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On a generalized canonical bundle formula
and generalized adjunction
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Abstract. In this note, we extend the theories of the canonical bundle formula
and adjunction to the case of generalized pairs. As an application, we study a
particular case of a conjecture by Prokhorov and Shokurov.
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1. Introduction

Recently, Birkar and Zhang introduced the notion of generalized pair [8]. This kind
of pair arises naturally in certain situations, such as the canonical bundle formula
[3, 18, 27], and adjunction theory [3, 5, 27]. Furthermore, generalized pairs play an
important role in recent developments, such as the study of the Iitaka fibration [8],
and the proof of the BAB conjecture [5, 7].

Among the techniques in birational geometry, adjunction theory is one of the
most powerful tools. It relates the geometry and the singularities of the ambient
variety to those of appropriate subvarieties. We call adjunction the process of in-
ferring statements about a subvariety from some knowledge of the ambient variety,
while the inverse and usually more complicated process is called inversion of ad-
junction. The most satisfactory formulation of this theory in the case of pairs is the
following, due to Hacon [21].

Theorem 1.1 ([21, Theorem 0.1]). Let W be a log canonical center of a pair
(X,1 =

P
�i1i ) where 0  �i  1. Then (X,1) is log canonical in a neigh-

borhood of W if and only if (W,B(W ; X,1)) is log canonical.

In the case that W has codimension 1, the statement takes the following simpler
form, originally due to Kawakita [26].
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Theorem 1.2 ([26]). Let (X, S + B) be a log pair such that S is a reduced divisor
which has no common component with the support of B, let S⌫ denote the normal-
ization of S, and let B⌫ denote the different of B on S⌫ . Then (X, S + B) is log
canonical near S if and only if (S⌫, B⌫) is log canonical.

In the setup of generalized pairs, Birkar has a version of divisorial inversion of
adjunction under some technical conditions.

Theorem 1.3 (Lemma 3.2, [5]). Let (X 0, B0 + M 0) be a Q-factorial generalized
pair with data X ! X 0 and M . Assume S0 is a component of B0 with coefficient 1,
and that (X 0, S0) is plt. Let

KS0 + BS0 + MS0 = (KX 0 + B0 + M 0)|S0

be given by generalized adjunction. If (S0, BS0 +MS0) is generalized log canonical,
then (X 0, B0 + M 0) is generalized log canonical near S0.

The purpose of this work is to improve the statement of Theorem 1.3 and broaden
the current knowledge of inversion of adjunction in the setup of generalized pairs.
As the work of Birkar and Zhang does not consider adjunction for generalized log
canonical centers of higher codimension [8], a relevant part of this note is to develop
an appropriate theory in such setup.

In analogy to the work of Kawamata and Ambro [3, 27], we first define gen-
eralized adjunction in the case of fibrations. Indeed, the canonical bundle formula
is the key tool to define adjunction on higher codimensional centers. In particular,
we prove the following, which partly answers a question posed by Di Cerbo and
Svaldi [12, Remark 7.4].

Theorem 1.4. Let (X 0, B0 + M 0) be a projective generalized sub-pair with data
X ! X 0 and M . Assume that B0, M 0 and M are Q-divisors. Let f : X 0 ! Z 0 be a
contraction such that KX 0 +B0+M 0 ⇠Q, f 0. Also, let (X 0, B0+M 0) be generalized
log canonical over the generic point of Z 0.

Then, the b-divisorMZ 0 is Q-Cartier and b-nef.

The key step towards the proof of Theorem 1.4 is the partial version given in Theo-
rem 4.12. The main tool in the proof of the latter is the weak semi-stable reduction
introduced by Abramovich and Karu [1, 25].

A suitable theory for a generalized canonical bundle formula allows us to move
our focus to higher codimensional generalized log canonical centers. First, we
introduce an appropriate definition of adjunction in this setup. The main idea is
the following: let W 0 be a generalized log canonical center of a generalized pair
(X 0, B0 + M 0), and fix a generalized log canonical place E ⇢ X on a higher bi-
rational model. Thus, E inherits a structure of generalized pair from divisorial
generalized adjunction on X . Then, we consider the fiber space E ! W 0 and in-
duce a generalized pair structure on W 0. In particular, the following result can be
seen as a generalization of Kawamata’s subadjunction [27].
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Theorem 1.5. Let (X 0, B0 + M 0) be a generalized pair with data X ! X 0! V
and M . Let B0, M 0 and M be Q-divisors. Assume (X 0, B0 + M 0) is generalized
log canonical, and fix an exceptional generalized log canonical center W 0 ⇢ X 0.
Assume that W 0 is projective. Then, W 0 is normal, and it admits a structure of
generalized pair (W 0,BW 0 + MW 0). In particular, the b-divisor MW 0 is a b-nef
Q-Cartier b-divisor, and (W 0,BW 0 +MW 0) is generalized klt.

Once generalized adjunction is established, we focus on generalized inversion of
adjunction. Following ideas of Hacon [21], we prove the following.

Theorem 1.6. Let (X 0, B0+M 0) be a projective generalized pair with data X ! X 0

and M . Assume that B0, M and M 0 are Q-divisors. Let W 0 be a generalized log
canonical center of (X 0, B0 + M 0) with normalization W ⌫ . Assume that a structure
of generalized pair (W ⌫,BW ⌫ +MW ⌫ ) is induced on the normalization W ⌫ of W 0.
Then, (W ⌫,BW ⌫ +MW ⌫ ) is generalized log canonical if and only if (X 0, B0 + M 0)
is generalized log canonical in a neighborhood of W 0.

Here, the main ingredients are the MMP and Kawamata–Viehweg vanishing. In
particular, Birkar and Zhang have developed an MMP in the setup of generalized
pairs [8], and we apply such machinery to our particular case. In general, the state-
ments concerning adjunction theory are proved by considering a suitable higher
model of the starting variety, where the divisors carrying discrepancy at most �1
have (close to) simple normal crossing configuration. Once such a convenient ar-
rangement is reached, the negativity lemma and Kawamata–Viehweg vanishing ap-
ply. In the first formulations, the higher model is a log resolution [31, cf. Theorem
5.50], and subsequently, the notion of dlt model took place [21]. In this note, we
introduce an appropriate generalization of the latter.

Finally, we discuss some applications of the generalized canonical bundle for-
mula to a famous conjecture by Prokhorov and Shokurov [35, Conjecture 7.13].
We prove some inductive statements, which allow reducing parts of the conjecture
to some particular cases. This leads to some progress towards the conjecture for
fibrations of relative dimension 2.

Theorem 1.7. Let (X, B) be a sub-pair, with coeff(B) 2 Q. Let f : X ! Z be a
projective surjective morphism of normal varieties with connected fibers. Assume
KX + B ⇠Q, f 0, and (X, B) is klt over the generic point of Z . If the geometric
generic fiber X⌘ is a surface not isomorphic to P2, then the b-divisorMY is b-semi-
ample.

The proof of Theorem 1.7 relies on work of Shokurov and Prokhorov, who con-
sidered the case of relative dimension 1 [35, Theorem 8.1], and work of Fujino,
who proved the statement when the fibers are surfaces of Kodaira dimension 0 [14].
Thus, excluding P2, we are left with considering fibrations whose geometric generic
fiber, up to taking the minimal resolution, admits a morphism to a curve. Under this
condition, we are able to perform an inductive argument.

Under certain technical conditions, we can formulate Theorem 1.7 to also ad-
dress the case when the geometric generic fiber is P2. In particular, if the generic



1190 STEFANO FILIPAZZI

fiber (X⌘, B⌘) is not terminal, its terminalization is a pair (X 0
⌘, B0

⌘) such that X 0
⌘

admits a morphism to a curve, and B0
⌘ � 0. Thus, we can apply the strategy illus-

trated above. For the reader’s convenience, we include this alternative version of
Theorem 1.7 as a separate statement.

Theorem 1.8. Let (X, B) be a sub-pair, with coeff(B) 2 Q. Let f : X ! Z
be a projective surjective morphism of normal varieties with connected fibers and
dim X � dim Z = 2. Assume KX + B ⇠Q, f 0, and (X, B) is klt but not terminal
over the generic point of Z . Then, the b-divisorMY is b-semi-ample.

After reviewing some facts about generalized pairs, we introduce the notion of weak
generalized dlt model, which carries analogs to most of the good properties of dlt
models [30, cf. Definitions and Notation 1.9]. In Theorem 3.2 we prove that such
models exist. Then, we switch the focus to the generalized canonical bundle for-
mula. Once it is established, we apply this machinery to the study of generalized
adjunction and inversion of adjunction. We conclude discussing some applications
to the conjecture by Prokhorov and Shokurov.
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2. Some notions about generalized pairs

Throughout this paper, we will work over an algebraically closed field of character-
istic 0. In this section, we review some notions about generalized pairs. To start,
we recall the definition of pair and generalized pair.
Definition 2.1. A generalized (sub)-pair is the datum of a normal variety X 0,
equipped with projective morphisms X ! X 0 ! V , where f : X ! X 0 is bi-
rational and X is normal, an R-(sub)-boundary B0, and an R-Cartier divisor M on
X which is nef over V and such that KX 0 +B0+M 0 isR-Cartier, where M 0 := f⇤M .
We call B0 the boundary part, and M 0 the nef part.
Remark 2.2. We have boundary and moduli b-divisors BX 0 and MX 0 naturally
associated to a generalized pair. Their traces on a higher model X̃ are denoted
by BX 0,X̃ and MX 0,X̃ respectively. In particular, the moduli part is the R-Cartier
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b-divisor associated to M , denoted by M . We say it descends to X̃ whenever
MX 0 =MX 0,X̃ .

Remark 2.3. We recover the usual notion of (sub)-pair in the case X = X 0, M =
M 0 = 0. Also, the variety V in Definition 2.1 is introduced to work in the relative
setting. As it does not contribute to the singularities of the generalized pair, unless
otherwise stated, we will consider the absolute case V = SpecC, and we will omit
it in the notation. Notice that, if V = Spec(C), X and X 0 are projective varieties.

Now, consider a generalized pair (X 0, B0 + M 0) with data f : X ! X 0! V
and M . Fix a divisor E over X 0. As we are free to replace X with a higher model,
we may assume that E is a divisor on X itself. Then, we can write

KX + B + M = f ⇤(KX 0 + B0 + M 0),

where B is implicitly defined by the above equation and the choice f⇤KX = KX 0 .
Then, the generalized discrepancy aE (X 0, B0 + M 0) of E with respect to (X 0, B0 +
M 0) is �bE , where bE is the coefficient of E in B. We say that (X 0, B0 + M 0)
is generalized log canonical, in short glc, (respectively generalized Kawamata log
terminal, in short gklt) if aE (X 0, B0 + M 0) � �1 (respectively aE (X 0, B0 + M 0) >
�1) for any such E .

A subvarietyW 0 ⇢ X 0 is called generalized non-klt center if there is a log reso-
lution of (X 0, B0+M 0)where M descends, which we may assume to be f : X ! X 0

itself, such that B =
P
bi Bi and max{bi | f (Bi ) = W 0} � 1. We say W 0 is a

generalized log canonical center if max{bi | f (Bi ) = W 0} = 1. In this situation,
(X 0, B0 + M 0) is generalized log canonical in a neighborhood of the generic point
ofW 0 [28, cf. Proposition 17.1.1]. Any divisor E with aE (X 0, B0+M 0)  �1 dom-
inating a generalized non-klt (log canonical) centerW 0 is called generalized non-klt
(log canonical) place. We say that W 0 is an exceptional generalized log canonical
center if it is a generalized log canonical center admitting just one generalized log
canonical place EW 0 and such that the image of any other generalized non-klt place
is disjoint from W 0.

We say that (X 0, B0 +M 0) is generalized dlt if (X 0, B0) is dlt, and every gener-
alized non-klt center of (X 0, B0 +M 0) is a non-klt center of (X 0, B0). If, in addition,
every connected component of bB0c is irreducible, we say (X 0, B0 +M 0) is general-
ized plt. Notice that a generalized pair might be generalized dlt but not generalized
log canonical, as the moduli part may introduce deeper singularities over higher
codimensional strata of bB0c. On the other hand, if (X 0, B0 +M 0) is generalized plt,
then it is generalized log canonical.
Remark 2.4. In the case of usual pairs, i.e., X = X 0, M = M 0 = 0, the notion
of generalized discrepancy recovers the classic notion of discrepancy and the cor-
responding measures of singularities.

Let (X 0, B0 + M 0) be a generalized pair with data X 0 ! X ! V and M .
Let D0 be an effective R-divisor on X 0 and N an R-Cartier divisor on X that is nef
over V . Further, assume that D0 + N 0 is R-Cartier, where N 0 denotes the pushfor-
ward of N to X 0. Then, the generalized log canonical threshold of D0 + N 0 with
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respect to (X 0, B0 + M 0) is defined as

glct(KX 0 + B0 + M 0; D0 + N 0) := sup{t | KX 0 + B0 + M 0 + t (D0 + N 0) is glc},

where (X 0, B0+M 0+ t (D0+N 0)) is considered as a generalized pair with boundary
part B0 + t P 0 and moduli part M 0 + t N 0. If the above set is empty, then we define
the generalized log canonical threshold to be �1. Observe that glct(KX 0 + B0 +
M 0; D0 + N 0) is non-negative provided that KX 0 + B0 + M 0 is generalized log
canonical. Moreover, glct(KX 0 + B0 + M 0; D0 + N 0) is infinite if and only if N
descends on X 0 and D0 is trivial.

We can now review the notion of generalized adjunction, first introduced in
[8]. Fix a generalized pair (X 0, B0 + M 0) with data f : X ! X 0! V and M .
Let S0 be an irreducible component of B0 of coefficient one, and denote by S⌫ its
normalization. Up to replacing X with a higher model, we may also assume that X
is a log resolution of (X 0, B0). Denote by g : S ! S⌫ the induced morphism, where
S represents the strict transform of S0 on X .

As usual, we write

KX + B + M = f ⇤(KX 0 + B0 + M 0).

Then, we set
KS + BS + MS := (KX + B + M)|S,

where BS := (B � S)|S and MS := M|S . Define BS⌫ := g⇤BS , and MS⌫ := g⇤MS .
By construction, we get

KS⌫ + BS⌫ + MS⌫ = (KX 0 + B0 + M 0)|S⌫ .

We refer to such operation as generalized divisorial adjunction. As discussed in [8,
Definition 4.7], in the case (X 0, B0 + M 0) is generalized log canonical, the divisor
BS⌫ is effective on S⌫ , and therefore (S⌫, BS⌫ +MS⌫ ) is a generalized pair with data
g : S ! S⌫ and MS .

As mentioned in the introduction, generalized pairs arise naturally in the con-
text of the canonical bundle formula. Such construction was first introduced by
Kawamata [27], and then widely studied by Ambro [3], and Fujino and Mori [18].
We will just recall the main features of the so-called adjunction for fiber spaces,
and refer to [5] for a more complete exposition.

Let (X, B) be a sub-pair, and let f : X ! Z be a contraction (i.e., a projective
morphism such that f⇤OX = OZ ), where dim Z > 0. Assume that (X, B) is sub-
log canonical near the generic fiber of f , and that KX + B ⇠R, f 0. For each prime
divisor D on Z , let tD be the log canonical threshold of f ⇤D with respect to (X, B)
over the generic point of D. As Z is normal, it is smooth along the generic point ⌘D
of D; therefore, f ⇤D is well defined in a neighborhood of ⌘D , and the definition of
tD is well posed.

Then, set BZ :=
P
bDD, where bD := 1� tD . Notice that bD = 0 for all but

finitely many prime divisors on Z . By assumption, we can find anR-Cartier divisor
LZ such that KX + B ⇠R f ⇤LZ . Define MZ := LZ � (KZ + BZ ). Thus, we have

KX + B ⇠R f ⇤(KZ + BZ + MZ ).
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As LZ is defined just up to R-linear equivalence, so is MZ . On the other hand, BZ
is an honest R-divisor on Z .

Taking higher models X 0 and Z 0 of X and Z respectively, one can induce di-
visors BZ 0 and MZ 0 on Z 0. These agree with BZ and MZ under pushforward, thus
defining Weil b-divisors BZ andMZ . In particular, if Z 0 is sufficiently high, MZ 0 is
pseudoeffective. Furthermore, under certain natural conditions, the b-divisorMZ is
a b-nef Q-Cartier b-divisor [5, cf. Theorem 3.6].

3. Weak generalized dlt models

In this section, we introduce suitable modifications of a given generalized pair. In
order to do so, we need to recall the corresponding construction in the case of usual
pairs. We refer to [30] for a more detailed discussion of the topic. The results of this
sections hold for arbitrary generalized pairs (X 0, B0 +M 0) with data X ! X 0 ! V
and M , without the assumption V = Spec(C).

Let (X,1) be a pair, and let f m : Xm ! X be a proper birational morphism
whose exceptional locus Ex( f m) is purely divisorial. Let {Ei }ni=1 denote the set
of irreducible exceptional divisors, and let {ai }ni=1 denote the corresponding dis-
crepancies. Define 1m := ( f m)�1⇤ (1 ^ Supp(1)) +

P
ai�1 Ei , where the sym-

bol ^ denotes the following operation. Given two divisors D1 =
Pn

i=1 di Pi and
D2 =

Pn
i=1 ei Pi , we define D1 ^ D2 :=

Pn
i=1 min{di , ei }Pi . Then, (Xm,1m) is

a minimal dlt model of (X,1) if it is a dlt pair and the discrepancy of every f m-
exceptional divisor is at most �1. The existence of such models is due to Hacon,
cf. also [36, Theorem 3.4].

Theorem 3.1 ([30, Theorem 3.1]). Let (X,1) be a pair such that X is quasi-pro-
jective, 1 a boundary, and KX + 1 a Q-Cartier divisor. Then (X,1) admits a
Q-factorial minimal dlt model f m : (Xm,1m) ! (X,1).

In the setup of generalized pairs, we prove the following, which is a generalization
of Theorem 3.1.

Theorem 3.2. Let (X 0, B0 + M 0) be a generalized pair with data X ! X 0! V
and M . Then, there exists a Q-factorial model f m : Xm ! X 0 such that every
f m-exceptional divisor has generalized discrepancy with respect to (X 0, B0 + M 0)
at most �1. Furthermore, the pair (Xm, Bm) is dlt, where Bm := ( f m)�1⇤ (B ^
Supp(B)) + Em , and Em denotes the reduced f m-exceptional divisor.

Remark 3.3. The construction in Theorem 3.2 produces a generalized pair
(Xm, Bm +Mm) with data X ! Xm! V and M 1. By construction, the singulari-
ties of (Xm, Bm+Mm) are milder than the ones of (X 0, B0+M 0). Nevertheless, the
construction does not guarantee that (Xm, Bm +Mm) is generalized dlt. Therefore,
we call (Xm, Bm + Mm) a weak generalized dlt model for (X 0, B0 + M 0).

1 In general, we need to replace the X and M appearing in the statement of the theorem with
higher models for X ! Xm to be a morphism. This is clear from the proof.
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Proof. Let f : X ! X 0 be a log resolution of (X, B) where M descends. Also,
assume it is obtained by blowing up loci of codimension at least two. In this way,
there exists an effective and f -exceptional divisor C such that �C is f -ample.

Set {B0} := B0 � bB0c, and define B via the identity

KX + B + M = f ⇤(KX 0 + B0 + M 0).

Then, we can decompose B as B = f �1
⇤ {B0}+ E+ + F�G, where E+ denotes the

(non necessarily f -exceptional) divisors with generalized discrepancy at most �1,
F the sum of all f -exceptional divisors with generalized discrepancy in (�1, 0],
and G the sum of all f -exceptional divisors with positive generalized discrepancy.
Also, define E := red E+.

Let H 0 be a sufficiently ample divisor on X 0. Then, for all ✏, µ, ⌫ 2 R, we
have

E + (1+ ⌫)F + µ(�C + f ⇤H 0) + M
= (1� ✏µ)E + (1+ ⌫)F + µ(✏E � C + f ⇤H 0) + M.

(3.1)

If 0 < ✏ ⌧ 1 and µ > 0, both µ(�C+ f ⇤H 0)+M and µ(✏E�C+ f ⇤H 0)+M are
ample over X 0, hence R-linearly equivalent over X 0 to divisors H1,µ and H2,µ such
that B+H1,µ+H2,µ has simple normal crossing support, and bH1,µc=bH2,µc= 0.

Thus, if 0 < µ < 1 and 0 < ⌫ ⌧ 1, the pair

(X, f �1
⇤ {B0} + (1� ✏µ)E + (1+ ⌫)F + H2,µ)

is klt. By [9], it has a Q-factorial minimal model over X 0

f m✏,µ,⌫ : (Xm✏,µ,⌫,1
m
✏,µ,⌫) ! X 0.

In virtue of identity (3.1), f m✏,µ,⌫ is also a minimal model for the pair
�
X, f �1

⇤ {B0} + E + (1+ ⌫)F + H1,µ
�
.

As the dlt property is preserved under steps of the MMP [31, Corollary 3.44], the
resulting model is dlt as well. Hence, the pair (Xm✏,µ,⌫, Bm✏,µ,⌫) is dlt, where Bm✏,µ,⌫

denotes the strict transform of f �1
⇤ {B0} + E + F on Xm✏,µ,⌫ .

Now, let 0m✏,µ,⌫ be the strict transform on Xm✏,µ,⌫ of any other divisor 0 on X .
Then, define

N :=KXm✏,µ,⌫
+ Bm✏,µ,⌫ + ⌫Fm✏,µ,⌫ + Hm

1,✏,µ,⌫ ⇠R KXm✏,µ,⌫
+1m

✏,µ,⌫,

and

T :=KXm✏,µ,⌫
+Bm✏,µ,⌫+(E+�E)m✏,µ,⌫�G

m
✏,µ,⌫+Mm

✏,µ,⌫⇠R ( f m✏,µ,⌫)
⇤(KX 0 +B0+M 0).

The first one is f m✏,µ,⌫-nef, while the latter one is f m✏,µ,⌫-trivial. Their difference can
be written as

T � N ⇠R, f m✏,µ,⌫
µCm + (E+ � E)m✏,µ,⌫ � Gm

✏,µ,⌫ � ⌫Fm✏,µ,⌫ =: Dm
✏,µ,⌫ .
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In particular, �Dm
✏,µ,⌫ is f m✏,µ,⌫-nef and f m✏,µ,⌫ exceptional. Therefore, by the nega-

tivity lemma [31, Lemma 3.39], Dm
✏,µ,⌫ is effective.

As C , E+ � E , F and G are independent of ✏, µ, ⌫, if we choose 0 < µ ⌧
⌫ ⌧ 1, both Gm

✏,µ,⌫ and ⌫Fm✏,µ,⌫ vanish 2, as F and G are contracted by the MMP.
Thus, we perform such a choice of coefficients, and we drop the dependence from
✏, µ, ⌫ in our notation. Then, the generalized pair (Xm, Bm + Mm) with data
X! Xm ! V and M satisfies the claimed conditions.

In the case the input of Theorem 3.2 is generalized log canonical, then the
generalized pair (Xm, Bm + Mm) is the crepant pullback of (X 0, B0 + M 0), and is
therefore generalized log canonical. Thus, we can talk about generalized dlt model,
and we make this definition more precise with the following statement:

Corollary 3.4 ([5, cf. 2.13. (3)]). Let (X 0, B0+M 0) be a generalized pair with data
X ! X 0! V and M . Assume (X 0, B0 + M 0) is generalized log canonical. Then
(X 0, B0 + M 0) admits a Q-factorial weak generalized dlt model (Xm, Bm + Mm)
such that KX 0 + B0 + M 0 = ( f m)⇤(KX 0 + B0 + M 0). We will call (Xm, Bm + Mm)
a generalized dlt model for (X 0, B0 + M 0).

In some situations, it is useful to extract certain divisors on a weak generalized dlt
model. The following proposition makes this precise [8, cf. Lemma 4.5].

Proposition 3.5. Let (X 0, B0 + M 0) be a generalized pair with data X ! X 0! V
and M . Let W 0 ⇢ X 0 be a generalized log canonical center of (X 0, B0 + M 0), and
let P be a generalized log canonical place with center W 0. Then, there exists a
weak generalized dlt model (Xm, Bm + Mm) such that P is a divisor on Xm .

Proof. In case W 0 is a divisor, the statement is trivial. Therefore, we can assume
that P is exceptional over X 0. Without loss of generality, we may assume that
P appears on X , and that f : X ! X 0 is a log resolution of (X 0, B0). Define
00 := B0 ^ Supp(B0), and 0 := f �1

⇤ 00. Denote by E the exceptional divisor with
reduced structure, and set 1 := 0 + E .

Then, we have
KX +1+ M ⇠R, f A � C,

where A � 0 is supported on the exceptional divisors with generalized discrepancy
strictly greater than �1, and C � 0 is supported on the divisors with generalized
discrepancy strictly less than �1. Notice that C may have components that are not
exceptional over X 0. Now, run the (KX + 1 + M)-MMP over X 0 with scaling of
an ample divisor [8, page 17]. After finitely many steps, we reach a model X 00 such
that KX 00 +100+M 00 is limit of divisors that are movable over X 0. Thus, it intersects
non-negatively the very general curves over X 0 of any divisor that is exceptional for
X 00 ! X 0. Then, the same holds true for A00 � C 00. Therefore, by [6, Lemma 3.3],
A00 = 0. Hence, X 00 ! X 0 extracts just divisors of generalized discrepancy at most

2 As µ ⌧ ⌫, the contribution of µCm is negligible in order to determine effective and anti-
effective parts of Dm✏,µ,⌫ . Since Dm✏,µ,⌫ � 0, then Gm✏,µ,⌫ and Fm✏,µ,⌫ are forced to be 0.
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�1. Now, as (X 0, B0+M 0) is generalized log canonical in a neighborhoodU 0 of the
generic point of W 0, over U 0 we just performed the proof of [8, Lemma 4.5]. That
is, we extracted a prescribed set of divisors with negative generalized discrepancies.
In particular, we have not contracted P .

Now, let (X 00, B00 + M 00) be the trace of the generalized pair (X 0, B0 + M 0) on
X 00. By construction, it is a generalized pair, as B00 � 0. Let (Xm, Bm + Mm) be
a weak generalized dlt model of (X 00, B00 + M 00). Then, (Xm, Bm + Mm) satisfies
the claimed properties.

4. Towards a generalized canonical bundle formula

As first noticed by Kawamata [27], and then studied by Ambro [3], the canonical
bundle formula is needed to formulate an adjunction theory for higher codimen-
sional log canonical centers. Thus, in order to generalize the ideas developed in [8]
and [5], we need to extend the machinery of fiber space adjunction to generalized
pairs.

Let (X 0, B0 + M 0) be a generalized sub-pair with data X ! X 0 and M . Let
f : X 0 ! Z 0 be a contraction where dim Z 0 > 0. Assume that (X 0, B0 + M 0) is
generalized sub-log canonical near the generic fiber of f , and KX 0 + B0 +M 0 ⇠R, f
0. For any prime divisor D0 on Z 0, let tD0 be the generalized log canonical threshold
of f ⇤D0 with respect to (X 0, B0 + M 0) over the generic point of D0. Then, set
BZ 0 :=

P
bD0D0, where bD0 := 1 � tD0 . By construction, there is an R-Cartier

divisor LZ 0 such that KX 0 +B0+M 0 ⇠R f ⇤LZ 0 . Define MZ 0 := LZ 0 �(KZ 0 +BZ 0).
Hence, we can write

KX 0 + B0 + M 0 ⇠R f ⇤(KZ 0 + BZ 0 + MZ 0).

We refer to this operation as generalized adjunction for fiber spaces.
Remark 4.1. As in the case of the usual adjunction for fiber spaces, BZ 0 is a well
defined and uniquely determined divisor, while MZ 0 is defined up toR-linear equiv-
alence.

Now, let X̃ and Z̃ be higher birational models of X 0 and Z 0 respectively, and
assume we have a commutative diagram of morphisms as follows

X̃
�

����! X 0

?
?
yg

?
?
y f

Z̃
 

����! Z 0

We denote by M̃ the trace of the moduli part on X̃ . As usual, define B̃ via the
identity

KX̃ + B̃ + M̃ = �⇤(KX 0 + B0 + M 0).
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Furthermore, set L Z̃ :=  ⇤LZ 0 . With this piece of data, we can define divisors BZ̃
and MZ̃ such that

KX̃ + B̃ + M̃ ⇠R g⇤(KZ̃ + BZ̃ + MZ̃ ),

BZ 0 =  ⇤BZ̃ and MZ 0 =  ⇤MZ̃ . In this way, Weil b-divisors BZ 0 and MZ 0 are
defined. We write BZ 0,Z̃ and MZ 0,Z̃ for the traces of BZ 0 and MZ 0 on any higher
model Z̃ .

Now, in the same fashion as the classic theory, we would like to establish
properties of the b-divisors BZ 0 andMZ 0 . Before doing so, we need to recall a few
more technical ingredients.

Given an R-Weil b-divisor D on X , we can define an associated b-divisorial
sheaf OX (D) as follows. For every open set U ⇢ X , we define 0(U,OX (D)) as
the set of rational functions ↵ 2 k(X) such that multE (div(↵) + D) � 0 for every
valuation E whose center satisfies cX (E) \U 6= ;.

Recall that a b-divisorD is called b-nef/S (b-free/S, b-semi-ample/S, b-big/S)
if there exists a birational morphism X ! X 0 such that D = DX , and DX is nef
(free, semi-ample, big) relatively to the morphism X ! S.

Let (X 0, B0 + M 0) be a generalized sub-pair with data X ! X 0 and M . We
denote by KX 0 and MX 0 the canonical b-divisor of X 0 and the moduli b-divisor
respectively. We define the generalized discrepancy b-divisor as

A(X 0, B0 + M 0) := KX 0 +MX 0 � KX 0 + B0 + M 0,

where the overline symbol denotes the R-Cartier b-divisor associated to an R-
Cartier divisor. We will write just A if there will be no ambiguity. We also set

A⇤(X 0, B0 + M 0) := A(X 0, B0 + M 0) +
X

aE (X 0,B0+M 0)=�1
E .

Remark 4.2. If X 00 is a model where M descends, then the b-divisors A(X 0, B0 +
M 0) and A⇤(X 0, B0 + M 0) agree with the usual b-divisors A(X 00,BX 00) and
A⇤(X 00,BX 00) on all the models X 000 over X 00 [2, cf. pages 5-6].

As explained in [2, Remark 2.2] and [29, Definition 8.4.2], the b-divisorsA and
A⇤ are important to use Hodge theoretic techniques to investigate b-nefness and b-
semi-ampleness of the moduli b-divisor MX 0 . In particular, they impose certain
conditions that guarantee that a specific vector bundle is a line bundle. For similar
reasons, such conditions are needed in this work.
Remark 4.3. As the moduli part MX descends to some model X , the boundary
part BZ 0 satisfies similar properties as in the classical theory. In particular, the finite
base change property still holds [3, Theorem 3.2].

More precisely, let ↵ : Y 0 ! X 0 be a generically finite map from a normal
projective variety Y 0. Also, let Y be a higher model of Y 0 admitting a morphism
� : Y ! X . Denote by ' the morphism ' : Y ! Y 0. Let KY + BY := �⇤(KX + B)
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be the crepant pullback of KX + B to Y . Also, denote MY := �⇤M . Then, define
BY 0 := '⇤BY and MY 0 := '⇤MY . Thus, we induced a structure of generalized
sub-pair on Y 0.

Now, let � : W 0 ! Z 0 be the normalization of Z 0 in Y 0. Denote by BW 0 and
MW 0 the boundary and moduli parts induced on W 0 by Y 0 ! W 0. Then, we have
KW 0 + BW 0 = � ⇤(KZ 0 + BZ 0), and MW 0 = � ⇤MZ 0 .

In particular, in order to prove that the moduli b-divisor MZ 0 induced by a fi-
bration X 0 ! Z 0 is a Cartier b-divisor, we are free to replace X 0 ! Z 0 with a
fibration induced by generically finite base change. Furthermore, the same reduc-
tion applies when we want to show b-nefness or b-semi-ampleness [33, Example
1.4.4.(ii)], [19, Theorem 1.20].

Now, we recall two natural constructions that arise in view of Remark 4.3.
Definition 4.4. Let f : X ! Z be a contraction, and let (X, B) be a sub-pair. We
say that the morphism f is prepared if the following properties are satisfied:

• X and Z are smooth;
• there is a simple normal crossing divisor 6 ⇢ Z such that g : X ! Z is smooth
over Z \6;

• Supp(B) + g⇤6 has simple normal crossing support; and
• B is relatively simple normal crossing over Z \6.

Equivalently, we call the above properties standard normal crossing assumptions
[29, Definition 8.3.6].

Now, we will make use of some constructions related to toric and toroidal
geometry. We refer to [1, 25] for the key definitions and properties. We will recall
just the facts that we will explicitly use.
Definition 4.5. Let f : X ! Y be a toroidal morphism. We say that X has good
horizontal divisors if at every point x 2 X we can find a local model of the form

X� = X� 0 ⇥ Al ,

where the horizontal divisors in X \ UX through x are exactly the pullbacks of the
coordinate hyperplanes in Al .
Definition 4.6. A toroidal morphism f : X ! Y with good horizontal divisors is
called weakly semi-stable if

• the morphism f is equidimensional;
• all the fibers of f are reduced; and
• Y is non-singular.

If also X is non-singular, we say that the morphism f : X ! Y is semi-stable.
Now, we include a technical statement that will be useful in the following.

Proposition 4.7. Let f : X ! Z be a morphism of projective varieties, M be an
R-Cartier divisor on X , and H be an ample divisor on Z . If M is nef on X and
relatively semi-ample over Z , then M + ✏ f ⇤H is semi-ample for any ✏ > 0.
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Proof. First, assume that M is relatively ample over Z . Then, for l � 1, M+ l f ⇤H
is ample, as H is ample on Z , and M ample over Z . Then, as M is nef, kM+ (M+
l f ⇤H) is ample for any k > 0. As we can choose the real numbers l and k so that
the ratio l

k+1 equals any given ✏ > 0, the claim follows.
Now, consider the general setup of the statement. As M is relatively sami-

ample, there exists a morphism g : X ! Y over Z , such that M ⇠R,Z g⇤N , where
N is ample over Z [22, page 22]. Without loss of generality, we may assume that
g is surjective. Also, up to twisting N by the pullback of an R-Cartier divisor on
Z , we may assume that M ⇠R g⇤N . Then, by [33, Example 1.4.4.(ii)], N is also
nef. Hence, by the previous step, N + ✏h⇤H is semi-ample for any ✏ > 0, where h
denotes the morphism h : Y ! Z . As M + ✏ f ⇤H ⇠R g⇤(N + ✏h⇤H), the claim
follows.

Before proving Theorem 4.12, we need to introduce a new description of the
construction of boundary and moduli parts in the setup of generalized pairs.

Remark 4.8. Let (X 0, B0 + M 0) be a generalized sub-pair with data X ! X 0 and
M . Let f : X 0 ! Z 0 be contraction, where dim Z 0 > 0. Assume that (X 0, B0 +M 0)
is generalized sub-log canonical near the generic fiber of f , and that KX 0 + B0 +
M 0 ⇠R, f 0. Then, we can define b-divisors BZ 0 and MZ 0 on Z 0. In order to
do so, we are free to replace X 0 and Z 0 with higher models X 00 and Z . We may
assume that the morphism g : X 00 ! Z is prepared, and that M descends onto X .
Denote by6 ⇢ Z the simple normal crossing divisor as in the definition of prepared
morphism. For notation’s sake, we may write X 00 = X .

Now, assume M is relatively semi-ample over Z , and that rk f⇤OX 0(dA⇤(X 0,
B0 + M 0)e) = 1. Furthermore, let M and B be Q-divisors. Fix an ample Q-divisor
H on Z . As M is relatively semi-ample, by Proposition 4.7, for any rational number
✏ > 0, the Q-linear series |M + ✏g⇤H |Q is basepoint-free. Then, the generalized
pair (X, B + (M + ✏g⇤H)) with data id : X ! X satisfies the same properties as
(X, B + M). Notice that we have not changed the boundary part, which is still B,
while we have perturbed the moduli part, which is M + ✏g⇤H .

By definition, the nef part of a generalized pair does not contribute to the singu-
larities once it descends. Thus, as both M and M+✏g⇤M descend to X , (X, B+M)
and (X, B+ (M+ ✏g⇤H)) have the same generalized discrepancies. Therefore, the
boundary b-divisors that they induce over Z 0, denoted by BZ 0 and B✏Z 0 respectively,
are equal. The moduli b-divisors are related by the identity

M✏
Z 0 =MZ 0 + ✏H .

Therefore, we have
MZ 0 = lim

✏!0
M✏

Z 0 . (4.1)

As MZ 0 being a Q-Cartier b-divisor is equivalent to KZ 0 + BZ 0 having the same
property, we can investigate this aspect through (X, B+(M+✏g⇤H)). Henceforth,
unless otherwise stated, we fix a rational number ✏ > 0.
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As |M + ✏g⇤H |Q is basepoint-free, we can take a general element 0  A ⇠Q
M + ✏g⇤H such that Supp A is smooth, B + g⇤6 + A has simple normal crossing
support, and (X, B + A) is sub-log canonical over the generic point of Z . Also, we
have rk g⇤OX (dA⇤(X, B + A)e) = 1. By the classic theory of adjunction for fiber
spaces [2,17,29], it induces b-divisors BAZ 0 andMA

Z 0 on Z 0. By construction, BAZ 0 �
B✏Z 0 andMA

Z 0  M✏
Z 0 . Furthermore, since we may assume that the coefficients of A

are small enough, the fact that the divisor B+ g⇤6+ A has simple normal crossing
support implies that the multiplicities of BAZ 0 and B✏Z 0 are the same along the prime
divisors in 6.

Now, fix a prime divisor P ⇢ Z that is not supported on 6. We can assume
that A meets g�1(P) transversally. Thus, g is prepared for (X, B + A) over a
neighborhood of ⌘P . Furthermore, as A is horizontal over Z , we have that BAZ 0,Z =

B✏Z 0,Z along ⌘P . As for any choice of A the difference B
✏
Z 0,Z � BAZ 0,Z is supported

on finitely many prime divisors, we may find A1, . . . , Al 2 |M+ ✏g⇤H |Q such that
B✏Z 0,Z = min1il BAiZ 0,Z . This is equivalent toM

✏
Z 0,Z = max1ilMAi

Z 0,Z .
While for a fixed model Z we can recover B✏Z 0,Z andM

✏
Z 0,Z with finitely many

choices of 0  A ⇠Q M + ✏g⇤H , in general, we need infinitely many to recover
the whole b-divisors. In particular, we have

B✏Z 0 = inf
0A⇠QM+✏g⇤H

BAZ 0, M✏
Z 0 = sup

0A⇠QM+✏g⇤H
MA

Z 0 .

Notice that, although the traces ofMZ 0 ,M✏
Z 0 andMA

Z 0 are well defined just up toQ-
linear equivalence, we can treat those as honest divisors once we fix representatives
of the classes KZ 0 + BZ 0 + MZ 0 and H . Furthermore, as M + ✏g⇤H is semi-ample,
we can restrict the infimum to the A’s such that (X, B + A) is sub-log canonical
over the generic point of Z 0. Call such class 4.

Notice that, if M is semi-ample, we can take ✏ = 0 in the above discussion.
In general, we are interested in proving thatMZ 0 is a b-nefQ-Cartier b-divisor.

As BZ 0 = B✏Z 0 , we can reduce the analysis to the case when M is semi-ample on X .
By the same argument, if we know that KZ 0 + BZ 0 is Q-Cartier, MZ 0 and all M✏

Z 0

descend to the same model. Thus, in virtue of equation (4.1), MZ 0 is b-nef if so is
M✏

Z 0 for any ✏ > 0. Hence, also b-nefness can be reduced to the case when M is
semi-ample.

Now, we need to introduce some terminology.
Definition 4.9. Let D be a b-divisor over X . We say that D is almost b-nef if the
following holds: for every higher models X 0 and X 00 of X where the traces of D are
R-Cartier, with morphism f : X 00 ! X 0, we have DX 00  f ⇤DX 0 .

The perspective in Remark 4.8 allows us to prove the following key statement.

Proposition 4.10. Let (X 0, B0 +M 0) be a projective generalized sub-pair with data
X ! X 0 and M . Assume that B0, M 0 and M are Q-divisors. Let f : X 0 ! Z 0 be
a contraction such that KX 0 + B0 + M 0 ⇠Q, f 0 and M is semi-ample. Also, let
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(X 0, B0 + M 0) be generalized sub-log canonical over the generic point of Z 0, with
rk f⇤OX 0(dA⇤(X 0, B0 + M 0)e) = 1. Then, the b-divisorMZ 0 is almost b-nef.

Proof. Fix two smooth models Ẑ and Z̃ of Z 0, and assume we have a morphism
� : Ẑ ! Z̃ . Also, let 4 be as in Remark 4.8. By the classic theory of the canonical
bundle formula and the negativity lemma [2,17], for every A 2 4, we haveMA

Z 0,Ẑ


�⇤MA
Z 0,Z̃

. Then, by Remark 4.8, we have

MZ 0,Ẑ = sup
A24

MA
Z 0,Ẑ

 sup
A24

�⇤MA
Z 0,Z̃

 �⇤ sup
A24

MA
Z 0,Z̃

= �⇤MZ 0,Z̃ .

This proves the claim.

Remark 4.11. In case (X 0, B0 +M 0) is generalized klt over the generic point of Z 0,
by [4, Theorem 3.3], eachMA

Z 0 is b-nef and b-good. In particular, we have thatMZ 0

dominates a b-nef and b-good divisor.
Now, we are ready to address the first result towards a generalized canonical

bundle formula.

Theorem 4.12. Let (X 0, B0 + M 0) be a projective generalized sub-pair with data
X ! X 0 and M . Assume that B0, M 0 and M are Q-divisors. Let f : X 0 ! Z 0

be a contraction such that KX 0 + B0 + M 0 ⇠Q, f 0 and M is relatively semi-ample
over Z 0. Also, let (X 0, B0 + M 0) be generalized sub-log canonical over the generic
point of Z 0, with rk f⇤OX 0(dA⇤(X 0, B0 + M 0)e) = 1. Then, the b-divisor MZ 0 is
Q-Cartier and b-nef.

For the reader’s convenience, we will split it into two statements.

Theorem 4.13. Let (X 0, B0 + M 0) be a projective generalized sub-pair with data
X ! X 0 and M . Assume that B0, M 0 and M are Q-divisors. Let f : X 0 ! Z 0

be a contraction such that KX 0 + B0 + M 0 ⇠Q, f 0 and M is relatively semi-ample
over Z 0. Also, let (X 0, B0 + M 0) be generalized sub-log canonical over the generic
point of Z 0, with rk f⇤OX 0(dA⇤(X 0, B0 + M 0)e) = 1. Then, the b-divisor MZ 0 is
Q-Cartier. In particular, if (X, B) ! Z is weakly semi-stable with good horizontal
divisors,MZ 0 descends onto Z .

Proof. By Remark 4.3 and [25, Theorem 9.5], we may assume that Z is projective
and g : (X, B) ! Z is weakly semi-stable with good horizontal divisors. Let 6 :
= Z \ UZ be the toroidal divisor on the base. Up to adding to B the pullback of
a divisor supported on 6, we may assume 6 = BZ 0,Z . Also, by the discussion in
Remark 4.8, we may assume that M is semi-ample.
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Notice that, by weak semi-stability, all the fibers are reduced and semi-log
canonical [25, page 90]. Indeed, as X is Gorenstein, so are the fibers. In particular,
they are S2. Then, the constraint on codimension 1 singularities is local in nature
[22, Chapter 3]. More precisely, it can be checked after completion of the local
rings. Similarly, the computation of discrepancies is local in nature as well [11, cf.
Remark 4.6].

Now, by [13, Lemma 3.1], for the computation of lct⌘P (X, 0; g⇤P) we may
assume that Z is a curve. Therefore, by inversion of adjunction, we have that
lct⌘P (X, 0; g⇤P) = 1 for every prime divisor P ⇢ Z . Furthermore, by the assump-
tion of Bh being good, we have that Bh does not contribute to the computation of
BZ 0,Z . Indeed, locally, a fiber (Xz,Supp(Bh)z) can be thought as Yz ⇥ (Al , D),
where Yz is semi-log canonical and D =

Pl
i=1 Di is the union of the coordinate

hyperplanes in Al . By induction on l, Yz ⇥ (D1,
Pl

i=2 Di \ D1) is semi-log canon-
ical, and by inversion of adjunction so is Yz ⇥ (Al , D). Therefore, we have that
(Xz,Supp(Bh)z) is semi-log canonical. As Bh  Supp(Bh), by inversion of ad-
junction we have lct⌘P (X, Bh; g⇤P) = 1. Therefore, we conclude Bv  g⇤6.

Let ⇡ : Z 00 ! Z be a birational morphism such that Z 00 is smooth, and ⇡�1(6)
is simple normal crossing. Also, we define X 00 := X ⇥Z Z 00. Then, by [25, Lemma
8.3] and the discussion [25, page 59], the morphism h : (X 00, B00) ! Z 00 is weakly
semi-stable with good horizontal divisors.

By the above arguments, it follows that Bv  g⇤6. Hence, we have the in-
equality

KX + B  KX/Z + Bh + g⇤(KZ +6).

Considering the pullback via � : X 00 ! X , we obtain

KX 00 + B00  KX 00/Z 00 + (B00)h + h⇤(KZ 00 +600), (4.2)

where 600 denotes the log-pullback of 6 to Z 00. Notice that, by the geometric
assumptions, (B00)h = �⇤Bh . Our goal is to show 600 = BZ 0,Z 00 . By Proposition
4.10, we have BZ 0,Z 00 � 600. Notice that BZ 0,Z 00 is computed via the singularities
of KX 00 + B00. By inequality (4.2), BZ 0,Z 00  000, where 000 is the boundary on
Z 00 induced by the singularities of (X 00, (B00)h + h⇤(600)). As h : (X 00, (B00)h) !
Z 00 is weakly semi-stable with good horizontal divisors, we have 000 = 600. This
concludes the proof.

Remark 4.14. Recall that the pushforward of a nef divisor under a birational mor-
phism of normal surfaces is nef. Furthermore, on a normal projective surface S,
the maximum M of finitely many nef divisors M1, . . . ,Mk is nef. Indeed, fix an
irreducible curve C ⇢ S. Then, fix i 2 {1, . . . , k} such that multC M = multC Mi .
Then, we can write M = Mi + E , where E � 0 and C 6⇢ Supp(E). Then, we have
M · C = Mi · C + E · C � Mi · C � 0.

Then, by Remark 4.8, it follows that, in the setup of Theorem 4.13, if Z 0 is a
surface,MZ 0,Z is nef for every model Z ! Z 0.
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Theorem 4.15. Let (X 0, B0 + M 0) be a projective generalized sub-pair with data
X ! X 0 and M . Assume that B0, M 0 and M are Q-divisors. Let f : X 0 ! Z 0 be a
contraction such that KX 0 + B0 + M 0 ⇠Q, f 0 and M is relatively semi-ample over
Z 0. Also, let (X 0, B0 +M 0) be generalized sub-log canonical over the generic point
of Z 0, with rk f⇤OX 0(dA⇤(X 0, B0 + M 0)e) = 1. Then, the b-divisorMZ 0 is b-nef.

Proof. By Theorem 4.13, we know that MZ 0 is a Q-Cartier b-divisor. Assume by
contradiction thatMZ 0 is not b-nef. Then, for every model Z whereMZ 0 descends,
there is a curve C ⇢ Z such thatMZ 0,Z · C < 0.

Without loss of generality, we may assume that Z is smooth. Furthermore, by
the projection formula for cycles and by blowing up the singular points of C , we
may assume that C is smooth.

Now, let ⇡ : Z 00 ! Z be the blow-up of Z along C . By the projection formula,
every curve C 00 ⇢ ⇡�1(C) that dominates C is such that MZ 0,Z 00 · C 00 < 0. Let
S00 ⇢ Z 00 be a smooth surface obtained by general hyperplane cuts. Then, by [13,
Lemma 3.1], we haveMZ 0,Z 00 |S00 = MS00,S00 , whereMS00 is the moduli b-divisor of
the induced fibration with base S00. By the positivity of S00, there exists C 00 as above
with C 00 ⇢ S00. On the other hand, by Remark 4.14,MS00,S00 is nef. Thus, we get a
contradiction, and the claim follows.

We conclude considering the relation between the singularities of the source of
the fibration and the ones of the generalized pair induced on the base. In doing so,
we follow ideas of Ambro [3, Proposition 3.4], [2, Theorem 3.1].

Proposition 4.16. Let (X 0, B0 + M 0) be a generalized sub-pair with data X !
X 0 and M . Let f : X 0 ! Z 0 be a contraction such that KX 0 + B0 + M 0 ⇠R, f
0 and (X 0, B0 + M 0) is generalized sub-log canonical over the generic point of
Z 0. Assume that a generalized pair structure (Z 0,BZ 0 + MZ 0) is induced on Z 0.
Furthermore, let g : X ! Z be a birational model of f : X 0 ! Z 0 such thatMZ 0

descends to Z , and M descends to X . Then, (Z ,BZ 0,Z ) is sub-log canonical in a
neighborhood of z 2 Z if and only if (X, B) is sub-log canonical in a neighborhood
of g�1(z). Furthermore, if (X 0, B0 +M 0) is generalized klt over the generic point of
Z 0, (Z ,BZ 0,Z ) is sub-klt in a neighborhood of z 2 Z if and only if (X, B) is sub-klt
in a neighborhood of g�1(z).

Proof. The proof of [3, Proposition 3.4] goes through verbatim.

Remark 4.17. As BX 0 and BZ 0 both descend to X and Z respectively, in the state-
ment of Proposition 4.16, we can equivalently replace sub-klt and sub-log canonical
with their generalized versions.

5. The case of effective boundary

In this section under the assumption that B0 is effective over the generic point of Z 0,
we weaken some conditions of Theorem 4.12. The constraint on the horizontal part
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of B0 is due to results used in the proofs, such as [4, Theorem 0.1] and the MMP [9].
We start with a technical statement.

Lemma 5.1. Let (X 0, B0
X 0 + M 0

X 0) be a generalized pair with data X and MX . Let
f : X 0 ! Z 0 be a contraction such that KX 0 + B0

X 0 + M 0
X 0 ⇠R, f 0. Also let Y 0 be

a variety such that there exist contractions g : X 0 ! Y 0 and h : Y 0 ! Z 0 satisfying
f = h � g. Let BZ 0 and BY 0 be the boundary b-divisors induced on Z 0 and Y 0 by f
and g respectively. Also, denote by DZ 0 the boundary b-divisor induced on Z 0 by h
and KY 0 + BY 0,Y 0 +MY 0,Y 0 . Assume thatMY 0 is a Cartier b-divisor. Then, we have
BZ 0 = DZ 0 .

Proof. Since we are comparing b-divisors, we are free to replace each variety with
a higher model. Thus, we can replace X 0, Y 0 and Z 0 with models such that:

• the moduli b-divisorsMX 0 andMY 0 descend onto X and Y respectively. We will
denote their traces by MX and MY ;

• the morphisms X ! Z , X ! Y and Y ! Z are all prepared. By abusing
notation, we will still denote those as f , g and h respectively.

For ease of notation, we will write BX = BX 0,X , BY = BY 0,Y , BZ = BZ 0,Z and
DZ = DZ 0,Z . Let P be a prime divisor in Z . We have to compare multP BZ and
multP DZ .

Let R1, . . . , Rk be the prime divisors in X that dominate P . Similarly, denote
by Q1, . . . , Ql the prime divisors in Y dominating P . Notice that g(Ri ) is not
necessarily a divisor; in case it is, we have g(Ri ) = Q j (i) for some 1  j (i)  l.

By [3, Remark 3.1.4], the components of BX that dominate Z do not contribute
to the computations. Thus, we may assume BX =

Pk
i=1 bi Ri over ⌘P , the generic

point of P . We can write f ⇤P =
Pk

i=1 pi Ri , g⇤Q j =
Pk

i=1 q
i
j Ri , and h

⇤P =
Pl

j=1 r j Q j . Since f ⇤ = g⇤ � h⇤, we get pi =
Pl

j=1 r jq
i
j .

For the formula used in the following computations, we refer to [3, Remark
3.1.4]. We have

multP BZ = max
i

bi + pi � 1
pi

= max
i

bi +
P
r jqij � 1

P
r jqij

,

and

multQ j BY = max
i |g(Ri )=Q j

bi + qij � 1

qij
.

This implies the following formula

multP DZ = max
j

multQ j BY + r j � 1
r j

= max
j

max
i |g(Ri )=Q j

bi + r jqij � 1

r jqij
.
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Now, we may assume that multP BZ is computed by R1, and that g(R1) = Q1.
Thus, we have q1j = 0 if j 6= 1. Therefore, we have

multP BZ =
b1 + r1q11 � 1

r1q11
 max

j
max

i |g(Ri )=Q j

bi + r jqij � 1

r jqij
= multP DZ .

As already mentioned, if g(Ri ) is a divisor, then qij = 0 if j 6= j (i). Thus, we have

multP DZ = max
j

max
i |g(Ri )=Q j

bi + r jqij � 1

r jqij
= max

i |g(Ri ) divisor

bi + r j (i)qij (i) � 1

r j (i)qij (i)

= max
i |g(Ri ) divisor

bi +
P
r jqij � 1

P
r jqij

 max
i

bi +
P
r jqij � 1

P
r jqij

= multP BZ .

Hence, as multP DZ =multP BZ and P is arbitrary, we conclude that BZ 0 =DZ 0 .

Before proving Theorem 1.4, we deal with a particular case of it.

Lemma 5.2. Let X 0 be a projective Q-factorial klt variety, and let (X 0, B0 + M 0)
be a generalized sub-pair with data X ! X 0 and M . Assume that B0, M 0 and M
are Q-divisors. Let f : X 0 ! Z 0 be a contraction to a projective variety Z 0 such
that KX 0 + B0 + M 0 ⇠Q, f 0, ⇢(X 0/Z 0) = 1 and M 0 is relatively ample. Also, let
(X 0, B0 + M 0) be generalized log canonical over the generic point of Z 0. Then, the
b-divisorMZ 0 is Q-Cartier and b-nef.

Proof. Since X 0 isQ-factorial and klt, and (X 0, B0 + M 0) is generalized log canon-
ical over ⌘Z 0 , for any rational number 0 < ✏ ⌧ 1 the generalized pair (X 0, (1 �
✏)(B0+M 0))with data X and (1�✏)M is generalized klt over ⌘Z 0 . Since ⇢(X 0/Z 0)=
1, (B0)h is either 0 or relatively ample. Let H be an ample divisor on Z 0 such that
f ⇤H + (B0)h + M 0 is ample. Also, write ⇡ : X ! X 0, and fix an effective and ⇡-
exceptional divisor E such that �E is ⇡-ample. Finally, we have ⇡⇤M 0 = M � F ,
where F � 0 is ⇡-exceptional.

Let B✏ be defined by the identity

KX + B✏ + (1� ✏)M = ⇡⇤(KX 0 + (1� ✏)(B0)h + (B0)v + (1� ✏)M 0),

and set B := B0. Then, for rational numbers 0 < � ⌧ ✏ ⌧ 1, we have

KX+B+M⇠Q,Z 0 KX+(B✏+�E�✏F)+((1�✏)M+✏⇡⇤(M 0+(B0)h+ f ⇤H)��E).

Since (X 0, (1 � ✏)(B0 + M 0)) is generalized klt over ⌘Z 0 and 0 < � = �(✏) ⌧ ✏,
the sub-pair (X, B✏ + �E � ✏F) is sub-klt over ⌘Z 0 . Furthermore, as ⇡⇤(M 0 + B0 +
f ⇤H)��E) is ample by construction, then so is M+✏⇡⇤(M 0 + B0 + f ⇤H)��E).
Finally, we have that ⇡⇤(B✏ + �E � ✏F) is effective over ⌘Z 0 .
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Therefore, the generalized sub-pair

(X, (B✏ + �E � ✏F) + ((1� ✏)M + ✏⇡⇤(M 0 + B0 + f ⇤H) � �E))

satisfies the hypotheses of Theorem 4.12. This provides b-divisors B✏Z 0 and M✏
Z 0 .

As Supp(B) [ Supp(E) [ Supp(F) is independent of ✏, by the proof of Theorem
4.12, the b-divisorsM✏

Z 0 descend to the same higher model of Z 0 for all 0 < ✏ ⌧ 1.
Thus, as the b-divisors BZ 0 andMZ 0 induced by (X, B + M) satisfy

BZ 0 = lim
✏!0

B✏Z 0, MZ 0 = lim
✏!0

M✏
Z 0,

we conclude thatMZ 0 is Q-Cartier and b-nef.

Now, we are ready to prove Theorem 1.4.

Proof of Theorem 1.4. We will prove the statement by induction on the relative di-
mension of the fibration. Since Z 0 is proper, by Remark 4.3 and Chow’s lemma,
we may assume that Z 0 is projective. By Theorem 3.2, we may assume that X 0

is Q-factorial, and that (X 0, (B0)h) is dlt. Notice that Theorem 3.2 applies, as we
can pull back divisors from Z 0 to guarantee that B0 is effective. Let X 0

⌘Z 0
be the

geometric generic fiber. Then, by assumption, (X 0
⌘Z 0

, B0
⌘Z 0

) is dlt. Notice that, as
B0 is effective over the generic point of Z 0, the technical assumptions regarding
rk f⇤OX 0(dA⇤(X 0, B0 + M 0)e) = 1 are automatically satisfied [2, Remark 2.2].

Assume M 0 is numerically trivial along X 0
⌘Z 0
. Then, by [20, Theorem 1.2], we

have KX 0
⌘Z 0

+B0
⌘Z 0

⇠Q M 0
⌘Z 0

⇠Q 0. Therefore, there is a dense open subsetU 0 ⇢ Z 0

such that M 0|X 0
U 0

⇠Q,U 0 0, where X 0
U 0 denotes the inverse image of U 0 in X 0. Let

XU 0 be the inverse image of U 0 in X . Write ↵ : X ! X 0. By the negativity lemma,
M = ↵⇤M 0 � E , where E � 0 is ↵-exceptional. As M 0

U 0 is trivial along the fibers
of X 0

U 0 ! U 0 and M is nef, E does not dominate Z 0. Therefore, up to shrinking
U 0, we have that M is trivial over U 0. Now, by Remark 4.3, we may assume that
X ! Z 0 is weakly semi-stable. We have M ⇠Q,Z 0 F , where F is exceptional over
Z 0. As the morphism X ! Z 0 is flat, the image in Z 0 of each component of F
is a divisor. Thus, up to replacing F in its Q-linear equivalence over Z 0, we may
assume that F � 0 and that F is very exceptional over Z 0 [6, Definition 3.1]. Then,
by [6, Lemma 3.3], we have F = 0. Thus, it follows that M ⇠Q,Z 0 0. Therefore,
we can apply the classic theory [2, 17].

Hence, wemay assume that M 0
⌘Z 0
is not numerically trivial. In particular, KX 0+

(B0)h is not pseudo-effective over Z 0. So, we can run a (KX 0 +(B0)h)-MMP relative
to Z 0 with scaling of an ample divisor. Since (X 0, (B0)h) is dlt and KX 0 + (B0)h is
not pseudo-effective over Z 0, this terminates with a Mori fiber space g : X 00 ! Y
over Z 0 [9]. Then, we can apply Lemma 5.2 to g : X 00 ! Y and (X 00, B00 +M 00), as
M 00 is ample over Y by construction. We induce a generalized pair (Y,BY +MY )
on Y .
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In case dimY = dim Z 0, Y ! Z 0 is birational, and we are done. In partic-
ular, this proves the case when dim X 0 � dim Z 0 = 1. Thus, we may assume that
dim Z 0 < dimY . Notice that Y ! Z 0 has connected fibers. Then, by construction
and Proposition 4.16, the generalized pair (Y,BY +MY ) and the fibration Y ! Z 0

satisfy the hypotheses of the statement with smaller relative dimension. By the in-
ductive hypothesis, the statement applies and provides a Q-Cartier b-nef b-divisor
on Z 0. By Lemma 5.1, it is the same b-divisor induced by (X, B+M). This proves
the inductive step.

As an immediate consequence, we recover a result due to Chen and Zhang [10].
The idea to apply Theorem 1.4 to the following setup was suggested by Jingjun Han.

Corollary 5.3 ( [10, Main Theorem]). Let (X,B) be a projective log canonical
pair such that �(KX + B) is nef. Let f : X ! Y be a surjective morphism, where
Y is projective and KY is Q-Cartier. Then �KY is pseudo-effective.

Proof. Define M := �(KX + B). Then, the generalized pair (X, B + M) is gener-
alized log canonical. Let g : X ! Z and h : Z ! Y be the morphisms induced by
the Stein factorization of f .

Then, by Theorem 1.4, (X, B + M) induces a generalized log canonical pair
(Z ,BZ +MZ ) on Z . Set BZ := BZ ,Z and MZ :=MZ ,Z . Since KX + B+M ⇠Q 0,
we have KZ + BZ + MZ ⇠Q 0.

Now, since h is finite, by the Riemann-Hurwitz formula, we have h⇤KY =
KZ � R, where R � 0. Thus, we get

�KZ + R ⇠Q BZ + MZ + R.

As BZ � 0 and MZ is pseudo-effective, �KZ + R is pseudo-effective. Thus, as
h is finite, we can apply [19, Theorem 1.20] to �KY + t A for A ample on Y and
0 < t ⌧ 1 to conclude that �KY is pseudo-effective.

Now, using ideas of Fujino and Gongyo [17], we study the relation between
the generalized pair induced on Z 0 by (X 0, B0 + M 0) and the one induced by a
generalized log canonical center of (X 0, B0 + M 0) dominating Z 0.

Theorem 5.4. Let (X 0, B0 + M 0) be a projective generalized sub-pair with data
X ! X 0 and M . Assume that B0, M 0 and M are Q-divisors. Let f : X 0 ! Z 0

be a contraction such that KX 0 + B0 + M 0 ⇠Q, f 0. Also, let (X 0, B0 + M 0) be
generalized log canonical and generalized dlt over the generic point of Z 0. Then,
for any generalized log canonical center W 0 of (X 0, B0 + M 0) dominating Z 0, we
haveMZ 0 =MW 0

Z 0 and BZ 0 = BW 0

Z 0 , where these are the b-divisors induced on Z 0 by
X 0 and W 0 respectively.

Remark 5.5. In the setup of Theorem 5.4, W 0 is a stratum of (B0)h , and therefore
inherits a structure of generalized pair (W 0, BW 0 + MW 0) by repeated divisorial
adjunction. By [8, Definition 4.7], (W 0, BW 0 + MW 0) is generalized log canonical
over the generic point of Z 0. Also, notice that W 0 ! Z 0 may not have connected
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fibers. Therefore, by comparing the b-divisors induced by X 0 andW 0, we implicitly
allow generically finite base changes, which are allowed by Remark 4.3.

Proof. First, we reduce to the case when W 0 is a divisor. Fix a generalized log
canonical center W 0 as in the statement and let W 0 = P 0

1 \ . . . \ P 0
k , where each

P 0
i is a prime component of (B0)h of coefficient 1. Further assume that the state-
ment is true if dim X 0 � dimW 0 = 1. In particular, we have that (X 0, B0 + M 0)
and (P 0

1, BP 0
1
+ MP 0

1
) induce the same b-divisors. Let P 0

1,k the restriction of P
0
k to

P 0
1. Up to pulling back divisors from Z to guarantee (B0)v � 0, we can take a weak
generalized dlt model P1 of (P 0

1, BP 0
1
+MP 0

1
). Up to considering the Stein factoriza-

tion of P1 ! Z 0, (P1, BP1 + MP1) satisfies the hypotheses of the statement. Here
(P1, BP1 + MP1) denotes the trace of (P 0

1, BP 0
1
+ MP 0

1
) on P1. Let P1,2 be the strict

transform of P 0
1,2 to P1. Now, since we are assuming the statement in case of gen-

eralized log canonical centers of codimension 1, we have that P1 and P1,2 induce
the same b-divisors on the base. On the other hand, the generalized pair structure
induced on P1,2 by (P1, BP1 + MP1) agrees with the one induced by (X 0, B0 + M 0)
on P 0

1,2. Therefore, X
0 and P 0

1,2 induce the same b-divisors on the base. Repeating
this argument k � 1 times, we get the claimed reduction.

From now on, we may assume that W 0 is a prime divisor such that
multW 0(B0)h = 1. Up to pulling back some effective divisors on Z 0 to guaran-
tee that (B0)v � 0, we can apply Theorem 3.2. Thus, we may assume that X 0 is
Q-factorial and that (X 0, (B0)h) is dlt. Let W 0 ! Y 0 be the Stein factorization of
W 0 ! Z 0.

By a generically finite base change T ! Z 0 factoring through Y 0, we may
assume that the following properties hold [17, cf. proof of Theorem 1.1]:

• V 0, the normalization of the main component of X 0 ⇥Z 0 T , has a semi-stable res-
olution in codimension 1 [2, see Theorem 4.3]. Call the latter V . Let (V 0, BV 0 +
MV 0) be the generalized sub-pair induced by (X 0, B0+M 0). We may assume that
V is also a semi-stable resolution of a suitable higher model of (X, B), a higher
model of X 0 where M descends. Therefore, we may assume that the moduli
b-divisorMV 0 descends to V . We will write MV :=MV 0,V ; and

• there are a fibration U ! T and a generalized sub-pair (U,BU +MU ) induced
by W 0 ! Z and (W 0,BW 0 +MW 0). By construction, U maps birationally onto
a prime divisor 00 ⇢ V 0 such that mult00 BV 0 = 1. Notice that, by construction,
the generalized sub-pair structure induced by (V 0,BV 0 +MV 0) on 00 agrees with
(U,BU +MU ).

Now, let BT and BminT the boundary divisors induced by V 0 ! T and U ! T
respectively. Analogously, we have moduli divisors MT and Mmin

T . By construction
[17, cf. proof of Theorem 1.1], we have

KT + BT + MT ⇠Q KT + BminT + Mmin
T .

Then, to conclude, it suffices to show BT = BminT .
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Taking hyperplane sections, we may assume that T is a curve. Therefore,
⇡ : (V, BV ) ! T is semi-stable. Thus, Supp(BV ) [ ⇡⇤Q is a reduced simple
normal crossing divisor for every Q 2 T . In particular, there is a finite set 6 ⇢ T
such that

BT =
X

P26

(1� bP)P, BminT =
X

P26

(1� bminP )P

and all the singular fibers of ⇡ : V ! T are mapped to 6.
Let E = {Ei }li=1 the set of prime divisors on V such that ⇡(Ei ) 2 6 and

multEi (BV +
X

P26

bP⇡⇤P)�0 < 1.

Fix a rational number 0 < ✏ ⌧ 1. Then, (V, (BV +
P

P26 bP⇡⇤P)�0 + ✏
P

Ei )
is dlt. Notice that we have

KV +

 

BV +
X

P26

bP⇡⇤P

!�0

+ ✏
X

Ei + MV ⇠Q,T

�

 

BV +
X

P26

bP⇡⇤P

!0

+ ✏
X

Ei =: E .

By [8], we can run a (KV + (BV +
P

P26 bP⇡⇤P)�0 + ✏
P

Ei + MV )-MMP
with scaling of an ample divisor. Notice that every component of E that dominates
T is exceptional over V 0, and is not contained in the relative movable cone over
V 0 [15, Definition 2.1]. So, if there are components of E dominating T , we first run
an MMP on KV + (BV +

P
P26 bP⇡⇤P)�0 + ✏

P
Ei + MV relative to V 0 with

scaling of an ample divisor H .
Assume by contradiction that this MMP does not terminate. Let � � 0 be the

limit of the coefficients used in the scaling by H . If � > 0, then the MMP is an
MMP for KV + (BV +

P
P26 bP⇡⇤P)�0+ ✏

P
Ei +MV +�H . Since (V, (BV +P

P26 bP⇡⇤P)�0 + ✏
P

Ei ) is dlt and �H + MV is ample, we get a contradiction
by [15, Theorem 2.3]. If � = 0, we have that KVj + (BV +

P
P26 bP⇡⇤P)�0j +

✏
P

Ei ) j +MVj +� j Hj +G j is ample, where Vj is the j-th model in the MMP and
G j is an ample divisor on Vj . We can choose the divisors G j such that the sequence
of strict transforms on V converges to 0 in N1(V/V 0). Since lim� j = � = 0, we
get that KV +(BV +

P
P26 bP⇡⇤P)�0+✏

P
Ei +MV is limit of divisors movable

over V 0, and hence movable. This provides a contradiction. By repeatedly applying
[32, Lemma 2.9] at each step of the MMP, it follows that all the components of E
dominating T are contracted.

Thus, after running an MMP over V 0, we get to a model V 00. Since the MMP
just run is an MMP for KV + (BV +

P
P26 bP⇡⇤P)�0 + ✏

P
Ei + MV + �H for

some � > 0, we can turn M + �H into a boundary and conclude that V 00 is a Q-
factorial klt variety and (V 00, ((BV +

P
P26 bP⇡⇤P)�0)00+(✏

P
Ei )00) is dlt. Thus,
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we can run an MMP for KV 00 + ((BV +
P

P26 bP⇡⇤P)�0)00 + (✏
P

Ei )00 + MV 00

relative to T with scaling of an ample divisor. Notice that E 00, the image of E
on V 00, is vertical over T and Supp(E 00) contains no fiber. Therefore, E 00 is not
in the relative movable cone over T . By a similar argument as before, the MMP
terminates, and contracts all of E 00. Call V̂ the final model. By construction, Ê = 0.
In particular, this guarantees that (BV̂ +

P
P26 bP ⇡̂⇤P)�0 = BV̂ +

P
P26 bP ⇡̂⇤P .

Also, by similar observations as before, we have that (V̂ , BV̂ +
P

P26 bP ⇡̂⇤P) is
dlt and V̂ isQ-factorial. Furthermore, (V̂ , BV̂ +MV̂ ) is the trace of the generalized
pair (V̂ ,BV̂ +MV̂ ). Finally, notice that just the components of E are contracted in
this step. In particular, the strict transform of 00 is not contracted and it is normal,
as (V̂ , BV̂ +

P
P26 bP ⇡̂⇤P) is dlt.

Let 0̂ be the strict transform of 0 on V̂ . By construction, the generalized pair
(0̂, B0̂+M0̂) induced on it by (V̂ , BV̂+MV̂ ) is crepant to (U, BU+MU ). Thus, the
generalized pair (0̂,10̂+M0̂) induced on it by (V̂ , BV̂ +

P
P26 bP ⇡̂⇤P+MV̂ ) is

crepant to (U, BU +
P

P26 bP⇡
⇤
U P +MU ). Here ⇡̂ and ⇡U denote the morphisms

to T from V̂ and U respectively.
By construction, we have

BV̂ +
X

P26

bP ⇡̂⇤P �
X

P26

⇡̂⇤P.

Thus, (V̂ , BV̂ +
P

P26 bP ⇡̂⇤P +MV̂ ) is generalized log canonical, while the gen-
eralized pair (V̂ , BV̂ +

P
P26(bP + �)⇡̂⇤P+MV̂ ) is not generalized log canonical

along the divisor
P

P26 ⇡̂
⇤P for any � > 0. Since V̂ is Q-factorial and (V̂ , 0̂) is

plt, we can apply [5, Lemma 3.2]. In particular, the generalized pair induced by
(V̂ , BV̂ +

P
P26(bP + �)⇡̂⇤P + MV̂ ) on 0̂ is not generalized log canonical along

P
P26 ⇡̂

⇤P\0̂. Since (0̂,10̂+M0̂) is crepant to (U, BU+
P

P26 bP⇡
⇤
U P+MU ),

we have bP = bminP , which completes the proof.

6. Generalized adjunction

In this section, we use the machinery developed for fiber spaces to define adjunction
for higher codimensional generalized log canonical centers. The results of this
sections hold for arbitrary generalized pairs (X 0, B0 +M 0) with data X ! X 0 ! V
and M , without the assumption V = Spec(C).

As in the classic case, given a generalized log canonical center W 0 ⇢ X 0, the
idea is to extract a generalized log canonical place E dominatingW 0. Then, one can
apply generalized divisorial adjunction on E and apply the generalized canonical
bundle formula to the morphism E ! W 0. This leads to the following definition of
generalized adjunction in arbitrary codimension.
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Definition 6.1. Let (X 0, B0+M 0) be a generalized pair with data X ! X 0! V and
M . Let W 0 be a generalized log canonical center. Fix a corresponding generalized
log canonical place E . We may assume that E is a smooth divisor on X . Then, we
have an induced morphism E ! W ⌫ , where W ⌫ denotes the normalization of W 0.
We define b-divisors BW ⌫ andMW ⌫ as the boundary and moduli part of fiber space
adjunction for (E, BE + ME ) over W ⌫ .
Remark 6.2. In caseW 0 is not an exceptional generalized log canonical center, one
has to prove that the definition does not depend on the choice of E . Furthermore,
one needs to check that the induced morphism E ! W ⌫ generically has connected
fibers. We will address this in Remark 6.3 and Theorem 6.7, giving a positive
answer.
Remark 6.3. In case M 0 descends in a neighborhood of W 0, it does not contribute
to the singularities along W 0, and generalized adjunction coincides with the usual
one. Therefore, Definition 6.1 is well posed if W 0 is any generalized log canonical
center with M relatively trivial over W 0.
Remark 6.4. In case W 0 is a divisor, this definition coincides with the divisorial
generalized adjunction introduced by Birkar and Zhang [8, Definition 4.7].
Remark 6.5. If M 0, M and B0 are Q-divisors, BW ⌫ is defined via log canonical
thresholds of Q-divisors. These are rational numbers. Then, in this case, BW ⌫ and
MW ⌫ are automatically Q-Weil b-divisors.

Now, we would like to study the properties of the b-divisors BW ⌫ andMW ⌫ . In
particular, we would like to show that a structure of a generalized pair is induced on
W ⌫ . Going in this direction, we are ready to prove Theorem 1.5.

Proof of Theorem 1.5. As generalized adjunction is known in case W 0 is a divisor,
we may assume codimW 0 � 2. Let E be the generalized log canonical place
corresponding toW 0. Without loss of generality, we may assume that f : X ! X 0 is
a log resolution, and E is a divisor on X . Generalized divisorial adjunction provides
us with a generalized sub-pair (E, BE + ME ), where the moduli part descends to
E . Then, as W 0 is an exceptional center, (E, BE ) is sub-klt over the generic point
of W 0. Furthermore, by assumption, (X 0, B0 + M 0) is generalized log canonical.
Therefore, we can apply [8, Lemma 4.5] to extract just E over ⌘W 0 . Call this model
X 00, and denote the image of E by E 00. Then, BE 00 is effective.

Now, we check that the technical conditions needed to apply the canonical
bundle formula are satisfied. By assumption, up to shrinking X 0 to a neighborhood
ofW 0, we have B = E+1, where b1c  0. Then, we can write1 in a unique way
as 1 = 0 � A, where 0 � 0, b0c = 0, and A � 0 is integral and f -exceptional.
Consider the short exact sequence

0 ! OX (A � E) ! OX (A) ! OE (A|E ) ! 0.

Then, the corresponding long exact sequence of higher direct images provides us
with

OX 0 ⇠= f⇤OX (A) ! f⇤OE (A|E ) ! R1 f⇤OX (A � E) = 0,
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where the latter element vanishes by [31, Corollary 2.68] applied to

A � E ⇠Q KX + 0 + M � f ⇤(KX 0 + B0 + M 0).

This forces the chain of equalities

( fE )⇤OE (A|E ) = OW ⌫ = OW 0, (6.1)

where fE denotes the restriction of f to E , and OW ⌫ , the structure sheaf of the
normalization of W 0, is seen as a sheaf ofOW 0-modules. Thus, W 0 is normal.

Now, we can apply Theorem 1.4, which guarantees that (W 0,BW 0 +MW 0) is a
generalized sub-pair. Furthermore, by Proposition 4.16, it is generalized sub-klt.

We are left with showing that BW 0,W 0 is effective. As argued in [29, proof of
Theorem 8.6.1], this follows by equation (6.1) and [29, Theorem 8.3.7].

Now, we would like to address the case whenW 0 is not an exceptional general-
ized log canonical center. To do so, we need the following result about tie breaking
for generalized pairs. The statement is a slight generalization of [29, Proposition
8.7.1].

Proposition 6.6. Let (X 0, B0 +M 0) be a generalized klt pair with data X ! X 0 !
V and M . Assume that B0, M 0 and M are Q-divisors. Let D0 be an effective Q-
Cartier divisor on X 0 and N a Q-Cartier divisor on X that is nef over V . Further,
assume that D0 + N 0 is Q-Cartier, where N 0 denotes the pushforward of N to X 0.
Assume that the generalized pair (X 0, B0 +D0 +M 0 +N 0) with data X 0 ! X ! V
and M + N is generalized log canonical. Let W 0 ⇢ X 0 be a minimal generalized
log canonical center of (X 0, B0 + D0 + M 0 + N 0). Then, there exist an effective Q-
Cartier divisor P 0 and a rational number 0 < ✏ ⌧ 1 such thatW 0 is an exceptional
generalized log canonical center of (X 0, B0 + P 0 + M 0 + (1� ✏)(D0 + N 0)).

Proof. The proof of [29, Proposition 8.7.1] goes through almost verbatim. There-
fore, we just point the relevant changes in the proof. Without loss of generality, we
may assume that f : X ! X 0 is a log resolution of (X 0, B0 + D0). Then, we may
write

f ⇤(KX 0+B0+M 0 =KX+
X

bi Ei+M, and f ⇤(D0+N 0)=
X

ai Ei+N . (6.2)

After redefining ai and bi in the proof of [29, Proposition 8.7.1] with the ones in
equation (6.2), the proof of [29, Proposition 8.7.1] goes through. Notice that the
roles of X and X 0 are flipped in the notation of [29, Proposition 8.7.1].

Theorem 6.7. Let (X 0, B0 + M 0) be a projective generalized pair with data X !
X 0! V and M . Assume that X 0 is a Q-factorial klt variety. Let B0, M 0 and M be
Q-divisors. LetW 0 be a generalized log canonical center, andW ⌫ its normalization.
Assume that W 0 is projective. Then, Definition 6.1 is well posed, and the induced
moduli b-divisorMW ⌫ is b-Cartier and b-nef. Furthermore, BW ⌫ ,W ⌫ is effective.



GENERALIZED CANONICAL BUNDLE FORMULA AND ADJUNCTION 1213

Proof. By assumption, (X 0, B0+M 0) is generalized log canonical in a neighborhood
U 0 of ⌘W 0 . Furthermore, for every 0 < ✏ ⌧ 1, the generalized pair (X 0, (1 �
✏)(B0 + M 0)) with data X ! X 0 ! V and (1� ✏)M is generalized klt in an open
set containing the generic point of W 0. Up to shrinking U 0, we may assume that
W 0 \ U 0 is a minimal generalized log canonical center, and that the restriction of
(X 0, B0 + M 0) to U 0 is generalized log canonical. Then, on the open set U 0, we
can apply Proposition 6.6. In particular, there exist 0 < � ⌧ 1 and an effective
divisor P 0 such that W 0 \U 0 is an exceptional generalized log canonical center for
the restriction of (X 0, (1 � �)(B0 + M 0) + P 0) to U 0. Let E be the corresponding
generalized log canonical place. Notice that E is also a generalized log canonical
place for (X 0, B0 + M 0).

Let X 00 ! X 0 be a weak generalized dlt of (X 0, (1� �)(B0 + M 0) + P 0), and
let E 00 denote the trace of E on X 00. Notice that, by construction, E 00 is normal.
Since W 0 is exceptional for (X 0, (1 � �)(B0 + M 0) + P 0) along U 0, we can apply
the proof of Theorem 1.5. In particular, it follows that W 0 \ U 0 is normal and that
the induced morphism E 00 ! W 0 is a contraction over W 0 \U 0. Let W 00 denote the
Stein factorization of E 00 ! W 0. Then, we have W 00 = W ⌫ .

Now, let Xm ! X be a weak generalized dlt model of (X 0, B0 + M 0). By
Proposition 3.5, we may assume that E appears as a divisor on Xm . Let Em denote
the trace of E on Xm , and let (Em, BEm+MMm ) denote the generalized pair induced
by generalized adjunction. Notice that Em and E 00 are normal and birational to
each other. Furthermore, they both admit a morphism to W ⌫ . Since E 00 ! W ⌫

is a contraction, by taking a common resolution of Em and E 00, we obtain that
Em ! W ⌫ is a contraction.

Let (Xm, Bm + Mm) denote the pair obtained by taking the weak generalized
dlt model, and let (Xm, Bm +1m +Mm) denote the trace of (X 0, B0 +M 0) on Xm .
Notice that 1�0. Let (Em, BEm + MEm denote the generalized pair induced by
(Xm, Bm+1m+Mm) by generalized adjunction. Since Em appears with coefficient
1 in Bm , (Xm, Bm) is dlt, by [8, Remark 4.8] it follows that BEm � 0. Then, we
can apply Theorem 1.4 and define a structure (W ⌫,BW ⌫ + MW ⌫ ) of generalized
sub-pair on W ⌫ . Since BEm � 0, it follows that BW ⌫ ,W ⌫ � 0.

Now, we are left with showing that the generalized pair structure (W ⌫,BW ⌫ +
MWnu) is intrinsic. Let Em1 , . . . , Eml , where l � 2, be the distinct generalized log
canonical places with centerW 0 appearing in Xm , with Em = Em1 . By the choice of
Xm , (Xm, Bm) is dlt over U 0. By the connectedness principle [31, Corollary 5.49],
the locus Em1 [ . . . [ Eml is connected over the generic point of W

0. Let Wm
i be the

Stein factorization of Emi ! W 0. While Wm
1 = W ⌫ , it may be that Wm

i ! W ⌫

is a finite morphism for i � 2. Thus, each Emi induces a generalized pair struc-
ture on a finite cover of W ⌫ . In the spirit of Remark 5.5, we can compare these
generalized pair structures after a generically finite base change. By abuse of lan-
guage, we omit the base change and talk about generalized pair structures induced
on W ⌫ .

Fix Emk for some 1  k  l, and denote by (Emk , BEmk + MEmk ) the generalized
pair induced by divisorial adjunction. Then, (Ek, BEk + MEk ) is generalized log
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canonical and generalized dlt over the generic point of W 0. Now, by Theorem 5.4,
the generalized pair induced by (Emk , BEmk + MEmk ) on W ⌫ is the same as the one
induced by a generalized log canonical center F of (Ek, BEk +MEk ) that dominates
W ⌫ . By the construction of X⌫ , every such F arises as the intersection of some of
the Emi ’s.

Thus, if Emk \ Emj 6= ;, (Emk , BEmk + MEmk ) and (Emj , BEmj + MEmj ) induce the
same b-divisors on W ⌫ . As Em1 [ . . . [ Eml is connected over the generic point of
W 0, by transitivity, we conclude that all the Emi ’s induce the same b-divisors.

We conclude discussing inversion of adjunction in the setup of generalized
pairs. The strategy follows the lines of [21].

Proof of Theorem 1.6. The “only if” direction follows immediately by divisorial
adjunction applied to a generalized log canonical place, and Proposition 4.16. Thus,
we are left with proving the “if” part. Proceeding by contradiction, henceforth we
will assume that (W ⌫,BW ⌫ +MW ⌫ ) is generalized log canonical, while (X 0, B0 +
M 0) is not generalized log canonical near W 0.

Let (Xm, Bm+Mm) be aQ-factorial weak generalized dlt model for (X 0, B0+
M 0). By Proposition 3.5, we may assume that there is a generalized log canonical
place Sm corresponding to W 0. Set 6m := (E+ � E)m , and 0m := Bm � Sm . As in
the proof of Theorem 3.2, E+ denotes the divisors on X of generalized discrepancy
at most �1, and E := red E+.

By the proofs of Theorem 3.4 and Proposition 3.5, there is a big divisor Lm
with the following property: for any t > 0 we can find a divisor 2m

t ⇠R 0m +
t Lm +Mm such that (Xm, Sm +2m

t ) is plt. Up to twisting Lm by an ample divisor,
we may assume that we can run the relative (KXm + Bm +Mm)-MMP over X 0 with
scaling of Lm .

Let �i : Xmi 99K Xmi+1 be the sequence of flips and divisorial contractions,
and let µi : Xmi ! X 0 and µ̄i : Smi ! S0 be the induced morphisms. Then, there
is a sequence of non-negative rational numbers {si }i�0 such that si � si+1, and
either sN+1 = 0 for some N 2 N, or limi!+1 si = 0. Furthermore, the divisor
KXmi +Smi +0mi +Mm

i +sLmi is nef over X
0 for all si � s � si+1. As the plt property

is preserved by steps of the MMP [31, Corollary 3.44], the pair (Xmi , Smi +2m
t,i ) is

plt if t < si .
By standard arguments, we may assume that �i is a flip for i � i0, for some

i0 2 N. In addition, by the arguments in the proofs of Step 1 and Step 2 of [16,
4.2.1], we may assume that Smi 99K Smi+1 is an isomorphism in codimension 1 for
all i � i0.

Now, assume that for some i � 0 we have Smi \6m
i 6= ;. Then, we can write

µ⇤
i (KX 0 + B0 + M 0)|Smi = KSmi + BSmi + MSmi ,

and (BSmi )>1 6= 0. In particular, (Smi , BSmi +MSmi ) is not generalized log canonical.
Consider the induced fibration Smi ! W ⌫ . Then, by Proposition 4.16 and the
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construction of generalized adjunction, (W ⌫,BW ⌫ +MW ⌫ ) is not generalized log
canonical. This is a contradiction. Notice that, as in the proof of Theorem 6.7,
we are abusing notation, as Smi ! W ⌫ may not have connected fibers. On the
other hand, this is not a problem, since a generalized sub-pair is generalized sub-
log canonical if and only if the generalized sub-pair induced by a generically finite
base change is sub-log canonical [31, Proposition 5.20].

Thus, we may assume that Smi \6m
i = ; for all i � 0. For any integer k � 0

such that k6m is an integral divisor, pick i � i0 such that si > 1
k � si+1. Then,

Lmi �k6m
i � Smi ⇠Q,µi KXmi +2 1

k ,i +(k�1)
✓
KXmi + Smi + 0mi + Mm

i +
1
k
Lmi

◆
.

The pair (Xmi ,2 1
k ,i ) is klt, while KXmi + Smi +0mi + Mm

i + 1
k L

m
i is µi -nef. Hence,

by the relative version of Kawamata–Viehweg vanishing [31, cf. proof of Corollary
2.68 and Theorem 2.70], we have R1µi,⇤OXmi (Lmi � k6m

i � Smi ) = 0. This implies
that there is a surjection

µi,⇤OXmi (Lmi � k6m
i ) ! µ̄i,⇤OSmi (Lmi � k6m

i ) = µ̄i,⇤OSmi (Lmi ) ! 0, (6.3)

where the equality µ̄i,⇤OSmi (Lmi �k6m
i ) = µ̄i,⇤OSmi (Lmi ) follows from the fact that

Smi \6m
i = ;. On the other hand, for k � 0 the subsheaves

µi0,⇤OXmi0
(Lmi0 � k6m

i0 ) ⇢ µi0,⇤OXmi0
(Lmi0)

are contained in Iµi0 (6
m
i0

)·µi0,⇤OXmi0
(Lmi0). Since we are assuming that (X

0, B0+M 0)

is not generalized log canonical around W 0, we have W 0 \ µi0(6
m
i0 ) 6= ;. Thus, the

restrictions to W 0 of the local sections of µi0,⇤OXmi0
(Lmi0 � k6m

i0 ) vanish along the
intersection W 0 \ µi0(6

m
i0 ). Consequently, the morphism

µi0,⇤OXmi0
(Lmi0 � k6m

i0 ) ! µ̄i0,⇤OSmi0
(Lmi0) (6.4)

is not surjective.
Now, since for i� i0 all the maps Xmi0 99KXmi and S

m
i0 99K Smi are isomorphisms

in codimension 1, we have equalities µi,⇤OXmi (Lmi � k6m
i ) = µi0,⇤OXmi0

(Lmi0 �

k6m
i0 ), and µ̄i,⇤OSmi (Lmi ) = µ̄i0,⇤OSmi0

(Lmi0). Thus, equation (6.4) is equivalent to
saying that

µi,⇤OXmi (Lmi � k6m
i ) ! µ̄i,⇤OSmi (Lmi )

is not surjective. This contradicts equation (6.3), and concludes the proof.



1216 STEFANO FILIPAZZI

7. Applications to a conjecture of Prokhorov and Shokurov

Now, we would like to discuss a possible application of the canonical bundle for-
mula for generalized pairs. In particular, we are interested in the connections with a
conjecture by Prokhorov and Shokurov [35, Conjecture 7.13]. We start by recalling
its statement.
Conjecture 7.1 ( [35, Conjecture 7.13]). Let (X,B) be a sub-pair, and assume that
B is aQ-divisor. Let f : X ! Z be a contraction such that KX + B ⇠Q, f 0. Also,
let (X, B) be klt over the generic point of Z . Then, we have:

(i) MZ is b-semi-ample;
(ii) let X⌘ be the generic fiber of f . Then I0(KX⌘ + B⌘) ⇠ 0, where I0 depends

only on dim X⌘ and the multiplicities of Bh ; and
(iii) MZ is effectively b-semi-ample. There exists a positive integer I1 depending

only on the dimension of X and the horizontal multiplicities of B (a finite set
of rational numbers) such that I1MZ is very b-semi-ample; that is, I1MZ = L ,
where L is a basepoint-free divisor on some birational model of Z .

In view of the recent developments, we propose the following generalization of
Conjecture 7.1.
Conjecture 7.2. Let (X 0, B0+M 0) be a generalized sub-pair with data X ! X 0 and
M . Assume that B0, M 0 and M are Q-divisors. Let f : X 0 ! Z 0 be a contraction
such that KX 0 + B0 + M 0 ⇠Q, f 0. Assume that M is semi-ample, and let c be the
minimum positive integer such that |cM| is basepoint-free. Also, let (X 0, B0 + M 0)
be generalized klt over the generic point of Z 0. Then, we have:

(i) MZ 0 is b-semi-ample;
(ii) let X 0

⌘ be the generic fiber of f . Then I0(KX 0
⌘

+ B0
⌘ + M 0

⌘) ⇠ 0, where I0
depends only on dim X 0

⌘, the multiplicities of Bh and c, and we are free to
replace the representative of M 0 in its Q-linear equivalence class; and

(iii) MZ is effectively b-semi-ample. There exists a positive integer I1 depend-
ing only on the dimension of X 0, the horizontal multiplicities of B and c (a
finite set of rational numbers) such that I1MZ 0 is very b-semi-ample; that is,
I1MZ 0 = L , where L is a basepoint-free divisor on some birational model
of Z 0.

In the hope of a possible inductive approach, it is important to relate the two con-
jectures.

Theorem 7.3. If Conjecture 7.1 is true in relative dimension n, then so is Conjec-
ture 7.2. More precisely, each part of Conjecture 7.1 implies the corresponding part
of Conjecture 7.2.

Proof. Throughout the proof, we fix the relative dimension of the fibrations. Also,
let (X 0, B0 + M 0) be as in Conjecture 7.2.
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Now, assume that part (i) of Conjecture 7.1 holds. Let Z be a higher model
of Z 0 whereMZ 0 descends. We may also assume that |MZ 0,Z |Q is resolved, that is
|MZ 0,Z |Q = |L|Q + F , where |L|Q is a basepoint-free Q-linear series and F � 0.
Notice that, by Remark 4.11, we know that |MZ 0,Z |Q 6= ;. Arguing by contra-
diction, we have F 6= 0. Let P be a prime divisor contained in the support of F .
By Remark 4.8, there is 0  A ⇠Q M such that multPMZ 0 = multPMA

Z 0 . Up
to replacing Z with a higher model, we may assume that MA

Z 0 descends to Z . By
assumption, |MA

Z 0,Z |Q is basepoint-free. By construction, MZ 0,Z = MA
Z 0,Z + E ,

where E � 0 and multP E = 0. Thus, |MZ 0,Z |Q is free at the generic point of P ,
which is the required contradiction.

Now, assume that part (ii) of Conjecture 7.1 holds. By assumption, we may
write KX 0 +B0+M 0 ⇠Q KX 0 +B0+ A0, where A0 is horizontal over Z 0, irreducible,
and with coefficient 1c . Thus, part (ii) of Conjecture 7.2 follows.

Now, we are left with showing that part (iii) of Conjecture 7.2 holds if we
assume part (iii) of Conjecture 7.1. Notice that the arguments in [13, Section 3]
go through verbatim in the setup of generalized pairs. Therefore, we can reduce
to the case when the base Z 0 is a smooth curve. Let I be the integer guaranteed
by part (iii) of Conjecture 7.1, where we allow coeff(B0

⌘) [ {1c } as the set of coef-
ficients. Then, by Remark 4.8 IMZ 0,Z 0 is integral. Thus, it suffices to show it is
basepoint-free.

By Remark 4.8, for every point P 2 Z 0, there is A ⇠c M such that IMZ 0,Z 0 =
IMA

Z 0,Z 0 +
Pk

i=1 ni Pi , where P 6= Pi for all i and ni 2 N. Since IMA
Z 0,Z 0 is

basepoint-free, IMZ 0,Z 0 is free at P . As P is arbitrary, the claim follows.

As an immediate corollary, we have the following:

Corollary 7.4. Conjecture 7.2 holds true if the relative dimension is 1.

Proof. It follows immediately from Theorem 7.3 and [35, Theorem 8.1].

Now, we are ready to show how to use Corollary 7.4 in order to prove certain
cases of Conjecture 7.1.

Proof of Theorem 1.7. Up to replacing Z with a higher model and X with the nor-
malization of the fiber product, by Chow’s lemma, we may assume that Z is quasi-
projective. Then, by [24], we may assume that Z is projective. Let X⌘ be the
geometric generic fiber. Then, it admits a minimal resolution X 0 ! X⌘. Notice
that X 0 is not isomorphic to P2. This morphism is defined over a finite exten-
sion of K (Z). Therefore, up to a generically finite base change of Z , we may
assume that the minimal resolution of X⌘ is defined over K (Z). Thus, we can re-
place X with the corresponding blow-up resolving the generic fiber. Notice that in
this process, Bh remains effective. Thus, from now on, we may assume that X⌘
is smooth.

By the assumptions of the theorem, we have that the Kodaira dimension of the
generic fiber satisfies (X⌘)  0. In case (X⌘) = 0, we have Bh = 0, and the
statement follows from work of Fujino [14, Lemma 4.1, Corollary 6.4].
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Therefore, we may assume (X⌘) < 0, and that X⌘ is not isomorphic to P2.
Hence, either the minimal model of the geometric generic fiber X⌘ is a minimal
ruled surface over a curve [31, Theorem 1.29], or X⌘ maps to the blow-up of P2 at
one point. In both cases, the geometric generic fiber admits a morphism to a curve.
Thus, up to a base change of the fibration by a generically finite morphism, we may
assume that the generic fiber itself admits a morphism to a curve. In particular, we
have a commutative diagram of rational maps:

X Y

Z

g

f
h

where g and h are actual morphisms over an open subset of Z . Thus, up to taking
birational modifications of X and Y that are isomorphism over the generic point of
Z , we may assume that g and h are morphisms. Then, up to taking the normalization
of Y in Z , we may assume that g and h have connected fibers. Notice that, by
construction, the relative dimensions of g and h are both 1, and the generic fibers
are smooth. Furthermore, the generic fiber of g is rational.

In order to better understand the above picture, we consider the general fibers.
As all three morphisms have smooth generic fibers, the general fibers are smooth as
well. We denote them by F , G and H respectively. The curve G is isomorphic to
P1, and is contained in the surface F . Since F is general, the sub-klt sub-pair (X, B)
induces a sub-klt sub-pair (F, BF ) [34, Corollary 9.5.6]. Since B is effective along
X⌘, BF is effective too, and (F, BF ) is klt. In particular, we have KF + BF ⇠Q 0.
As we have the morphism F ! H , we can apply the canonical bundle formula in
this setup. It will produce an effective boundary divisor BH and a nef divisor MH
such that KH + BH + MH ⇠Q 0. This implies that the genus of H , and hence of
the generic fiber of h, is either 0 or 1.

Notice that, to obtain the morphism X ! Y , we did not blow up any horizontal
stratum, as the morphism of generic fibers was well defined up to a base change.
Therefore, in the new model X , the divisor B is effective over a dense open set
of Z . Then, by Corollary 7.4, the moduli b-divisor MY is b-semi-ample. Also,
by Proposition 4.16, the boundary part BY,Y is effective, and (Y,BY,Y +MY,Y ) is
generalized klt over the generic point of Z . Therefore, we can apply Corollary 7.4
to the fibration Y ! Z . Furthermore, by Lemma 5.1, the moduli, and boundary
b-divisors induced by Y ! Z and by X ! Z agree. Therefore, we conclude that
MZ is b-semi-ample.

Remark 7.5. The proof of Theorem1.7 does not imply effective b-semi-ampleness,
because in the course of the proof we replaced the base of the fibration with a
generically finite cover. One would need a bound on the degree of the cover in
order to achieve effectivity.
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Proof of Theorem 1.8. Let Bh denote the horizontal part of B. Let (Xm,1m) be a
Q-factorial dlt model of (X, Bh), and let Bm the log-pullback of B to Xm . Since
(X, B) is klt over the generic point of Z , we have that (Xm, (Bm)h) is klt. Then, let
X 0 ! Xm be a terminalization of (Xm, (Bm)h). Let B0 denote the log-pullback of
B to X 0. Notice that, by construction, we have (B0)h � 0.

Since (X, B) is not terminal, the morphism X 0
⌘ ! X⌘ is not an isomophism. In

particular, X⌘ is not isomorphic toP2. Therefore, Theorem 1.7 applies to (X 0,B0)!
Z , and the claim follows.

The approach in Theorem 1.7 suggests that the proof of part (i) of Conjecture
7.1 can be reduced to two extreme cases: Mori fiber spaces, and cases when X⌘ is
Calabi–Yau. If we use techniques from the MMP, we avoid generically finite base
changes, and we can also address part (iii) of Conjecture 7.1.

Theorem 7.6. Fix a natural number n. Assume that part (i) (or (iii)) of Conjecture
7.1 is true if the relative dimension is strictly less than n. Then, part (i) (respectively
(iii)) of Conjecture 7.1 in relative dimension n can be reduced to the two following
cases:

• f : X ! Z is a KX -Mori fiber space; or
• KX ⇠Q,Z 0, and Bh = 0.

Proof. As argued in the proof of Theorem 1.7, we may assume that the varieties
involved are projective. By [30, Theorem 3.1], we can assume that X isQ-factorial,
and (X, Bh) is klt. Thus, we can run a KX -MMP over Z with the scaling of an
ample divisor. Notice that there are two cases: either Bh = 0 or Bh > 0. In
the former case, the MMP terminates with a good minimal model for KX by [6,
Theorem 1.4] and [23, Theorem 1.1]. In the latter case, the MMP terminates with a
Mori fiber space by [9]. Call g : X 0 ! Z the final model reached by the MMP, and
let (X 0, B0) be the sub-pair induced by (X, B).

First, assume that X 0 is a good minimal model for X . Then, KX 0 ⇠Q,Z 0.
Since KX 0 + B0 ⇠Q,g 0 and Bh = 0, it follows that B0 is the pullback of a divisor
on Z .

Now, assume that the MMP terminates with a Mori fiber space h : X 0 ! Y . If
Y is birational to Z , we are done. Hence, we may assume that dim X 0 �dimY < n.
Then, the fibration (X 0, B0) ! Y satisfies the conditions of Conjecture 7.1 for a
smaller relative dimension. By assumption, a generalized pair structure (Y,BY +
MY ) is induced on Y , whereMY is b-semi-ample (respectively effectively b-semi-
ample). Thus, we can apply the lower dimensional case of Conjecture 7.2, which
holds by Theorem 7.3, to the fibration Y ! Z , and induce a generalized pair
structure (Z ,BZ +MZ ) on Z , whereMZ is b-semi-ample (respectively effectively
b-semi-ample). By Lemma 5.1, the generalized pair (Z ,BZ +MZ ) induced this
way is the same as the one induced by (X, B). Thus, the claim follows.
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[23] C. D. HACON, J. MCKERNAN and C. XU, ACC for log canonical thresholds, Ann. of
Math. 180 (2014), 523–571.

[24] C. D. HACON and C. XU, Existence of log canonical closures, Invent. Math. 192 (2013),
161–195.

[25] K. KARU, “Semistable Reduction in Characteristic Zero”, PhD thesis, Boston University,
1999.



GENERALIZED CANONICAL BUNDLE FORMULA AND ADJUNCTION 1221

[26] M. KAWAKITA, Inversion of adjunction on log canonicity, Invent. Math. 167 (2007), 129–
133.

[27] Y. KAWAMATA, Subadjunction of Log Canonical Divisors, II, Amer. J. Math. 120 (1998),
893–899.
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[30] J. KOLLÁR and S. J. KOVÁCS, Log canonical singularities are Du Bois, J. Amer. Math.
Soc. 23 (2010), 791–813.
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