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Proposition 5.11. Let U be the scheme over 7. given by
X2+ y2 422 —xyz =4+ 2007, (5.4)

where w is an odd integer and [ is a prime with | = +3 mod 8.
Iflw = £4 mod 9, then U(Az)B" # 0.

Proof. By [10, Proposition 6.1], the condition /lw = =44 mod 9 implies
]_[p<oo U(Zp) # 9. Since lw is odd, the integer 4 + 2/°w? is not a square. There-
fore, by Corollary 4.9 and Theorem 3.4, the quotient Br(U)/Bro(U) is generated
by

{(x—=2,2),(y—-2,2),(z—2,2)}. (5.5)

By Lemma 5.1, for p 1 2w, the three elements in (5.5) vanish over U(Z,). By
Lemma 5.10, there is a Z ,-point M, at which all three elements in (5.5) vanish for
any p | w and p # [. We fix such points.
We shall construct suitable local points M), = (x, ¥, zp) for p =2, 1.
For p = 2, we take x; = yp = 1. By Hensel’s Lemma, there is zo € Z;
satisfying
-z =2420%w (5.6)

Then (xz -2, 2)2 = (yz -2, 2)2 =0 and
1
(2=2.2=(1=-r2n=7,

where r is the other root of (5.6) with ord, (r) = ord, (2 + 212w?) = 2.
Over the finite field [F;, we can choose (a, b, ¢) € F; x FZX X IE‘ZX satisfying

a? — 4bc = 2w?. Obviously a — b — ¢ # 0, otherwise we have (b — ¢)*> = 2w?,
which is impossible since (%) = —1. Therefore (b, ¢, a — b — ¢) is a solution of the
equation
' +y +7)?—4x'y =2w? mod!
with x’'y’z" # 0, hence by Hensel’s lemma there is a solution (o, 8;, v;) of the
equation
(x/ + y/ +Z/)2 —x/y/(4—|—l . Z/) — 2w2

over Z; with y; € Z;. Then

G,y z) = (=24 al, =2+ Bil, 2+ i) € U (Zy)

with
(1 —=2,2)y = —2,2)y=0and (z; — 2,2); = 1/2.
One concludes that
(xp, Yps Zp)pfoo € U(AZ)BI,
as desired. O
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If w = 1 in Proposition 5.11 and / is a sufficiently large prime, one can still
prove that equation (5.4) has no integral solutions by combining Brauer-Manin ob-
struction with the reduction theory as given in [10, Proposition 8.1 ii)]. In fact, we
produce more counterexamples.

Proposition 5.12. The equation
Py —xyz =4+
has no integral solution in each of the following cases:

i) r =2andl > 13 is a prime with | = £4 mod 9;
ii) r = 12 andl > 37 is a prime, I* = 25 mod 32 and 1 + 312 is not a sum of two
squares (e.g.,l = 37,43, ...);

i) r = —2andl > 13 is a prime;
iv) r = =3 andl > 17 is a prime;
v) r = —12 andl > 37 is a prime.

Proof. Let us first check that in each of the above cases, m = 4 + ri? is “generic”
as defined in [10], i.e., there is no integral solution with one of the coordinates of
absolute value 0, 1 or 2. This is automatic for m < 0, hence in cases (iii), (iv), (V).
In case i), see the proof of [10, Proposition 8.1]. In case ii), u> +3v*> = 4(m — 1) =
4(3 4 12/?) is not solvable over Z because

(=343 +1209), = (-3, 1 +41%)3 = (-3,5)3 = 1/2.

By our assumption, u” + v> = 4 4 12/? is not solvable over Z. Since 12/? is not a
square, 4 + 1212 is generic.
Let us now suppose that one of the given equations has an integral solution.
In the cases i) and ii), by the reduction theory [10, Theorem 1.1], there is an
integral solution (xg, yo, zo) satisfying

1
3 < |xol < Iyol < |zol and |x0| < (4 + ri?)3.

Suppose r = 2 and ! > 13,orr = 12 and [ > 37. We have |x9| + 2 < [. This
implies that xé — 4 has no [-factor. We therefore have (x02 —4,r); =0.
By the purely local computations in Proposition 5.6, in the case r = 2, we have
(xg —4,r), = 1/2. Then we have
W@ —ar), = {0 if p# 2
172 iftp=2.

Similarly, by the purely local computations in Proposition 5.6, if r = 12, we have
(x3 —4,r)2=0and (x] —4,r)3 = 1/2.

Therefore
0 if 3
(F—4.r)p = fp#
1/2 if p=3.

This contradicts the Hilbert reciprocity law.
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In the cases iii), iv) and v), by the reduction theory ( [10, Theorem 1.1]), there
is an integral solution (xg, Yo, zo) satisfying

1
3<x=<y=<2z20 =< 5%0Yo-

We claim xg < [ — 2. Otherwise, we would have

1

_r12_4=x0y0z0—x§—y§—z%Zxoyozo—xg—yg—ixoyom
1 1
=>%0¥020 — %5 — 35 = 5( =235 — 2%
1 1
= —6)y > —( —6)( —2)°.
2( )yo_z( )1 —2)

Ifr = —2and! > 13,orr = —3and/ > 17,orr = —12and/ > 37. This is
impossible. This implies that xg — 4 has no [-factor and thus (xg —4,2); =0.

By the purely local computations in Proposition 5.6, in the case r = —2 we
have (x§ —4,r), = 1/2. Then

0 if 2
(3 —4,r), = 7
12 ifp=2.

This contradicts the Hilbert reciprocity law.
By the purely local computations in Proposition 5.6, if r = —3, —12, one has

(x3 —4,r)2=0and (x] —4,r)3 = 1/2.

So
0 if 3
(F—4.r)p = ip#
1/2 if p=3.
This contradicts the Hilbert reciprocity law. U

The following lemma is an extension of the previous proposition. One needs
this extension in order to get the lower bound in Theorem 5.14.

Lemma 5.13. Letr =2, -2, -3, —12. Let a > 0 be an integer and l be a prime.
Let m = 4 + ra®l>. Suppose a > 0 is prime to r and that the Hilbert symbol
(p,r)p = 0 for any prime divisor p of a. In the case r = 2, suppose moreover
al = +4 mod 9.

Then there exists a positive constant 6, > 0 only depending on r, such that, if
a < 0,1'% and 1 is large enough (depending on 0,), then the equation

x4y + 22 —xyz =4 +ra*l?

has no integral solution.
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Proof. Assume there is an integral solution.

i) Suppose r = 2. By the last part of the proof of [10, Proposition 8.1], it is clear
that 4 4+ ra?l? is “generic”. By the reduction theory [10, Theorem 1.1], there is an
integral solution (xg, yo, zo) satisfying

1
3 < |xol < Iyol < |20l and |xo| < (4 + 24°1%)3.

If6, < 1/\/5, then

1

Ixol < (4+2a%%)3 < @+203)'° <1 -2,

the last inequality holds for / large enough. This implies that xg — 4 has no [-factor.

Therefore (xg —4,2); = 0. By similar purely local computations as in Proposition
5.12, we conclude that the integral Brauer-Manin set of the equation

Py 2 —xyz =4 +rdl?
is empty, hence this equation has no integral solution.

ii) Suppose r = —2, —3, —12. By the reduction theory [10, Theorem 1.1], there is
an integral solution (xg, Yo, zo) satisfying

3 <x0 < yo <20 < x0y0/2.
We have
—ra*l* — 4 =xoyoz0 — X — ¥§ — 25 = X0)020/2 — X — ¥§
>(x0/2 — 1)yg —x3 = x0 - x5/2 — x3 — x3 = x3/2 — 2x§.

If we choose 0 < 6, < 1/4/—2r, then xg < [ — 2 for [ large enough. Therefore
(xg —4,r); = 0. By purely local computations as in Proposition 5.12, we conclude
that the integral Brauer-Manin set of the equation

X242+ 22 —xyz =4 +ra*l?
is empty, hence this equation has no integral solution. O

The following result improves upon the lower bound /N (log N)~! in [15,
Theorem 1.5].

Theorem 5.14. Let U, be the affine scheme over 7 defined by the equation
x2+y2+z2—xyz =m.
We have
#meZ:0<m<N, Un(Az)B £ @ but U, (Z) = B} > v/N(og N)~1/?;
#meZ:—N<m <0, Un(Az)® £ @ but Uy (Z) = B} > v/Nlog N)~'/?

as N — +00.
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Proof.

a) To prove the first asymptotic inequality, we restrict attention to positive integers
m = 4 4+ 2a%1*> with [ a prime, [ = 19 mod 72 and a an odd positive integer
satisfying

(%) : a =24 mod9 and all prime divisors of a are congruent to 1 mod § .

Fix 6, < 1/+/2 as in the proof of Lemma 5.13. By this lemma, if a < 62/'/% and [
is large enough, then the equation
x2 42+ 2% —xyz =4 +24%1°

has no integral solution. By Proposition 5.11, we have U,, (A7)B" # @ for the above

values of m.
Let

Np=#meZ:0<m<N, Up(Az)®" £ & but U, (Z) = ¥}
By Lemma 5.13, one obtains

Np > > #a:a < 6V1,a <N/, a satisfies (x)}

I<+/N, =19 mod 72

> > #{a :a < ~/N/I, a satisfies ()}
6; 2P N13<I<N/2, 1=19 mod 72

> Z #{a : a < v/ N/, a satisfies (x)}.
0,3 N1/3<1<N5/12, [=19 mod 72

2

By a well known lemma (e.g., [15, Section 5.8]), one has
#{a < N : a satisfies (x)} ~ c¢N (log N)fl/2 as N — 400,

where ¢ > 0 is a constant. Using [1, page 156, Ex. 6], we obtain

Np > > VN(log N —logl)~ /2~
0,2 N1/3 <1 <NS/12, 1=19 mod 72
>+/N(log N)~'/2 > .

6, P N13<1<N5/12, 1=19 mod 72

>+/N (log N)_1/2<log log(N*/1%2) — loglog(N'/3)

oo (1 2log(6>)
B og( B log N
=v/N(log N)™"/*(log(5/4) + O((og N)™1)) > v/N(log N)'/

as N — +oo.

)+ 0((logN)1))
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b) To prove the second asymptotic inequality, we now restrict attention to integers
m = 4—2a?1? and apply Lemma 5.13 to the case r = —2. Since v/—1 ¢ Q(+/d) =
Q(+/=2), Corollary 4.10 gives Br(U,,) = Bri(U,,). The result follows from an
argument entirely analogous to the previous one. O

6. Strong approximation always fails

Let U, be the scheme over Z defined by the equation
24y —xyz=m. (6.1)

The following proposition complements [10, Theorem 1.1 (i)] (see also the discus-
sion below [10, Lemma 2.1]), which goes back to Markoff, Hurwitz, Mordell. The-
orem 1.1(i) of [10] contains the further information that if m € Z is “generic”, i.e.,
there no point on U,,(Z) with x = 0, 1, 2, then I" acts transitively on the solutions
and it describes an explicit fundamental set for the set of integral solutions.

Proposition 6.1. If m > 0, then any integral point in Uy, (Z) is T -equivalent to an
integral point (xo, Yo, 20) € Uy (Z) such that

3<xg<yy<-z0 or x0=0,1,2. (6.2)

Proof. For a given integral point, if its I"-orbit contains an integral point with the
coordinate x = 0, 1, 2, then the proof is completed. Therefore, we may assume
there is no integral point in the I'-orbit with x = 0, 1,2. By changing sign of
two coordinates and permutation of the coordinates, one only needs to consider the
generic case, i.e., [-orbits of integral points such that for any point (x, y, z) in the
orbit we have

min{|x], |y, |z]} = 3.

By changing sign of two coordinates simultaneously, we only need to consider the
following two cases: two coordinates of (x, y, z) are positive and the remaining one
is negative; or all coordinates of (x, y, z) are positive.

Suppose that there is an integral point (x, y, z) € U, (Z) such that two coor-
dinates of (x, y, z) are positive and the remaining one is negative. Then the result
follows from changing sign of two coordinates so that all of them are negative, per-
mutation of the coordinates so as to get |x| < |y| < |z| and then change of sign of
x and y.

Now we consider an integral point (x, y, z) € U, (Z) suchthat3 <x <y < z.

Ifz < %x y, then one obtains

1
7= (xy - \/x2y2 —4(x2 +y2 —m))

by solving (1.1) for z. This implies

\/x2y2—4(x2+y2—m) =xy —2z <xy—2y.



1306 JEAN-LOUIS COLLIOT-THELENE, DASHENG WEI AND FEI XU

Therefore one has
2

(x =2y <x*-m
by squaring. From x > 3 and m > 0 one concludes y> < x2. A contradiction is
derived.

For any integral point (x, y,z) € Uy(Z) with 3 < x < y < z, we thus
have z > %xy. Applying the Vieta involution, one obtains a new integral point
(x, ¥, xy —z) which satisfies xy — z < z. [f xy — z < 2, since we are in the generic
case we must have xy—z < —3, so we have a situation with two coordinates positive
and one negative, and we conclude as above. Suppose xy — z > 3. We obtain a
new integral point (x1, y1, z1) in the I"-orbit of (x, y, z) with positive coordinates
and x; + y; + 21 < x + y + z. This process must stop, that is we reach a situation
with two coordinates positive and one negative. O

The main result of this section is the following theorem.

Theorem 6.2. Let m be any integer. Suppose U,,(Az) # @. For any finite set S of
primes, the image of the natural map U, (Z) — [ pés U (Zp) is not dense.

Proof. For any sets of primes S| D Sy, if Uy, (Z) is not dense in [] péS) Un (Zp),
then U, (Z) is not dense in | | S U (Zp). One can thus enlarge S if necessary.

i) Suppose m # 0. We may assume S contains 2 and co. Let S’ = {p prime : p | m}
and R =[] pes\s P-Leta be a positive integer prime to m such that

a*R*> —2aR —m > 0and aR > /|m| + 9. (6.3)
Letd = a*R?> —m and e;, =ord,(d').
Denote

Ve,l,d’ = 1—[ (Xp, Yps Zp) € um(Zp) : (xpa Yp>s Zp) = (eaR,0,0) mod Pe” )
pld’

Vera = l_[ (Xp, Yps2p) €Un(Zp) = (xp, yp,zp) = (0, €aR,0) mod p°r ¢,
pld’

Ve,3,d’ = 1_[ (Xp, yp,2p) € Z/lm(Zp) :(xp, ¥p,2p) =(0,0,€aR) mod Pep >
pld’

where € = £1. Let
3

Ve,d’ = U U Ve,i,d’-

i=1e==%1

It is clear that V.  is I'-invariant, where I' is the group defined in Section 1. Since
d’ has no prime factor in SUS’, we can take the local point (x;,, 0, 0) of Uy, (Z ) with

x, = aR mod pe;’ for any p | d’ by Hensel’s lemma. Obviously, [, (x),, 0,0)
lies in V) 1 4. Therefore V, 4 is a non-empty open subset of | | old’ Un(Zp).
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a) Suppose m > 0. Assume that U, (Z) is dense in [ | S U (Zp). Then we have
Un(Z)NVe 4 # 9. By Proposition 6.1, there is a point (xo, Yo, z0) € Un(Z) Ve @/
such that

3<xo<yy<-z0 or x0=0,1,2. (64)

Since (xo, y0, 20) € Ve 47, we have
(X0, Y0, 20) = (£aR, 0, 0), (0, £aR, 0) or (0,0, +aR) modd'.
If xg > 0, then
xo > min{d',d —aR,aR} =aR > vm+9 >3 (6.5)

by (6.3). Hence 3 < xo < (m — 27)!'/3 by (6.1) and (6.4). We have the inequality
Vm+9 > (m—27)'/3. By (6.5) a contradiction is derived. Therefore

x0 =0, y3 + 23 = m and (y0, z0) = (£aR, 0) or (0, +aR) mod d’,

which is impossible by (6.3). Therefore U, (Z) is not dense in [ | pld’ Un(Zp), hence
is not dense in ]_[p¢s U (Zp).

b) Suppose m < 0. Assume that U, (Z) is dense in the set [ ] péS Un(Zp). Then
we have Uy, (Z) N Ve oo # ¥. By [10, Theorem 1.1 (ii)], there is an integral point
(%0, Y0, 20) € Un(Z) N Ve 4 such that

3 <x0<yo=<2z0=<x0y0/2.

By [10, Lemma 2.2], one has 3 < xo < +/|m|+ 9. Since (xo, y0, 20) € Ve.a’» We
have

(x0, Yo, 20) = (£aR,0,0), (0, £aR,0) or (0,0, +aR) mod d’,
Since x¢ > 0, then
xo > min{d',d —aR,aR} =aR > Vm +9

by (6.3), which contradicts xo < +/[m|+9. Therefore U4, (Z) is not dense in
npld’ U (Z ), hence is not dense in np¢s Un (Zp).

ii) Suppose m = 0.

We can choose a prime [ ¢ S and / =1 mod 4. Then there exists § € ZZX such that
82 = —1. Therefore (81,1,0) € Uy(Zy). If Uy(Z) is dense in Hp¢S Uo(Zp), then
there is an integral point (xg, yo, zo) = ([, [, 0) mod [2. Therefore (xg, Y0, 20) #
(0,0, 0) and xq, yo, zo are all divisible by /. Since Uy (Z) has just two orbits (0, 0, 0)
and (3, 3, 3) (see [10, Section 3.1]), (x0, Yo, 2Z0) is contained in the orbit (3, 3, 3).
One has [ | 3 since xg, Yo, zo are all divisible by /, which is impossible. Therefore
Uo(Z) is not dense in [ | S Uo(Zp). The proof is completed. O
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We can ask for a lighter version of strong approximation: could it be that the
reduction map U, (Z) — U,,(Z/ 1) is surjective for almost all primes /? For m not a
square, the following proposition gives a conditional negative answer. Indeed it is a
special case of Schinzel’s conjecture that under this hypothesis on m the polynomial
x? — m € Z[x] represents infinitely many primes as x varies in Z.

Proposition 6.3. Assume that m is not a square and that the polynomial x> — m in
Z[x] represents infinitely many primes. Then there exist infinitely many primes [ for
which there is a point in Uy, (Z/ 1) of the shape (x, 0, 0) with X # 0 which is not in
the image of Uy (Z) — U (Z]1).

Proof. Let [ be a prime of the shape [ = a?
integer prime to m, such that

—m with m € Z and a is a positive

a2—2a—m20anda>\/|m|+9. (6.6)

By the above conjecture, there exists infinitely many such pairs (/, a). Denote
VY, :={(%a,0,0), (0, £a, 0), (0,0, +a)} C (Z/1)°,

here @ is the image of a in Z/ 1. It is clear that V; C U,,,(Z/1) is I'-invariant.

We will assume m > 0O (the case m < 0 can be proved similarly). Assume
that the map U,,,(Z) — U, (Z/1) is surjective. Then there is an integral point
X € U,(Z) NV;. By Proposition 6.1 ( [10, Theorem 1.1 (ii) and Lemma 2.2] for
m < 0), there is an integral point (xg, yo, z0) € Un (Z) NV, such that

3<x0<yo<-—z0, orxo=0,1,2.
Since (xg, yo, 20) € V;, we have
(x0, Y0, 20) = (%4, 0, 0), (0, £a, 0) or (0,0, a) mod [,

hence, if xo > 0,
xo > min{l,l —a,a} =a >m+9 6.7)

by (6.6). Since v/m +9 > 3,o0ne has xo # 1,2. If 3 < xp < yo < —20,
hence 3 < xo < (m —27)!/3 by (6.1). But (xo, yo, z0) € V, one has the inequality
x0 > /m~+9 > (m—27)173 by (6.7), which is a contradiction to xg < (m—27)173.
Therefore

x0 =0, y2 4 z3 = m and (y0, 20) = (za, 0) or (0, ) mod /.

Then
(o, z0) = (Fa, 0) or (0, +a) mod [

implies |yg| or |z0| > min{l — a,a} = a, hence a® < m, which is impossible by
(6.6). Therefore Uy, (Z) — Uy, (Z/1) is not surjective. O
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Remark 6.4. When comparing the above results with [3], one should note that the
failures of strong approximation described here correspond to points (xp, v, zp) €
Un (Z ;) whose reduction modulo p has two coordinates equal to 0, hence which
geometrically lift to points whose I'-orbit is finite.

Lemma 6.5. Let k be a number field. Let U be a smooth geometrically connected
variety over k such that Br(U)/Bro(U) is finite. Let v run through the places
of k. Suppose U is an integral model of U over oy with U(Ay)B" # @, here
U(Ag) = Hvloo U(ky) X [Ty<ooU(0y). Let pry : U(Ao) = [, <00 U(0y) be the
natural projection.

If U(oy) is dense in pry (Z/{(Aak)Br), then there exists a finite set S of places
containing ooy such that the natural map U(oy) — HU¢ sU(0y) has dense image.

Proof. Suppose By, - - - , By, generate Br(U) /Bro(U). Then, there exists a finite set
S of places containing ooy such that By, - - - , I3, vanish on U(0,) for any v ¢ S.
Since Z/{(Aok)Br # (), the natural projection L[(A,Jk)Br — ]_[U¢S U(0y) is surjective.
So, if U(oy) is dense in pr ¢ (U(Aok)Br), then {{ (o) is dense in HvééS U(oy). O

The above lemma is the exact analogue of the well known statement: if X is
projective over a number field k£ and Br(X)/Br(k) is finite, and X (k) is dense in
X (A;)Br and non-empty, then weak weak approximation holds for X.

Corollary 6.6. Suppose m # 0,4 and U,,(Az)B" # @. Then U,,(Z) is not dense
in pry U (Az)BY), where pryUn(Az) — ]_[p<oo U (Zp) is the natural projec-
tion.

Proof. By Theorem 3.4 and 4.8, Br(U,,) /Bro(U,,) is finite. The proof follows from
Theorem 6.2 and Lemma 6.5. O

Corollary 6.7. Let pry : U, (Az) — []
Assume that Uy, (7)) # .

If m > 4 is not a square, or m is a square with a prime factor congruent to
1 mod 4, orm < 0, then Uy, (Z) is Zariski dense but is not dense in pr ¢ (Uy, (Az)BD).

Proof. By [10, Section 5.2],U,, (Z) is Zariski dense. The result follows from Corol-
lary 6.6. O

p<co U (Zp) be the natural projection.

Let X be a smooth, projective and geometrically connected variety over a num-
ber field k such that Br(X)/Bry(X) is finite and the Brauer-Manin set of X is not
empty. It is well known that X (k) is Zariski dense in X if X (k) is dense in its
Brauer-Manin set. Indeed this then follows from weak weak approximation. Let
S D ook be a finite subset of €2, 0g the ring of S-integers of k. Let U be a smooth
geometrically connected variety U over k, U an integral model over 0g. We denote

UAog) = [T UK x [ TUC0)

vesS vegS

where k, and 0, are the completion of k and og with respect to v € 2 respectively.
One has the following integral analogy.
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Proposition 6.8. Let U be a smooth geometrically connected variety over a num-
ber field k such that Br(U)/Bro(U) is finite. Suppose U is an integral model
of U over og with Z/{(AUS)Br # 0. If U(og) is dense in prS(Z/{(AOS)Br) where
prs @ U(Aog) — ]_[U¢S U(0y) is the natural projection, then U(og) is Zariski
dense inlU.

Proof. Let N be a non-empty Zariski open subset of I/ and fix a finite set B C
Br(U) generating Br(U)/Bro(U). There is a sufficiently large finite subset S’ O S
of € such that A (0,) # @, N is smooth over 0, and each element in B vanishes
over U(o,) forallv ¢ S’.

Take vp ¢ S’. Then the open subset

Now) x  [] U c prs(t(Ac)®)
vE(SU{vo})
has non-empty intersection with {/(05) by the assumption. This implies that
u(ov()) D) Z/{(OS) mN(OUQ) # @
Therefore N NU(og) # @ as desired. O

As we have seen in this section, the converse of Proposition 6.8 does not hold.

7. Appendix: the real locus

We here provide details for Remark 5.3. The following lemma should be well
known. We provide the proof for convenience of the reader.

Lemma 7.1. Let X be a topological space with a covering {X;} of connected sub-
sets of X . Assume that for any two elements Y and Z in {X;}, there are X1, - - - , Xi
in {X;} satisfying

Yﬂyl # 0, YlﬂYQ#@,“- ,Yk_lﬂyk;ﬁ@, Ykﬂ?;ﬁ@

where Y, Yl, e ,Yk, Z are the topological closures of Y, X1,--- , Xk, Z in X
respectively. Then X is connected.

Proof. Suppose that X is not connected. Then X contains a non-empty, open and
closed subset D # X. Since {X;} is a covering of X, there is Z in {X;} such that
Z ¢ D.

On the other hand, one has

DNX; =% or X;CD (7.1)

for each element X; in {X;} by the connectedness of X;. Since D is not empty, there
is Y in {X;} such that Y C D by (7.1). By the assumption, there are Xy, --- , Xy in
{X;} satisfying

Yﬂyl # 0, Y] HYZ =0, ,Yk—l ﬂyk % 0, Ykﬂi#@.
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Therefore X| C D by (7.1). Applying (7.1) repeatedly, one gets
X,C D, , Xy CD.
Finally, one concludes that Z C D by (7.1). A contradiction is derived. O
Recall that U, is the affine scheme over R defined by the equation

4y 4+ —xyz=m. (72)
Proposition 7.2. For m € R, the number of connected components of Uy, (R) is
given by

1 form >4

#ro(U,,(R) =15 for0 <m < 4
4 form < 0.

More precisely:

e When m < 0, the connected components of Uy, (R) are

{(r,y,2) €eUn®) :x =2, y =2}
{(x,y,2) € Un(R) : x = =2, y = 2}
{(x,y,2) €Un(R) : x = =2, y = -2}
((x,y,2) € Up(R) :x >2, y < —=2}.

They are unbounded and transitively permuted by T";
e When0 < m < 4, the connected components of Uy, (R) are

{(x,,2) € Un(R) : x > 2, y > 2}
{(x,y,2) e Un(R) : x
{(x,y,2) €e Un(®R) : x
{(x,y,2) € Un(R) : x 22, y < -2}

{x,v,20eU,R): —2<x=<2, -2<y=<2}L

The first four components are unbounded and I" permutes them transitively. The
last component is bounded and reduced to the point (0,0, 0) if m = 0;
o When 4 < m, then U, (R) is connected and unbounded.

Proof. Since (7.2) is equivalent to

Qz—xy)? = (=4O —4) +4m — 4),



1312 JEAN-LOUIS COLLIOT-THELENE, DASHENG WEI AND FEI XU

one concludes that the following closed subsets of Uy, (R)

Dy ={(x,y,2) €Up(R) :x =2, y > 2}

Dy ={(x,y,2) €eUn(R): =2 <x <2, y>2}

D3y ={(x,y,2) €Un(R) :x =2, y>2}
Dy={(x,y,2) €eUp(R):x < -2, -2<y <2}

Ds ={(x,y,2) € Up(R) : x < -2, y < -2}
Dg={(x,y,2) e U,(R): -2 <x <2, y<-=-2}

D7 ={(x,y,2) €Un(®) :x>2, y <=2}

Ds ={(x,y,2) € Un(R) :x =22, =2 <y <2}

Dy ={(x,y,2) eUn(R): -2 <x <2, -2<y <2}

are connected with U, (R) = Ui9:1 D;.

Whenm > 4,then DgN D; # @ for 1 <i < 8. Therefore U, (R) is connected

by Lemma 7.1.

When m < 4,then Dy = Dy = D¢ = Dg = ). Moreover Dg = ¢ if and

only if m < 0. In this case, one obtains that Dy, D3, D5, D7 are the connected
components of U, (R), which are unbounded. Using (x, y, z) — (—x, —y, z) and
(x,y,2) — (—x,y, —z) one sees that I" transitively permutes these 4 components.
ForO <m < 4,onehas DN D; =@ fori =1, 3,5, 7. Therefore Dy is a bounded
connected component of Uy, (R). ]

References

(1]
(2]

(3]

(4]

(3]

(6]

(7]
(8]

ToM M. APOSTOL, “Introduction to Analytic Number Theory”, Springer-Verlag, 1976.

S. BLOCH and A. OGUS, Gersten’s conjecture and the homology of schemes, Ann. Sci.
Ecole Norm. Supér. (4) 7 (1974), 181-202.

J. BOURGAIN, A. GAMBURD and P. SARNAK, Markoff triples and strong approximation,
C.R. Math. Acad. Sci. Paris 354 (2016), 131-135.

J.-L. COLLIOT-THELENE, Birational invariants, purity and the Gersten conjecture, In:
“K-Theory and Algebraic Geometry: Connections with Quadratic Forms and Division Al-
gebras”, AMS Summer Research Institute, Santa Barbara 1992, ed. W. Jacob and A. Rosen-
berg, Proceedings of Symposia in Pure Mathematics, Vol. 58, Part I 1995, 1-64.

J.-L. COLLIOT-THELENE, A.N. SKOROBOGATOV and SIR PETER SWINNERTON-DYER,
Double fibres and double covers: paucity of rational points, Acta Arith. 79 (1997), 113—
135.

J.-L. COLLIOT-THELENE and F. XU, Brauer-Manin obstruction for integral points of
homogeneous spaces and representation of integral quadratic forms, Compos. Math. 145
(2009), 309-363.

J.-L. COLLIOT-THELENE and O. WITTENBERG, Groupe de Brauer et points entiers de
deux familles de surfaces cubiques affines, Amer. J. Math. 134 (2012), 1303-1327.

A. GROTHENDIECK, Le groupe de Brauer IlI, In: “Dix exposés sur la cohomologie des
schémas”, Masson, North-Holland, 1968.



(9]

(10]
(1]

[12]
(13]

[14]
[15]
[16]
[17]
[18]
[19]
[20]

(21]

BRAUER-MANIN OBSTRUCTION FOR MARKOFF SURFACES 1313

P. GILLE and T. SZAMUELY, “Central Simple Algebras and Galois Cohomology”, Second
Edition, Cambridge Studies in Advanced Mathematics, Vol. 165, Cambridge University
Press, 2017.

A. GHOSH and P. SARNAK, Integral points on Markoff type cubic surfaces, arXiv:
1706.06712v2.

Y. HARPAZ, Geometry and arithmetic of certain log K3 surfaces, Ann. Inst. Fourier
(Grenoble) 67 (2017), 2167-2200.

R. HARTSHORNE, “Algebraic Geometry”, GTM, Vol. 52, Springer, 1977.

J. JAHNEL and D. SCHINDLER, On integral points of degree four del Pezzo surfaces, Israel
J. Math. 222 (2017), 21-62.

K. KATO, A Hasse principle for two dimensional global fields, J. Reine Angew. Math. 366
(1986), 142-181.

D. LOUGHRAN and V. MITANKIN, Integral Hasse principle and strong approximation for
Markoff surfaces, Int. Math. Res. Not. IMRN, to appear, arXiv:1807.10223v3.
J.S.MILNE, “Ftale Cohomology”, Princeton Mathematical Series, Vol. 33, Princeton Uni-
versity Press, 1980.

L. J. MORDELL, On the integer solutions of the equation 2+ y2 + 22+ 2xyz = n,
J. London Math. Soc. 28 (1953) 500-510.

J. NEUKIRCH, A. SCHMIDT and K. WINGBERG, “Cohomology of Number Fields”,
Grundlehren der Math., Vol. 323, Springer, 2000.

P. SALBERGER and A. SKOROBOGATOV, Weak approximation for surfaces defined by two
quadratic forms, Duke Math. J. 63 (1991), 517-536.

J.-J. SANSUC, Groupe de Brauer et arithmétique des groupes algébriques linéaires sur un
corps de nombres, J. Reine Angew. Math. 327 (1981), 12-80.

H.P.F. SWINNERTON-DYER, The birationality of cubic surfaces over a given field, Michi-
gan Math. J. 17 (1970), 289-295.

Université Paris-Saclay

CNRS, Laboratoire de mathématiques d’Orsay
91405, Orsay, France

jlct@math.u-psud.fr

Academy of Mathematics and System Science
Chinese Academy of Sciences

Beijing 100190, China

and

School of Mathematical Sciences

University of Chinese Academy of Sciences
Beijing 100049, China

dshwei@amss.ac.cn

School of Mathematical Sciences
Capital Normal University
Beijing 100048, China
xufei@math.ac.cn



