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Gorenstein stable surfaces with K 2X = 2 and �(OX) = 4

BEN ANTHES

Abstract. We define and study a concrete stratification of the moduli space
of Gorenstein stable surfaces X satisfying K 2X = 2 and �(OX ) = 4, by first
establishing an isomorphism with the moduli space of plane octics with certain
singularities, which is then easier to handle concretely. In total, there are 47 non-
empty strata with altogether 78 components.

Mathematics Subject Classification (2010): 14J10 (primary); 14J29, 14J17,
14Q05, 14D07, 32S35 (secondary).

1. Introduction

One of the most important bounds on the geography of surfaces of general type is
Noether’s inequality 2�(OX )  K 2X + 6. A minimal surface of general type satis-
fying equality here is said to be on the Noether line. Since they have been studied
intensively by Horikawa [28], they are also called Horikawa surfaces. The smallest
possible invariants on the Noether line are K 2X = 2 and �(OX ) = 4 and it is a
classical fact that (the canonical model of) the corresponding surfaces are double-
covers of P2, branched over an octic curve with at worst simple singularities, via the
morphism defined by the canonical linear system |KX |. Conversely, a double-cover
of the plane branched over an octic with at worst simple singularities gives an ex-
ample of such a surface. Therefore, the Gieseker-moduli space M2,4 of canonical
models X of surfaces of general type with invariants K 2X = 2 and �(OX ) = 4 is in
bijection with (in fact, isomorphic to) the moduli space of plane curves of degree 8
with at worst simple singularities.

The subject of this article is the study of the modular compactificationM2,4 of
M2,4 parametrising stable surfaces X with the same numerical invariants K 2X = 2
and �(OX ) = 4. We refer to this as the KSBA-compactification, for Kollár and
Shepherd-Barron [33] and Alexeev [1]. We thereby continue the series of works
by Franciosi, Pardini and Rollenske [17–19] who investigated the moduli spaces
parametrising Gorenstein stable surfaces X with K 2X = 1 using similar methods.
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We can only handle the Gorenstein stable surfaces since this allows us to con-
sider the canonical map. As in the classical case, the canonical linear system |KX |
defines a double-cover of the plane, branched over an octic curve; this is the content
of Corollary 2.7. Conversely, if B ⇢ P2 is a curve of degree 8 such that the pair
(P2, 12 B) is log-canonical, then the double-cover X of P2 branched over B, which
is essentially unique since Pic(P2) is torsion-free, is a Gorenstein stable surface sat-
isfying K 2X = 2 and �(OX ) = 4. This way, we obtain an isomorphism between the
moduli spaces of those plane octics and the moduli spaceMGor

2,4 ⇢M2,4 of Goren-
stein stable surfaces X satisfying K 2X = 2 and �(OX ) = 4; see Theorem 3.3. This
allows us to use the rich theory of plane curves and the computer algebra system
Macaulay2 [20] to get some understanding of the boundary components ofM2,4 in
MGor
2,4 .
More precisely, we will define a stratification ofMGor

2,4 by means of three indi-
cators: the degree of non-normality, the number and degrees of isolated irrational
singularities and whether the irrational singularities are simply elliptic or cusps. The
interest in the third indicator, even though not necessary to understand the birational
isomorphism type of the surface, comes from the relation with another stratification
induced by the degeneration of mixed Hodge structures on H2(X) as defined by
Green, Griffiths, Kerr, Laza and Robles [21,22,31, 46, 47].

We will see that all non-empty strata are of the expected dimension, but many
of the numerically characterised strata decompose further into disjoint components;
this is mostly reflected by the birational types of the minimal resolutions. On the
level of curves, the different components correspond to special configurations of
the non-simple singularities.

Moreover, we will define a Hodge type of our surfaces under investigation
(Definition 2.18). For the stratification of the locus parametrising normal surfaces,
the Hodge type is constant on the strata, as shown in Proposition 4.13. For the
locus of non-normal surfaces, however, this is much more complicated, as we will
indicate in Example 4.18 and Example 4.19. This is why on the locus of non-normal
surfaces, the stratification will not be fine enough to control the Hodge type.

The article is organised follows: In Chapter 2, we investigate the geometry of
the surfaces of interest, i.e., we prove that they are canonically double-covers of the
plane, we discuss the singularities they may have, we prove some constraints on the
possible birational isomorphism types and we study the mixed Hodge structure on
second cohomology.

Going back and forth between curves and branched double-covers defines an
isomorphism between our moduli space of interest MGor

2,4 and the moduli space of
certain plane curves; this will be the subject of Chapter 3. This moduli space has at
least one more notable compactification, due to Hacking [23]; in Chapter 5, we will
present a few remarks and questions in this direction.

Before that, in Chapter 4, we will define and study the stratification; first, for
the locus parametrising normal surfaces and then for the remaining part. The full
degeneration diagram would be incomprehensible, which is why we restrict the
presentation to two fragments which give a sufficiently good idea of the situation.
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To ease the flow of presentation, we have two appendices, one about the possi-
ble configurations of certain singularities on curves of degree 8 or 6, Appendix A,
and some explanations concerning the Macaulay2-code, Appendix B. The code can
be obtained from a GitLab repository [5].

1.1. Notation and conventions

We work with schemes over the complex numbers C. Varieties are reduced and
proper schemes of finite type over C and a surface is a purely two-dimensional
variety in this sense. A curve is a possibly non-reduced projective scheme, purely
of dimension 1. In some places, points (of schemes) are implicitly understood as
C-rational points, but this is always clear from the context.
1.1.1. Notation

Let X be a proper complex scheme of pure dimension n.
– pg(X) = hn(OX );
– pa(X) = (�1)n(�(OX )� 1);
– If n = 1, then deg(L) = �(L)� �(OX ) for all L 2 Pic(X);
– q(X) = h1(OX );
– To avoid confusion between topological and holomorphic Euler characteristics,
we use �(�) only for coherent OX -modules and �top(X) for the topological
Euler characteristic of the analytification Xan;

– To ease notation, we use H⇤(X; C) := H⇤(Xan; C) for the singular cohomol-
ogy of the analytification.

1.1.2. Semi-log-canonical varieties and pairs

We briefly recall the definition of a semi-log-canonical pair (from Kollár’s exposi-
tion [35, Chapter 5], see there for more details). If a finite type scheme X over C
satisfies the following two conditions, it is called demi-normal.

1. X satisfies Serre’s condition (S2), i.e., for every x 2 X we have

depthOX,x (OX,x ) � min{2, dim(OX,x )};

2. X is regular or double normal crossing in codimension 1, i.e., if x 2 X is the
generic point of a sub-variety of codimension one, then either OX,x is regular,
or its completion O^X,x with respect to the maximal ideal is isomorphic to the
complete local ring C[[x, y]]/(xy).

For a demi-normal scheme X , with normalisation ⇡ : X ! X , the conductor lo-
cus F := supp(⇡⇤OX/OX ) ⇢ X is purely one-codimensional, reduced and ⇡ is
generically a double-cover over F , as explained by Kollár [35, Section 5.1]. The
ideal sheaf defining F , annOX (⇡⇤OX/OX ) = HomOX (⇡⇤OX ,OX ), is also an ideal
in ⇡⇤OX which defines the conductor locus F ⇢ X in the normalisation. It is the
reduced pre-image of F .
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Note that a demi-normal scheme satisfies Serre’s condition (S2) and is Goren-
stein at all points of codimension one, i.e., satisfies (G1). Therefore, there is a
canonical sheaf !X and it is a divisorial sheaf which is locally free in codimension
one. In particular, we can choose a canonical Weil-divisor KX which is Cartier in
codimension one.

A pair (X, D) of a variety X and an effective Q-divisor D on X is semi-log-
canonical if X is demi-normal, F and the support of D have no component in
common, the divisor KX + D is Q-Cartier and the pair (X ,⇡�1⇤ D + F) is log-
canonical (cf. Kollár [35, Definition 2.8]).

A variety X is semi-log-canonical if the pair (X, 0) is semi-log-canonical. In
particular, the canonical divisor KX is Q-Cartier then, i.e., X is Q-Gorenstein.
A stable surface is a projective, connected, semi-log-canonical surface X whose
canonical divisor KX is ample. More generally, a stable log-surface is a semi-log-
canonical pair (X,1) where X is a connected and projective surface and such that
KX +1 is ample.

We will also need the notion of Du Bois-singularities; see Kollár [35, Chap-
ter 6] for a concise introduction. Since we will ultimately be concerned with
Gorenstein stable surfaces, for our purposes, it is enough to note the following
two facts. For one, semi-log-canonical singularities are Du Bois, see Kollár [35,
Corollary 6.32] or Kovács, Schwede, Smith [38, Theorem 4.16]. Conversely, Du
Bois-singularities which are demi-normal and Gorenstein are semi-log-canonical
by Doherty [13, Theorem 4.2].

1.1.3. Stable surfaces and their normalisations—Kollár’s glueing

Let X be a stable surface with normalisation ⇡ : X ! X and conductor loci F ⇢ X
and F ⇢ X . Then KX + F is an ampleQ-Cartier divisor. Moreover, the restriction
of ⇡ to F ! F is generically a double-cover and after passing to normalisations
F⌫ ! F⌫ , it is the quotient of a Galois involution ⌧ : F⌫ ! F⌫ . The surface X
can then be recovered from these data as the following diagram is a composition of
push-outs:

F⌫ ⌫
����! F ����! X

?
?
y/⌧

?
?
y⇡

?
?
y⇡

F⌫ ⌫
����! F ����! X.

This follows fromKollár’s Glueing Theorem [35, Theorem 5.13] and its proof there.
More precisely, this theorem captures when exactly the data (X , F, ⌧ ) arise from
a stable surface X (or a stable log-surface (X,1) in the presence of a boundary
divisor 1). Moreover, in this correspondence, X is Gorenstein if and only if the
involution ⌧ on F⌫ induces a fixed-point free involution on the pre-images of the
nodes of F , as shown by Franciosi, Pardini and Rollenske [18, Addendum to The-
orem 3.2].
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1.1.4. Divisors on demi-normal varieties

A (Q-)Weil divisor D on X is a Z- (respectively Q-)linear combination of integral
sub-varieties of codimension one in X . Its support is the reduced union of all sub-
varieties with non-trivial coefficient. If X is demi-normal, a divisor D on X is said
to be well-behaved if its support and the conductor locus F ⇢ X do not share a
common component. An effective Cartier divisor is a sub-scheme D ⇢ X whose
ideal sheafOX (�D) is invertible and D is said to be almost-Cartier (cf.Hartshorne
[25,26]), if the ideal sheaf is invertible at all points of codimension one, i.e., outside
a closed sub-scheme of codimension at least two.

An effective almost-Cartier divisor D ⇢ X gives rise to an effective Weil
divisor through

P
C⇢X length(OD,⌘C )C , where the sum runs through the integral

closed sub-schemes C ⇢ X and ⌘C 2 C is the generic point, the length being
computed as OC,⌘C -module. We will, by abuse of language, call a Weil divisor
almost-Cartier, if it is the difference of two effective divisors arising from almost-
Cartier divisors; furthermore, it is called Cartier if the corresponding almost-Cartier
generalised divisor is Cartier. As usual, a (Q-)Weil divisor is called Q-Cartier if it
has an integral multiple which is Cartier. For example, if L is a divisorial sheaf on
a demi-normal scheme, a regular section s 2 H0(X, L) gives rise to an effective
almost-Cartier divisor Z(s) with corresponding ideal sheaf im(s_ : L_ ! OX ).

1.1.5. Numerical connectedness

Recall that a Gorenstein curve C is said to be numerically m-connected if for every
generically Gorenstein strict sub-curve B ⇢ C , degB(!C |B)� (2 pa(B)� 2) � m
(cf. Catanese, Hulek, Franciosi, Reid [10]). This is a very useful generalisation of
the classical notion numerical connectedness of curves on smooth surfaces.

ACKNOWLEDGEMENTS. This is my PhD thesis [4]. To my supervisor, Sönke Rol-
lenske, I owe deep gratitude and appreciation. He also spotted a mistake in [4, The-
orem 3.11] and generously provided help with fixing it for this slightly abbreviated
version; cf. Remark 4.12. The thesis has benefited a lot from his continuous feed-
back, but also from conversations with Marco Franciosi, Andreas Krug, Colleen
Robles and Michael Lönne, for which I am grateful as well.

Finally, I am thankful for the funding which we have received from the Deutsche
Forschungsgemeinschaft (DFG) through my supervisor’s Emmy Noether-program
Modulräume und Klassifikation von algebraischen Flächen und Nilmannigfaltigkei-
ten mit linksinvarianter komplexer Struktur.

2. The geometry of the surfaces

In this first chapter we investigate the geometry of Gorenstein stable surfaces X
with K 2X = 2 and �(OX ) = 4. At first, we show that they all arise as double-covers
of the plane, branched over some curve of degree 8. Then we identify the birational
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isomorphism types of the minimal resolutions, give characterisations of the singu-
larities and we conclude with some results about the mixed Hodge structures on
their second cohomology.
Remark 2.1. Let X be a Gorenstein stable surface with K 2X = 2. If �(OX ) � 4,
then the stable Noether inequality due to Liu and Rollenske [41] implies pg(X) <

K 2X + 2. Thus, from

4  �(OX ) = 1� q(X) + pg(X)  4� q(X)  4

we conclude �(OX ) = 4, q(X) = 0 and pg(X) = 3. Conversely, if K 2X = 2 and
pg(X) = 3, then q(X) = 0 and so �(OX ) = 4. This will be shown in a manuscript
in preparation by Franciosi, Pardini and Rollenske [16].

2.1. The canonical linear system

The aim of this section is to show that the canonical map of a Gorenstein stable
surface X satisfying K 2X = 2 and �(OX ) = 4 is a double-cover of P2 branched
over an octic.

If X is a reducible Gorenstein stable surface, it may happen that some non-
trivial section of the canonical bundle is not regular; that is, it could vanish on a
component. In the case under consideration, however, this does not happen:

Lemma 2.2. Assume X is a Gorenstein stable surface with K 2X = 2. Then X has at
most two components and every non-trivial section of !X is regular. If, in addition,
pg(X) � 2, then |!X | has no fixed part and a general effective canonical divisor is
well-behaved and reduced.

Proof. We consider the decomposition X =
Ss

i=1 Xi into irreducible components
and assume that s � 2. Then there is a corresponding decomposition of the normal-
isation into disjoint components X =

`s
i=1 Xi where Xi is the component over Xi .

The conductor locus F ⇢ X accordingly decomposes as F =
Ss

i=1 Fi , Fi ⇢ Xi .
Since !X is invertible and ample, 2 = !2X =

Ps
i=1(!X |Xi )

2 is a sum of s
positive integers, so that we have to have s = 2 and !X |2X1 = !X |2X2 = 1. In
particular, the invertible sheaves ⇡⇤!X |Xi

⇠= !Xi (Fi ), i = 1, 2, are ample with
(⇡⇤!X |Xi )

2 = 1. This furthermore implies that every member of |!Xi (Fi )| is
reduced and irreducible.

We now show that every non-trivial section of !X is regular, i.e., that the nat-
ural maps pi : H0(X,!X ) ! H0(Xi ,!Xi (Fi )), i = 1, 2, given by pull-back and
restriction, are injective. Since ker(p1) and ker(p2) only have the trivial element in
common, it suffices to show that they agree. To this end, note that the restriction
of p1, to ker(p2) factors through the inclusion H0(X1,!X1)! H0(X1,!X1(F1))
(and likewise for p2 in place of p1). Thus, it suffices to prove H0(Xi ,!Xi ) = 0 for
both, i = 1, 2. But (Xi , Fi ) is a stable log-pair with !Xi (Fi )

2 = 1 and these are
classified by Franciosi, Pardini and Rollenske [18, Theorem 1.1]. From this result
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it follows that pg(Xi ) = 0, as claimed. Alternatively, it can be shown that a non-
trivial section of !X had to be nowhere vanishing, hence F2i = !Xi (Fi )

2 = 1, in
contradiction with Riemann-Roch.

It remains to show that if pg(X) � 2, then |!X | has no fixed part and a general
member is reduced and well-behaved. The generic fibre of a morphismwith reduced
source is reduced (see the Stacks Project [50, Tag 054Z]). Thus, if pg(X) � 2,
a general member of |!X | is generically reduced, hence reduced. Moreover, an
effective and reduced member of the canonical linear system is well-behaved since
a section of an invertible sheaf vanishes along the conductor with even multiplicity.

Since every member of |!X |Xi | is irreducible, if the linear system |!X | would
fix a curve C ⇢ Xi , then the restriction map |!X | ! |!X |Xi | could only be con-
stant, mapping everything to C . But assuming dim(|!X |) = pg(X) � 1 � 1, the
injective map |!X |! |!X |Xi | is not constant. Thus, |!X | cannot fix a curve. This
completes the proof.

The following examples show that a special canonical curve could very well
be non-reduced or non-well-behaved:

Examples 2.3.

1. (A canonical curve in the conductor) When we obtain X as a union of two
copies of P2 along a quartic F 2 |OP2(4)| with at worst nodal singularities,
then X is a Gorenstein stable surface with K 2X = 2 and �(OX ) = 4 and the
members of the canonical linear system are the unions of compatible lines in
either plane. Therefore, if F is a union of a general line and a smooth cubic,
then the corresponding line in the conductor is a member of the canonical linear
system;

2. (A well-behaved, non-reduced canonical curve) Let f : X ! P2 be a double-
cover branched along the union of a smooth septic and a general line (that is,
meeting the septic transversely). Then X is a normal Gorenstein stable surface
with K 2X = 2 and �(OX ) = 4 and the (non-reduced) pre-image of the line
occurs as a member of the canonical linear system on X .

In the following result we collect the most basic numerical properties of an arbitrary
member of the canonical linear system.

Lemma 2.4. Assume that X is a Gorenstein stable surface satisfying K 2X = 2 and
�(OX ) = 4. Let C 2 |!X | be a canonical curve. Then the following holds.

a) The curve C is Gorenstein and has at most two components;
b) The identities h0(OC) = 1 and �(OC) = �2 hold. In particular, C is con-

nected and h0(!C) = pa(C) = 3;
c) The invertible sheaf L := !X |C 2 Pic(C) is a square root of !C , i.e., L2 ⇠=
!C , and we have �(L) = 0 and deg(L) = h0(L) = 2.
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Proof.

a) Since X is Gorenstein, every canonical curve C on X is Gorenstein. Further-
more, KXC = 2 and KX has positive degree on each component of C , so that
there can be at most two such;

b) By adjunction, !C is isomorphic to the cokernel of the inclusion !2X (�C) !
!2X . The relevant fragment of the associated exact cohomology sequence, to-
gether with the Kodaira Vanishing Theorem for semi-log-canonical surfaces
(Liu and Rollenske [40, Proposition 3.1]) shows h1(!C) = h2(!X ). Serre du-
ality implies h0(OC) = h0(OX ) = 1 and applying the Riemann-Roch Formula
for Cartier divisors on semi-log-canonical surfaces due to Liu and Rollenske
[41, Theorem 3.1] gives ��(OC) = �(OX (�C)) � �(OX ) = 1

2 (�C)(�C �
KX ) = K 2X = 2. Therefore, �(OC) = �2 and pa(C) = 1 � �(OC) = 3.
Finally, from h0(OC) = 1 and Serre duality we conclude pa(C) = h1(OC) =
h0(!C);

c) That L is a square-root of !C follows from adjunction. Since L is the cokernel
of the inclusion OX ⇠= !X (�C)! !X we get �(L) = �(!X ) � �(OX ) = 0
by Serre duality. This readily implies deg(L) = pa(C)� 1 = 2.

This completes the proof.

We aim to show:

Proposition 2.5. Let C be a general, i.e., well-behaved and reduced, canonical
curve on a Gorenstein stable surface X satisfying K 2X = 2 and �(OX ) = 4. Then
C is numerically 4-connected and honestly hyperelliptic, the double-cover C ! P1
being defined by the sections of !X |C . Moreover, if C is reducible, then its two
components are smooth rational curves.

In the proof, we will use the following result, which is well known in the smooth
case. In the present version, it is presumably also well known to some experts. It
follows from Rosenlicht’s version of the Clifford Inequality for singular curves; see
Rosenlicht [48, Theorem 16] for the original proof or Kleiman and Martins [32,
Theorem 3.1] for a modern account and further references.

Lemma 2.6. Let C be a reduced and irreducible Cohen-Macaulay curve. An in-
vertible sheaf L 2 Pic(C) of degree one has at most two linearly independent global
sections and if there are in fact two such, then L is globally generated and the as-
sociated morphism �|L| : C ! P1 is an isomorphism.

Proof. Any L with h0(L) � 2 and deg(L) = 1 violates Clifford’s inequality for
singular curves 2(h0(L) � 1)  deg(L); thus, anything but h1(L) = 0 would lead
to a contradiction. But then �(L) = h0(L) � 2 and so pa(C) = 1 � �(OC) =
1+ deg(L)� �(L)  0. Hence, C ⇠= P1 and h0(L) = 2.
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Proof of Proposition 2.5. Recall from the earlier Lemmas 2.2 and 2.4 that a gen-
eral member C 2 |KX | is Gorenstein, reduced, well-behaved and has pa(C) = 3.
We showed, furthermore, that L := !X |C is a square-root of !C with deg(L) =
h0(L) = 2.

If C is irreducible, then it is clearly numerically 4-connected and if L were not
globally generated, say at x 2 C , then L(�x) were of degree one with two linearly
independent sections and so we had to have C ⇠= P1 by Lemma 2.6, in contradiction
with pa(C) = 3. Thus, if C is irreducible, �|L| : C ! P1 is a morphism of degree
two, as claimed.

If C is reducible, then C = C1 [ C2 with deg(L|C1) = deg(L|C2) = 1. Be-
low, we will show that h0(L|C1), h0(L|C2) � 2. Assuming this for the moment, it
follows that (Ci , L|Ci ) ⇠= (P1,OP1(1)) for both i = 1, 2, by Lemma 2.6. In partic-
ular, deg(!C |Ci ) � (2 pa(Ci ) � 2) = 4 for both i = 1, 2. Thus, C is numerically
4-connected and the Curve Embedding Theorem due to Catanese, Franciosi, Hulek
and Reid [10, Theorem 1.1] implies that L is globally generated.

It remains to show that h0(L|C1), h0(L|C2) � 2. Since |KX | has no fixed part,
every component admits a non-trivial section of L; thus, h0(L|C1), h0(L|C2) � 1.
If we had h0(L|C1) = 1, then we had to have a non-trivial section of L vanishing on
all of C1. But then the restriction of this section to H0(L|C2) were non-trivial and
vanishing on the separating conductor1, which had to have length deg(L|C2) = 1
then, in contradiction with the fact that in our case the separating conductor has to
have even length: Since C is Gorenstein, the length of the separating conductor on
Ci is precisely deg(!C |Ci )� (2 pa(Ci )�2) = 2� (2 pa(Ci )�2), an even number.
Hence, h0(L|C1) � 2 and by the same argument for C2 we also get h0(L|C2) � 2.
This finishes the proof.

Corollary 2.7. If X is a Gorenstein stable surface satisfying K 2X = 2 and
�(OX ) = 4, then the canonical linear system on X is base-point free and realises
X as a double-cover of P2 which is branched over an octic.

Proof. For a general canonical curve C 2 |KX |, the restriction !X |C is base-point
free by Proposition 2.5. Since h1(OX ) = q(X) = 0 by assumption (cf. Re-
mark 2.1), the restriction map H0(!X ) ! H0(!X |C) is surjective; hence, so is
the evaluation map H0(!X )! H0(!X |p) for every p 2 C . This implies that |KX |
is base-point free. Since KX is ample, the canonical map � := �|KX | : X ! P2
is finite and of degree K 2X = 2. Finally, if d 2 N is such that the branch divisor
is of degree 2d, then we have to have �⇤!X = �⇤�

⇤(!P2(d)) = !P2(d) � !P2 .
Thus, 3 = pg(X) = h0(!P2(d)� !P2) = h0(OP2(d � 3)), which is possible only
if d = 4; hence, the branch divisor is an octic.

1 The separating conductor is the conductor locus of the partial normalisation C1 q C2 ! C .
Actually, in this particular case, where we know a-posteriori that C1 ⇠= C2 ⇠= P1, this partial
normalisation is already the full normalisation and so we are talking about the usual conductor
locus.
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The following corollary is equivalent to the former; we present a separate
proof, though, because it shows how to compute the canonical ring from the canon-
ical ring of a general canonical curve:

Corollary 2.8. The canonical ring R(X,!X ) of a Gorenstein stable surface X with
�(OX ) = 4 and K 2X = 2 is isomorphic to C[x0, x1, x2, z]/(z2 � f8), where x0, x1
and x2 are of degree 1 and z is of degree 4 and where f8 2 C[x0, x1, x2] is a
non-trivial homogeneous polynomial of degree 8.

Proof. Let x0 2 H0(!X ) be a general section, such that its associated canonical
divisor C = (x0)0 2 |KX | is an honestly hyperelliptic curve of genus 3, as granted
by Proposition 2.5. Then the section ring of the invertible sheaf L = !X |C is iso-
morphic to C[y1, y2, z]/(z2� g8) for some homogeneous g8 2 C[x1, x2] of degree
8, where deg(y1) = deg(y2) = 1 and deg(z) = 4, as shown by Catanese, Fran-
ciosi, Hulek and Reid [10, Lemma 3.5]. By Kodaira vanishing and since q(X) = 0,
the restriction map R(X,!X ) ! R(C, L) is surjective and the kernel is gener-
ated by x0. This is easily seen to imply that the associated map C[x0, x1, x2, z]!
R(X,!X ) is surjective with kernel generated by z2 � f8 for some homogeneous
f8 2 C[x0, x1, x2] of degree 8 which lifts g8 2 C[x1, x2].

We conclude with the remark that conversely, a sufficiently nice plane octic
gives rise to a Gorenstein stable surface with the desired invariants. Precisely, a
double-cover X ! P2 branched over a divisor B is semi-log-canonical if and only
of the pair (P2, 12 B) is log-canonical, by Alexeev and Pardini [3, Lemma 2.3]. For
later reference, we deal not just with a single curve, but with a family of such.

Proposition 2.9. If B ⇢ P2S is a flat family of octics, it is in particular a relative
Cartier divisor. Thus, we can form the double-cover X ! PS branched over
B. Assume that every fibre Bs , s 2 S(C), is such that the pair (P2, 12 Bs) is log-
canonical. Then the composition f : X ! P2S ! S is a flat family of Gorenstein
stable surfaces Xs , s 2 S(C), such that K 2

Xs
= 2 and �(OXs

) = 4. Furthermore,
f⇤!X/S is free and B ⇢ P2S can be recovered up to isomorphism as the branch
divisor of the double-cover X! PS( f⇤!X/S).

Proof. At first, suppose that we are dealing with a single double-cover ' : X ! P2,
branched over an octic B 2 |OP2(8)| such that the pair (P2, 12 B) is log-canonical,
so that X is semi-log-canonical, as discussed above. Note that since ' is finite and
!X = '⇤!P2(4) = '⇤OP2(1), the canonical divisor on X is Cartier and ample,
i.e., X is Gorenstein and stable. The invariants K 2X = 2 and �(OX ) = 4 are
computed as follows: KX defines a double-cover onto P2, hence, K 2X = 2 and
�(OX ) = �('⇤OX ) = �(!P2 � !P2(4)) = 1+ 3 = 4.

Now let S be a scheme of finite type over C and let B ⇢ P2S be a relative
Cartier divisor of degree 8. Let X ! P2S be the double-cover branched over B;
more precisely, the cover taking the square-root of the section ofOP2S/S

(8) defining
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B. Since '⇤OX = OP2S
�OP2S

(�4) is locally free, the double-cover morphism is
flat; thus, f : X! S is flat.

For every s 2 S(C), the fibre Xs naturally identifies with the double-cover
of P2 branched over Bs . Thus, Xs is a Gorenstein stable surface if and only if
(P2, 12 Bs) is log-canonical. Let us suppose that this is indeed the case for all s 2
S(C). Then all fibres ( f⇤!X/S)(s) = H0(Xs,!Xs

), s 2 S(C), are 3-dimensional
and by naturality we observe X as another double-cover g : X ! PS( f⇤!X/S).
On the other hand, f⇤!X/S is the direct image of '⇤!X/S = !P2S/S

� !P2S/S
(4) =

OP2S/S
(�3) � OP2S/S

(1) along the projection P2S ! S; thus, f⇤!X/S
⇠= OS ⌦

H0(P2,OP2(1)) ⇠= O3S . Tracing through the sequence of morphisms involved
shows that the induced isomorphism P2S ⇠= PS( f⇤!X/S) identifies the double-
covers f and g. This proves the claim.

Recall that the log-canonical threshold of an effective divisor D ⇢ X on a
variety X is the number lcth(X, D) = sup{t � 0 | (X, t D) is log-canonical}, see
Kollár [35, Section 8.2]. Thus, the pair (P2, 12 B) is log-canonical if and only if the
log-canonical threshold of B (in P2) is at least 12 . For brevity, we introduce a term
for the plane curves with this property.

Definition 2.10. A plane curve C ⇢ P2 is said to be half-log-canonical if the pair
(P2, 12C) is log-canonical; equivalently, if lcth(P2,C) � 1

2 .

This definition is independent of the embedding since the condition on the
singularities is (analytically) local.

2.2. The normalisation and the minimal resolution

As we have shown above, every Gorenstein stable surface X with K 2X = 2 and
�(OX ) = 4 arises as a double-cover of the plane, branched over an octic curve
B 2 |OP2(8)| such that the pair (P2, 12 B) is log-canonical. For such an octic, the
ceiling d12 Be is supposed to be reduced, by definition. That is, all integral compo-
nents of B have to appear with coefficient  2. In particular, every admissible B
decomposes as a sum B = B0+2B00 of (possibly trivial) reduced effective divisors.
Moreover, B00 can have at worst nodes and is smooth at the points of intersection
with B0; a proof can be found in Kollár [35, Corollary 2.32], but this also follows
from the classification of semi-log-canonical hypersurface singularities discussed
in Proposition 2.15 below.

If ⇡ : X ! X denotes the normalisation, then by a result of Pardini [44, Propo-
sition 3.2], the composition ' = ' �⇡ : X ! P2 is the double-cover branched over
B0 and the conductor loci F ⇢ X and F ⇢ X are the reduced pre-images of B00
under ' and ', respectively.

This proves most of the following statement which we state for later reference.
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Proposition 2.11. Let X be a Gorenstein stable surface with numerical invariants
K 2X = 2 and �(OX ) = 4, let � : X ! P2 be the canonical double-cover and let
B ⇢ P2 be the branch divisor. Then the following holds:

a) The pair (P2, 12 B) is log-canonical; in particular, there is a unique decomposi-
tion B = B0 + 2B00 with B0, B00 effective and reduced; B00 is nodal;

b) The composition of � : X ! P2 with the normalisation ⇡ : X ! X is the
double-cover branched over B0 and the reduced pre-image of B00 in X (respec-
tively in X) is the conductor locus F ⇢ X (respectively F ⇢ X);

c) The morphism (� �⇡)|F : F ! B00 is a double-cover branched over the Cartier
divisor B0|B00 and it factors through the isomorphism �|F : F ! B00.

Proof. We have discussed a) and b) right above the statement of the proposition.
Regarding c): That (� � ⇡)|F : F ! B00 is a double-cover branched over the

Cartier divisor B0|B00 follows from b). It also follows that �|F : F ! B00 is of
degree one, hence, generically an isomorphism. It remains to show that it is an
isomorphism everywhere. Since B00 has only nodes and �|F is finite, it suffices to
observe that �|F is bijective, which holds by construction.

2.2.1. The birational geometry of the minimal resolutions

The birational geometry of the surfaces under investigation strongly depends on the
number and degrees of the irrational singularities. Recall that an isolated surface
singularity (X, x) is called irrational if it is not rational; i.e., if the exceptional
divisor E in the minimal resolution (Y, E)! (X, x) has strictly positive arithmetic
genus. Its degree is the negative of the self-intersection number �E2. From the
classification of semi-log-canonical hypersurface singularities in dimension two, it
follows that if (X, x) is irrational and semi-log-canonical, then pa(E) = 1 (see
Proposition 2.15 below), i.e., (X, x) is elliptic. It also follows that the only elliptic
semi-log-canonical singularities occurring on double-covers of a smooth surface
have to have degree 1 or 2. We distinguish two cases: If E is a smooth elliptic
curve, (X, x) is said to be simply elliptic and otherwise cuspidal (or a cusp). The
latter may happen if E is a cycle of rational curves.

The holomorphic Euler characteristic of the resolution is easy to compute:

Lemma 2.12. Let X be a log-canonical surface with k irrational singularities. For
any resolution of singularities Y of X , we have �(OY ) = �(OX )� k.

Proof. Since the holomorphic Euler characteristic is a birational invariant of smooth
surfaces, we can suppose that f : Y ! X is the minimal resolution. Then f has
connected fibres since X is normal, �(R1 f⇤OY ) = h0(R1 f⇤OY ) = k by Liu,
Rollenske [40, Lemma A.6] and Ri f⇤OY = 0 for all i � 2 for dimension reasons.
Thus, �(OY ) = �( f⇤OY )� �(R1 f⇤OY ) = �(OX )� k, as claimed.

The following two results are part of a manuscript in preparation by Franciosi,
Pardini and Rollenske [16]. For simplicity, we restrict both to the relevant case.
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Proposition 2.13 (Franciosi, Pardini, Rollenske). Assume that X is a normal
Gorenstein stable surface satisfying K 2X = 2 and �(OX ) = 4. Let k be the num-
ber of elliptic singularities of X and suppose that the minimal resolution Y of X
satisfies (Y ) = �1. Then either Y is rational with �(OY ) = 1 and k = 3, or
�(OY ) = 0 and k = 4; in the latter case, the four elliptic singularities are simple.

Proof after Franciosi, Pardini and Rollenske [16]. With the same proof as in Fran-
ciosi, Pardini, Rollenske [18, Lemma 4.5] we get that either Y is rational (�(OY ) =
1), or Ymin is ruled of genus 1 (�(OY ) = 0) and that in the latter case all elliptic
singularities are simple. Application of Lemma 2.12 yields �(OY ) = 4� k, which
completes the proof.

Theorem 2.14 (Franciosi, Pardini, Rollenske). Let X be a normal Gorenstein
stable surface satisfying K 2X = 2. Denote by f : Y ! X its minimal resolution
and by � : Y ! Ymin a minimal model of Y . Furthermore, let d be the sum of the
degrees of the elliptic singularities. If (Y ) � 0, then there are only the following
possibilities:

i) Y = Ymin is of general type, K 2Y = 2 and X is its canonical model (d = 0);
ii) Ymin is of general type with K 2Ymin = 1, � : Y ! Ymin is the blow up in one

point and X has a unique elliptic singularity of degree 1 (d = 1);
iii) Y = Ymin is properly elliptic ((Y ) = 1); in this case, d = 2;
iv) (Y ) = 0 or 1, � : Y ! Ymin is a blow-up in one point and d = 3;
v) (Y ) = 0, � : Y ! Ymin is a sequence of two blow-ups and d = 4.

Proof after Franciosi, Pardini and Rollenske [16]. Let Ei ⇢ Y , i = 1, . . . , n, be
the exceptional curves over the elliptic singularities and let G =

Pm
i=1 Gi ⇢ Y be

the exceptional divisor contracted by � : Y ! Ymin. Then the canonical divisor can
be written in two different ways as KY = f ⇤KX�

Pn
i=1 Ei and KY = � ⇤KYmin+G.

The sum of degrees can be written as d = KY
Pn

i=1 Ei = �
Pn

i=1 E
2
i � n. We

have Gi f ⇤KX � 1 for each component Gi ⇢ G since KX is ample and since no
component of G is contracted by f . Moreover, every (�1)-curve Gi ⇢ G satisfies
Gi E � 2, for�1 = Gi KY = Gi f ⇤KX �Gi E � 1�Gi E . In particular, GE > m
unless m = 0. We introduce the two central (in-)equalities:

d = KY E = KY ( f ⇤KY � KY ) = f ⇤K 2X � K 2Y = 2� K 2Ymin + m
2 = KY f ⇤KX = � ⇤KYmin f

⇤KX + G f ⇤KX � �
⇤KYmin f

⇤KX + m � m .

Using K 2Ymin � 0 (from (Y ) � 0), they yield d  m + 2  4. The cases i)–v)
correspond to the possible values for d = 0, . . . , 5, respectively:

Let d = 0. Then KY = f ⇤KX is big and nef; this is case i).
Let d = 1. Then K 2Ymin = 1+m � 1, so that KYmin is minimal of general type.

Moreover, 1 = d = GE > m; thus, m = 0. This is case ii).
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Let d = 2. Then K 2Ymin = m. But m � 1 is impossible, for 1 = d = KY E =

GE + � ⇤KYminE > m. Hence, we have to have Y = Ymin and K 2Y = m = 0. On
the other hand, (Y ) 6= 0, since KY f ⇤KX = 2 > 0; thus, (Y ) = 1, as in case iii).

Let d = 3. Then K 2Ymin = m � 1, hence m � 1. In fact, m = 1: If we
had m � 2, then Ymin would be minimal of general type and by 3 = KY E =
KYmin�⇤E + GE and GE > m � 2 would imply KYmin�⇤E = 0. In particu-
lar, we would have to have KYmin�⇤Ei = 0 for each component Ei of E . But
since Ymin had to be minimal of general type, the components Ei had to be rational
then, which is impossible. Therefore, m = 1 and K 2Ymin = 0, corresponding to
case iv).

Finally, let d = 4. Then m = 2 and K 2Ymin = 0, for 0  K 2Ymin = m � 2
and m  2. To complete the proof, it is left to show that (Y ) = 0. Indeed, for
2 = � ⇤KYmin f ⇤KX +m to hold, we have to have � ⇤KYmin f ⇤KX = 0; together with
K 2Ymin = 0 this implies that (Y ) = 0 and we arrive at case v).

The birational classification in the non-normal case will be established as
needed later. It will turn out that the only reducible normalisation is P2qP2 and the
possible irreducible normalisations are K3-surfaces, rational, or ruled over a curve
of genus 1.

2.3. The singularities

Since double-covers of smooth varieties branched over Cartier divisors are sub-
varieties of the total space of a line bundle, defined by a single regular equation, the
surfaces under investigation have to have hypersurface singularities, if any. There-
fore, the classification of semi-log-canonical hypersurface singularities (see Liu,
Rollenske [39]) gives a complete list of analytic germs of singular points we might
get. Since we are dealing with double-cover singularities, we only need to consider
those of multiplicity two. For simplicity, we restrict our attention to the singularities
of the branch curves.

Proposition 2.15. Let C ⇢ P2 be a plane curve of degree 8. Then the double-cover
of P2 branched over C is a Gorenstein stable surface X if and only if the analytic
germs of the singular points of C are among those listed in Table 2.1.

Proof. This is just the relevant part (multiplicity 2) of the list given by Liu and
Rollenske [39] after appropriate transformations where necessary and with the re-
finement of the series T2,•,• into X•, J2,• and Y•,•.

Remark 2.16. Of course, du Val-singularities A•, D•, E• on the branch curve cor-
respond to canonical singularities on the surface. Table 2.2 provides a correspon-
dence for the remaining types of singularities.
Remark 2.17. If a Gorenstein stable surface X with K 2X = 2 and �(OX ) = 4
has an An- or Dn-singularity, then n  48, since the maximal Milnor number of a
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Symbol Equation in C[x, y] Conditions µ

An x2 + yn+1 n � 1 n
Dn y(x2 + yn�2) n � 4 n
E6 x3 + y4 6
E7 x3 + xy3 7
E8 x3 + y5 8

X9 x4 + �(xy)2 + y4 �2 6= 4 9
J10 x3 + �(xy)2 + y6 4�3 + 27 6= 0 10

X p = T2,4,p�5 x4 + (xy)2 + y4+p�9 p � 10 p
Yr,s = T2,4+r,4+s x4+r + (xy)2 + y4+s r, s � 1 9+ r + s
J2,p = T2,3,p+6 x3 + (xy)2 + y6+p p � 1 10+ p

A1 x2 0
D1 x2y 1
J2,1 x3 + (xy)2 4
X1 x4 + (xy)2 5
Yr,1 xr+4 + (xy)2 r � 1 r + 5
Y1,1 (xy)2 4

Table 2.1. The classification of half-log-canonical curve singularities. We refer to
Arnold, Gusein-Zade, Varchenko [6, Chapter 15] for the notation.

Symbol Branch curve singularity Double-cover singularity
X9 ordinary quadruple-point simply elliptic of degree 2
X• degenerate quadruple-point cuspidal elliptic of degree 2
Y•,•

J10 non-degenerate [3; 3]-point simply elliptic of degree 1
J2,• degenerate [3; 3]-point cuspidal elliptic of degree 1

A1 double-line double normal crossing
D1 double-line + transversal line pinch point
J2,1 double-line + tangential line degenerate cusps

X1,Y•,1 double-line + double-point
Y1,1 transversely meeting double-lines

Table 2.2. Dictionary: branch curve singularities$ surface singularities.

singular point of the branch curve of the canonical double-cover, which has degree
8, does not exceed 49 and this maximal number is attained only by the union of
eight concurrent lines (cf. Lemma A.5), which is of course neither An nor Dn .
(Similar bounds exist for the other families listed above.) However, also the upper
bound n  48 is most probably not sharp and determining the maximal n such that
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there exists a plane curve C of fixed degree with an An-singularity, e.g., is a hard
question2. For example, the maximal An-singularity on a quintic is for n = 12, e.g.,
by Wall [53], and on a sextic, the maximal An is for n = 19, which follows from
Yang’s classification [55]. This seems to be about everything that is known in this
direction, at least according to a related discussion on MathOverflow answered by
user JNS [52].

2.4. The mixed Hodge structure on H2(X)

The stratification we will define and study later is motivated by recent work (par-
tially in progress) of Green, Griffiths, Kerr, Laza and Robles [21, 22, 31, 46, 47]
about degenerations of Hodge structures. Roughly, there should be a stratification
of the moduli space of our surfaces under investigation, according to the type of po-
larised mixed Hodge structure on H2(X). It should be noted that the details about
this Hodge-theoretic stratification are subject to work in progress. Therefore, we
can only give an informal description. We refer to Robles’ exposition [47] and the
references therein for more details; for the basic theory of mixed Hodge structures
see Durfee’s short introduction [15] and the comprehensive account by Peters and
Steenbrink [45].

Given a flat Gorenstein degeneration X ! S, Xs smooth projective, we can
associate a limiting polarised mixed Hodge structure with the family of Hodge
structures H2(Xs; C). The Deligne splitting gives an R-split polarised mixed
Hodge structure. Furthermore, representation theory gives rise to a relation among
these Hodge diamonds, called the polarised relations. They reflect which Hodge
structures are more degenerate than others.

Since h2,0(X) = h0,2(X) = pg(X) = 3 for a smooth surface X of general type
satisfying K 2X = 2 and �(OX ) = 4, our case of interest corresponds to the Hodge
numbers h = (3, h1,1, 3). That is, the Deligne splitting H2(X; C) =

L
p,q I p,q

of the mixed Hodge structures has a Hodge diamond (indicating dim(I p,q)) of the
form

p

qr

r

s

s

s

s
3−r−s

3−r−s

h1,1−r−2s

where r, s � 0, r+s  3 and r+2s  h1,1. With this diamond denoted by ⌃r,s , the
polarised relation is defined as ⌃r,s  ⌃t,u if and only if r  t and r + s  t + u,

2 This was pointed out to the author by Michael Lönne.
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cf. Robles [47, Example 4.22]. This is illustrated in the degeneration Diagram 2.1.
We will ignore h1,1, just as we will ignore canonical surface singularities.

♦0,0 ♦0,1

♦0,2

♦1,0

♦0,3

♦1,1

♦1,2

♦2,0

♦2,1 ♦3,0

Figure 2.1. Degeneration diagram for the Hodge types.

Dolgachev [14] has introduced the notion of cohomologically insignificant degen-
erations: IfX! 1 is a flat and projective family of varieties, where1 ⇢ C is the
unit disc and where all fibres Xs , s 2 1⇤ = 1 � 0 are smooth, we can compare
Deligne’s natural mixed Hodge structure on the cohomology of the special fibre
Hn(X0; R) and the limiting mixed Hodge structure on Hn(Xs; R), s 6= 0, via the
specialisation map. The varietyX0 is said to be cohomologically n-insignificant if
these mixed Hodge structures on Hn agree on (p, q)-components where pq = 0
for all such families withX0 as special fibre. By a result of Steenbrink [49, Theo-
rem 2], a projective variety with at worst du Bois singularities is cohomologically
insignificant, that is, cohomologically n-insignificant for all n. This applies in par-
ticular to semi-log-canonical surfaces since they are Du Bois (cf. Kollár [35, Corol-
lary 6.32] or Kovács, Schwede, Smith [38, Theorem 4.16]). For our purposes, it is
therefore enough to work with Deligne’s mixed Hodge structure.

Definition 2.18. Let X be a Gorenstein stable surface satisfying K 2X = 2 and
�(OX ) = 4. Then X is said to be of Hodge type ⌃r,s if r = dim(H2(X; C))(0,0)

and s = dim(H2(X; C))(1,0), where (H2(X; C))(p,q) is the (p, q)-component of
Deligne’s mixed Hodge structure on H2(X; C).

It can be shown that the moduli space under investigation in the forthcoming
sections is stratified according to the Hodge type; in fact, the irrationality strat-
ification defined below gives a refinement of this stratification, as follows from
Proposition 4.13.

For the computations of Hodge types of a Gorenstein stable surface X , we have
to know the Hodge structure on its minimal resolution. We will do the computation
for our surfaces of interest as soon as we know their minimal resolutions. To get an
idea of how this is done, we show how to read off the number of cuspidal elliptic
singularities from the Hodge type.

Let X be a normal Gorenstein stable surface satisfying pg(X) = 3 and with
irrational singularities p1, . . . , pn , of which precisely 0  m  n are cusps. Let
f : Y ! X be the resolution at the pi , so that Y has only rational singularities.
We denote the exceptional curve over pi by Ei and their disjoint unions by D =`n

i=1{pi } and E =
`n

i=1 Ei . Moreover, we let i : Dan ! Xan and j : Ean ! Y an
denote the inclusion maps. Then we get a Mayer–Vietoris exact sequence of mixed
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Hodge structures, by Peters and Steenbrink [45, Corollary-Definition 5.37]

Hk(X; C)
( f ⇤,i⇤)
����! Hk(Y ; C)� Hk(D; C)

j⇤� f |⇤E����! Hk(E; C)! Hk+1(X; C).

Focussing on H2(X; C) and using that H1(D) = H2(D) = 0 for dimension rea-
sons, we get the following exact sequence:

H1(Y ; C)!
nM

i=1
H1(Ei ; C)! H2(X; C) �! H2(Y ; C).

If pi is simply elliptic, then Ei is an elliptic curve and H1(Ei ) carries a pure Hodge
structure of weight 1 with h1,0(Ei ) = 1. If pi is a cusp, so that Ei is a cycle of
rational curves, then H1(Ei ) is one-dimensional and its mixed Hodge structure is
concentrated in weight 0. Concerning the mixed Hodge structure on H2(Y ), since
we are only interested in the (p, 0)-components, we can pretend that Y is regular
since the rational singularities do not contribute.

Since (H1(Y ))(0,0) = (H2(Y ))(0,0) = 0, we conclude that (H2(X))(0,0) is
isomorphic to the (0, 0)-component of

Ln
i=1 H1(Ei ). That is, dim(I (0,0)) = m,

the number of cusps. Likewise, since H2(Y ) has no part of weight 1, the part of
weight 1 in H2(X) entirely comes from

Ln
i=1 H1(Ei ), so that dim(I (1,0))  n�m

is at most the number of simply elliptic singularities. To actually compute the di-
mension of the (1, 0)-component, we have to know more about the map H1(Y )!Ln

i=1 H1(Ei ). So far, this discussion shows:

Lemma 2.19. Let X be a normal Gorenstein stable surface with pg(X) = 3 having
exactly r cuspidal elliptic singularities. Then X is of Hodge type ⌃r,s for a certain
0  s  3� r . In this case the number of simply elliptic singularities is at least s.

3. Remarks about the moduli space

Our moduli space of interest is the KSBA-compactification of the Gieseker moduli
spaceM2,4 of canonical models of surfaces of general type with invariants K 2X = 2
and �(OX ) = 4. For our techniques to apply, we restrict to the open locus of
Gorenstein surfaces MGor

2,4 ⇢M2,4. Since this extra condition happens to simplify
the definition of the moduli problem, we recall the details only for the space of
Gorenstein stable surfaces.

LetMGor
2,4 be the category whose objects are pairs (T, f : X! T ) consisting

of a scheme T of finite type over C and a flat family f : X ! T of Gorenstein
stable surfaces Xt , t 2 T (C), all satisfying K 2

Xt
= 2 and �(OXt

) = 4. The
morphisms are fibre squares, as usual, so that the codomain fibration exhibitsMGor

2,4
as a category fibred in groupoids over the category of complex schemes of finite
type. According to the seminal works of Kollár, Shepherd-Barron [33, 34] and
Alexeev [1,2],MGor

2,4 is a separated Deligne–Mumford stack (in the étale topology),
coarsely represented by a quasi-projective schemeMGor

2,4 .
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Remark 3.1. If we consider only smoothable surfaces inM2,4, thenMGor
2,4 is dense,

since every Gorenstein stable surface X with K 2X = 2 and �(OX ) = 4 is smooth-
able by Proposition 2.7.

We will now explain how the results of the previous chapter relateMGor
2,4 to the

following moduli space of polarised curves. The linear system of plane octic curves
H := |OP2(8)|(= Hilb8n�20(P2)) comes with its universal family B ⇢ H ⇥ P2,
which is a relative Cartier divisor with respect to the projection p1 : H ⇥ P2 !
H . Performing the relative double-cover branched over B yields a flat, projective
family ⇡ : X! H of two-dimensional schemes. The locus U ⇢ H parametrising
curves B such that the fibre XB ⇢ X is semi-log-canonical is precisely the locus
of half-log-canonical curves.

Lemma 3.2. In the notation of the preceding paragraph, the locus U ⇢ H param-
etrising curves B ⇢ P2 such that the fibre XB is semi-log-canonical is open.

Proof. We will use a proof strategy outlined by Kovács [36]. By construction,
every fibreXB of ⇡ : X! H is a double-cover of the plane, hence Gorenstein. A
Gorenstein singularity is semi-log-canonical if and only if it is Du Bois; thus, the
locus U ⇢ H with semi-log-canonical fibres equals the locus with Du Bois-fibres.
Since H is smooth, the Du Bois-locus is open, by Kovács’ and Schwede’s inversion
of adjunction for Du Bois pairs [37, Theorem A; Lemma 4.5].

Restricting the family X to U defines a morphism U ! MGor
2,4 , B 7! [XB],

which is surjective by Corollary 2.7. Moreover, it induces an isomorphism of stacks:

Theorem 3.3. As above, letU ⇢ |OP2(8)| be the space of half-log-canonical plane
curves of degree 8. Taking the double-cover branched over the curves induces an
isomorphism of algebraic stacks

[U/PGL(3, C)]!MGor
2,4 .

In particular,MGor
2,4 is smooth.

Proof. Using the notation introduced above, we will construct the inverse morphism
and show that it is an isomorphism. By Proposition 2.9, any object ( f : X! T ) 2
MGor

2,4 over T is a relative double-cover of a projective bundle PT ( f⇤!X/T ) with
a relative branch divisor B ⇢ PT ( f⇤!X/T ). Thus, the associated PGL(3, C) =

Aut(P2)-torsor P comes with an induced PGL(3, C)-equivariant morphism P !
U corresponding to the family of octics. This defines an element of [U/PGL(3, C)]
over T . It is straightforward to check that this assignment is functorial for pull-
backs along morphisms T 0!T , thus defining a morphismMGor

2,4![U/PGL(3, C)].
It is fully faithful and its essential image consists of those objects whose underlying
PGL(3,C)-torsors are locally trivial in the Zariski topology, yet again by Proposi-
tion 2.9. Thus, it suffices to show that this is the case for all PGL(3, C)-torsors P
with a PGL(3, C)-equivariant morphism P ! U . In other words, what we have to
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show is that if P ! T is an étale-locally trivial P2-bundle with a relative divisor
B ⇢ P which is fibre-wise an octic, then P is locally trivial in the Zariski topology.
But since OP(�3KP/T � B) restricts to OP2(1) on the geometric fibres, this is
indeed the case.

For later reference, we observe that the classifying morphism U ! MGor
2,4

maps PGL(3, C)-invariant locally closed sets to locally closed sets, hence, also
PGL(3, C)-invariant stratifications to stratifications. For this, it is enough to show
that it is a geometric quotient in the sense of Mumford [43, Definition 0.6], for then
MGor
2,4
⇠= U/G carries the quotient topology.

Corollary 3.4. The coarse moduli space U/PGL(3, C) ⇠= MGor
2,4 is a quasi-pro-

jective scheme and the classifying morphism U ! U/PGL(3, C) is a geometric
quotient. In particular, it maps PGL(3, C)-invariant locally closed sets to locally
closed sets.

Proof. Since MGor
2,4 has a quasi-projective moduli space MGor

2,4 by the works
of Kollár, Shepherd-Barron [33] and Alexeev [1], we conclude that so does
[U/PGL(3, C)]. This space, U/PGL(3, C), is then the categorical quotient in the
category of schemes. On the other hand, since half-log-canonical plane octics can
be shown to be GIT-stable, cf.Remark 5.2, the classifying mapU ! U/PGL(3, C)
equivariantly factors through the GIT-quotient Hs ! Hs//PGL(3, C), which is
geometric byMumford [43, Theorem 1.10, cf.Chapter 1 §4]. (Here, Hs ⇢ |OP2(8)|
is the locus of GIT-stable points with respect to the PGL(3, C)-action.) But then
the classifying morphism U ! U/G has to be geometric as well, as claimed.

Remark 3.5. The moduli space under consideration is thus birationally equivalent
to the moduli space of plane curves of degree 8, for which, according to Böhning,
Graf von Bothmer and Kröker [8, page 506], it is not known whether it is rational
or not.
Question 3.6. It is tempting to call U/PGL(3, C) the moduli space of half-log-
canonical octics, but it is not obvious whether U/PGL(3, C) is really a moduli
space of curves, or one of polarised curves. Are there pairs of abstractly, but not
projectively isomorphic half-log-canonical plane octics? Note that by Hassett [27,
Proposition 2.1], two abstractly isomorphic nodal plane octics are indeed projec-
tively isomorphic.

For further questions and comparisons betweenMGor
2,4 and different moduli

spaces of curves, see Chapter 5.

4. A Stratification of the moduli space

As is well known, normalising usually does not work well in flat families. For
the moduli space at hand, we can get hands on this quite explicitly, in that we
can cover it by strata on which the normalisation can be performed in families.
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Recall from Proposition 2.11 that if f : X ! P2 is the canonical double-cover
with branch curve B, then B = B0 + 2B00 for reduced effective divisors B0, B00
and the composition f = f � ⇡ : X ! P2 is the double-cover branched over B0;
furthermore, the conductor on X is the pull-back of B00. In other words, the non-
reduced part of the branch curve controls the non-normal locus of X . This motivates
the first approximation to a stratification.

Definition 4.1 (The (non-)normality stratification). For a non-negative integer
0  a  4 we letM(a) ⇢MGor

2,4 be the locus of those surfaces whose branch divisor
B = B0 + 2B00 ⇢ P2 for the canonical double-cover is such that B00 = d12 Be is of
degree a. The open and dense subset consisting of the normal surfaces is denoted
byN := M(0).

Since the degree of the branch divisors B is eight, we clearly only need to
consider a = 0, . . . , 4 to coverMGor

2,4 as
S4

a=0M(a).

Proposition 4.2. For each a = 0, . . . , 4, the subsetM(a) ⇢MGor
2,4 is locally closed

and its closure in MGor
2,4 is M(a) =

S
ab4M(b).

Proof. As before, we letU ⇢ |OP2(8)| be the open sub-scheme parametrising half-
log-canonical plane octic curves and let f : U ! MGor

2,4 be the classifying map.
By Corollary 3.4, it suffices to show that the pre-images f �1

�
M(a)� define such a

stratification of U . The locus Ua ⇢ U of half-log-canonical curves B = B0 + 2B00
with deg(B00) � a may alternatively be characterised as the locus of B 2 U such
that deg(Bred)  8� a.

Note that quite generally, the space Vn ⇢ |OP2(8)| consisting of the divisors B
such that deg(Bred)  n is closed, being a union of closed sub-spaces

Vn =
[

P
i ai ni=8,P
i nin

X

i
ai |OP2(ni )|,

where
P

i ai |OP2(ni )| is shorthand notation for the image of the morphism

Y

i
|OP2(ni )|! |OP2(8)|, (Bi )i 7!

X

i
ai Bi .

Therefore,Ua = U \V8�a is closed, f �1(M(a)) = Ua \Ua+1 is locally closed and
from the above presentation it easily follows that f �1(M(a)) = Ua . This completes
the proof.

This very rough stratification will be refined in the following sections.



1158 BEN ANTHES

4.1. The locus of normal surfaces

We now turn to the stratification of the moduli space N = M(0) of normal Goren-
stein stable surfaces with K 2X = 2 and �(OX ) = 4. We stratifyN according to the
number of irrational singularities, their degree and whether they are simply elliptic
or cusps.
Definition 4.3 (The irrationality stratification). Given non-negative integers a,
b, c and d satisfying a + b + c + d  4 we define the subsetN1a1b2c2d of the stra-
tum of normal surfaces N consisting of those surfaces having precisely a simply
elliptic singularities of degree 1, b cusps of degree 1, c simply elliptic singularities
of degree 2 and d cusps of degree 2. To ease notation, indices with exponent 0 are
omitted, an exponent of 1 will be omitted and so on, e.g., 21 = 2, 12 = 11, etc.

For example, an X 2 N1222 = N11102221 has exactly one simply elliptic singu-
larity of degree one, two simply elliptic singularities of degree two and one cusps of
degree two. The empty list of degrees corresponds to the stable surfaces with only
canonical singularities, i.e.,N; = N10102020 = M2,4 is the dense open of canonical
surfaces.
Remark 4.4. By definition, the lociN1a1i2b2 j ⇢ N are pair-wise disjoint and since
the normal surfaces under investigation have at most four irrational singularities
(Theorem 2.14 and Proposition 2.13),N is indeed covered by the lociN1a1i2b2 j , as
a + b + i + j  4.
Remark 4.5. Local singularity theory, most notably Brieskorn’s result [9], implies
that that a singularity of type X p may degenerate to a singularity of type Xq with
q � p or certain singularities of type Y•,•, but none of them can degenerate to a
triple-point or to a milder quadruple-point. Similarly, a [3; 3]-point may degenerate
more and more, or it may even degenerate to a quadruple-point, but none of the
series X• or Y•,•. This prevents certain strata to appear at the boundary of other
strata. For example, the boundary of N2 is covered by all strata parametrising
surfaces with at least one (possibly degenerate) quadruple-point. More generally,
the closure of N1a1b2c2d in N is contained in the union of the strata N1a01b02c02d0
where a0 + b0 � a + b and b0 � b, as well as c0 + d 0 � c + d and d 0 � d.

Proposition 4.6. The strata N1a1b2c2d ⇢ N are locally closed and the closure of a
stratum is contained in a union of strata.

Proof. Let U ⇢ |OP2 | be the locus parametrising half-log-canonical plane octics
and let V ⇢ U be the open sub-space parametrising reduced curves. Then the pre-
images of the strata under the classifying morphism V ! N ⇢MGor

2,4 are disjoint
and PGL(3, C)-invariant by construction. By Corollary 3.4, it suffices to show that
these pre-images are locally closed. This can be shown for each case separately by
elementary plane curve geometry. We omit the details and conclude the proof.

Remark 4.7. The motivation to consider not just the stratification according the
number and degree of irrational singularities, which is usually enough to get control
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over the birational geometry of the minimal resolution, but to distinguish between
simply elliptic and cuspidal singularities, comes from the relevance of the mixed
Hodge structure discussed in Section 2.4.

4.1.1. The strata of the irrationality stratification

We are ready to state and prove the main results about the irrationality stratification.

Theorem 4.8. All strataN1a1b2c2d with a+ b+ c+ d  3 and the two strataN132
andN24 are equidimensional of expected dimension 36� 9a� 10b� 8c� 9d. The
remaining strata are empty. Furthermore, the irreducible components of the strata
are pair-wise disjoint.

Proof. It follows from Proposition 2.13 and Theorem 2.14 that a+b+c+d  4 and
if a+b+c+d = 4, then b = d = 0. Moreover, Proposition A.10 shows thatN1122
andN123 are empty, as isN14 , by Proposition A.6. It remains to show that all other
strata are equidimensional, with all components pair-wise disjoint and of expected
dimension. Since we have translated the problem into plane curve geometry, we
can systematically use the computer algebra system Macaulay2 [20] to

1. check which strata are non-empty (by producing elements explicitly),
2. find all irreducible components and
3. compute their dimension.

The scripts can be obtained from [5] and the explanations about how they work are
the content of Appendix B.

Which stratum is dealt with where is listed in Table 4.1.

Remark 4.9. If a stratumN1a1b2c2d decomposes into the union of multiple compo-
nents, we mostly use the following ad-hoc notation: we decorate the components
with primes, i.e.,

N1a1b2c2d = N01a1b2c2d [N001a1b2c2d

⇣
[N0001a1b2c2d

⌘
.

There are four exceptions, N112, N112, N122 and N122, where a refined notation
is explained (and used only) in the Macaulay2-code. The choices for the order are
somewhat arbitrary. As a rule of thumb, more primes indicate that the configuration
of singularities of the branch curve is more special. We give a few examples; see
Definition A.1 for the notions:

If X 2 N12 = N012 [ N0012, then the branch curve of the canonical double
cover X ! P2 has exactly one (non-degenerate) [3; 3]-point and one (ordinary)
quadruple-point and up to automorphisms, there are two possibilities. Namely, ei-
ther the distinguished tangent line of the [3; 3]-point misses the quadruple-point
(X 2 N012), or it passes through it (X 2 N0012). That this indeed splits N12 into two
components is non-trivial but follows from the Macaulay2-code [5, upToTwoSin-
gularities.m2 III.1]. Likewise, N122 has two components, but no more since there
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Script reference Script reference
Strata/Components Section Strata/Components Section

[5, parameterFreeCases.m2] [5, degenerate122.m2]
N2,N22,N23,N24 I N0

122
,N0

122
I.1

N1,N11 II N0
122

,N0
122

I.2
N12,N122,N112 (*) III N0

122
I.3

[5, upToTwoSingularities.m2] N00
122

,N00
122

II.1
N1,N11,N11 I N00

122
,N00

122
II.2

N2,N22,N22 II N00
122

II.3
N12,N12,N12,N12 III [5, degenerate112.m2]

[5, threeNonDeg.m2] N0
112

,N0
112

I.1
N122 I N0

112
,N0

112
I.2

N112 II N0
112

I.3
N13 III N00

112
,N00

112
II.1

[5, 1112.m2] N00
112

,N00
112

II.2
N132 I, II N00

112
II.3

[5, degenerate222.m2] N000
112

,N000
112

III.1
N222,N222,N23 — N000

112
,N000

112
III.2

[5, degenerate111.m2] N000
112

III.3
N0
111

,N0
111

,N0
13

I.1–I.3 [5, 1111.m2]
N00
111

,N00
111

,N00
13

II.1–II.3 N14 = ; —

(*) In [5, parameterFreeCases.m2 III.1 & III.2], only the dimensions are computed; the
rest about N12 is in [5, upToTwoSingularities.m2 III.1] and for N122 and N112 see [5,
threeNonDeg.m2 I & II].

Table 4.1. The catalogue of scripts and strata.

can be only one quadruple-point on the distinguished tangent line of the [3; 3]-point
(Lemma A.8).

In a different flavour, N111 = N0111 [ N00111 where the [3; 3]-points of the
branch curve of X 2 N00111 are with tangents along a conic.

The decompositionN132 = N0132 [N00132 comes from the two cases described
in Proposition A.11.

Remark 4.10. In total,N is covered by two strata with four components, six strata
with three components, 13 strata with two components and 16 irreducible strata.
Hence, the number of non-empty strata of the irrationality stratification onN is 37
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and there are 68 pair-wise disjoint components. The degeneration diagram for the
components of all strata parametrising surfaces with simply elliptic singularities is
shown in Figure 4.1. The complete degeneration diagram showing all strata of N
would be incomprehensibly complicated.

N∅

N2 N1

N22 N12 N12 N11

N23 N122 N122 N112 N112 N112 N13 N13

N24 N13 2 N13 2

Figure 4.1. The degeneration diagram showing the components of the strata parametris-
ing surfaces with only simply elliptic singularities.

Theorem 4.11. Table 4.2 lists the components of the strata of the irrationality strat-
ification and the birational isomorphism type of their members.

Proof. Let X be a normal Gorenstein stable surface with K 2X = 2 and �(OX ) = 4,
let f : Y ! X be the minimal resolution and let � : Y ! Ymin be a minimal
model. By Lemma 2.12, �(OYmin) = �(OY ) = 4 � k, where k is the number
of elliptic singularities of X . Furthermore, Theorem 2.14 and Proposition 2.13
constrain the possible Kodaira dimensions (Ymin) = (Y ) in such a way that from
the Enriques–Kodaira classification of algebraic surfaces (cf. Barth, Hulek, Peters,
Van de Ven [7, VI Theorem 1.1]), the claim follows for N;, N1, N2, N11, N22,
N122, N222, N132 and N24 and the cuspidal versions N1, N2 etc. In other words,
the only strata which need extra care areN12,N13 andN112 and their versions with
cusps.

Before we deal with these cases, we introduce some more notation. Since the
rational singularities of X admit a crepant resolution, KY = f ⇤KX�E , where E ⇢
Y is the sum of the exceptional curves Ei ⇢ Y over the elliptic singularities pi 2 X ,
i = 1, . . . , k. Likewise, let G ⇢ Y be the divisor such that KY = � ⇤KYmin + G.

If X has two elliptic singularities, one of degree one and one of degree two,
then � is a single blow-up in a smooth point and either (Y ) = 0 or (Y ) = 1,
again by Theorem 2.14. Since �(OYmin) = 2 and by the classification of algebraic
surfaces, either Ymin is a K3 surface or properly elliptic. To distinguish the two
cases geometrically, we compute H0(Y, 2KY ):



1162 BEN ANTHES

Let ' : X ! P2 be the canonical double-cover. Its branch curve B ⇢ P2
has a [3; 3]-point p and quadruple-point q and no more non-simple singularities.
Let ⌧ : Z ! P2 be the sequence of blow-ups at q, at p and at the point over p
corresponding to the distinguished tangent direction of the [3; 3]-point, yielding
exceptional curves F1, F2 and F3, respectively. We have

KZ = ⌧⇤KP2 + F1 + F2 + 2F3 and ⌧⇤B = ⌧�1⇤ B + 4F1 + 3F2 + 6F3.

Therefore, the double-cover : Y 0 ! Z branched over ⌧�1⇤ B+F2 induces a partial
resolution Y 0 ! X . The surface Y 0 has at most simple singularities and up to a
(crepant) resolution of those, which will not affect the pluri-canonical sections, Y
is obtained from Y 0 by contracting the (�1)-curve sitting above F2. Hence,

H0(Y, 2KY ) ⇠= H0(Y 0, 2KY 0)
⇠= H0(Z , 2KZ + ⌧�1⇤ B + F2)

= H0(Z , ⌧⇤(2KP2 + B)� 2F1 � F2 � F3),

meaning that the sections of 2KY correspond to the plane conics with a double-point
at q and passing through p in the distinguished tangent direction of the [3; 3]-point.
If the line L ⇢ P2 joining p and q happens to be the distinguished tangent line
of the [3; 3]-point, then there is exactly a pencil of such conics, namely, the conics
of the form L + L 0 where L 0 is any line through q; thus, H0(Y, 2KY ) = 2 and
Ymin is properly elliptic. Otherwise, i.e., if L is not the distinguished tangent line,
then 2L is the only conic with a double-point at q and containing the distinguished
tangent of the [3; 3]-point at p; that is, H0(Y, 2KY ) = 1. To see that in this case
Ymin is a K3-surface, observe that 2KY = (' � f )⇤2L is twice the (�1)-curve G,
the contraction of which yields Ymin. In conclusion, this gives the claimed result for
the stratumN12 and its cuspidal versions.

For X 2 N13 , �(OY ) = 1 and we have two possibilities, namely, either Ymin
is Enriques (Theorem 2.14) or rational (Proposition 2.13). In any case, q(Y ) = 0,
as we will show below. Therefore, Castelnuovo’s Rationality Criterion implies that
Y is rational if and only if P2(Y ) = 0. The branch curve B ⇢ P2 of the canonical
double cover has three [3; 3]-points and from Corollary A.4, it follows that the they
are not collinear and that none of them lies on a distinguished tangent line of another
[3; 3]-point of B. Thus, they either align along a smooth conic, which has to be
contained in the octic then, or they do not. But the sections of!2Y correspond exactly
to the conics passing through all three points in distinguished tangent directions, so
that P2(Y ) 6= 0 if and only if X 2 N0013 . In other words, if X 2 N0013 , then Ymin is an
Enriques surface and if X 2 N013 , then Y is rational. The same argument applies to
the cuspidal versionsN111,N111 andN13 .

The last case we have to consider is that X has two elliptic singularities of
degree one and one of degree two. Since X has exactly three elliptic singulari-
ties, �(OY ) = 1 and from Theorem 2.14 and Proposition 2.13 we conclude that
either Ymin is an Enriques surface and � : Y ! Ymin is a blow up in two points
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(possibly infinitely close), or Y is rational. If X 2 N000112 or any of the cuspidal ver-
sions, i.e., if the branch curve of the canonical double-cover ' : X ! P2 contains
the two distinguished tangents, which meet in the quadruple-point, then the union
of those lines defines a trivialisation of 2KYmin ; more precisely, the corresponding
section of OP2(2) lifts to a section of 2KX � 2E with vanishing locus twice the
disjoint union of two disjoint (�1)-curves, which constitute the exceptional locus
of � : Y ! Ymin. If X is a member of either N0112 or N

00
112, however, this does not

work and X is rational. An alternative way to see this is as follows. Let B ⇢ P2 be
the branch curve of the canonical double-cover. Let p1, p2 2 B be the [3; 3]-points
and let p3 2 P2 be the quadruple-point. Consider the Cremona-transformation
 : P2 99K P2 with centres p1, p2, p3. Let B0 ⇢ P2 be the reduced curve sup-
ported on the pull-back ( �1)⇤B, but neglecting the components with even multi-
plicity. Then the double-covers X and X 0 branched over B and B0, respectively, are
birational. In fact, the double cover branched over B0 is the normalisation of the
double-cover branched over ( �1)⇤B, which is birational to X . If X 2 N0112, then
X 0 2 N00222, which is rational and if X 2 N00112, then X

0 2 N00122, which is rational as
well. Furthermore, as the [3; 3]- or quadruple-points of X degenerate, those of X 0
degenerate as well, but again this does not affect the birational isomorphism type.

Finally, we compute pg(Y ) and q(Y ). If X has a single elliptic singularity, then
the canonical linear system |KY | is one-dimensional, corresponding to the pencil of
lines through the non-simple singularity of the branch curve. Hence, pg(Y ) = 2
and q(Y ) = 0. If X has two elliptic singularities, then |KY | is a single point,
corresponding to the line joining the two non-simple singularities of the branch
curve. If X has at least three elliptic singularities, then there is no line through all the
corresponding singularities of the branch curve, by Lemma A.3. Thus, pg(Y ) = 0.
Since 4� �(OY ) is the number of elliptic singularities, this implies q(Y ) = 0 if X
has at most three, and q(Y ) = 1 if X has four elliptic singularities.

Remark 4.12. Theorem 4.11 above fixes a mistake in the author’s thesis [4] affect-
ing the analogue to Table 4.2 and the corresponding proof. Therefore, it should be
stressed that the minimal resolutions of the members ofN012 are indeed surfaces of
K3-type and thoseN0012 are indeed properly elliptic, contrary to the heuristic that the
Kodaira dimension should decrease as the branch curve becomes more special.

The Hodge type ⌃r,s of X 2 N roughly behaves as follows: As we introduce
a simply elliptic singularity, s increases by one and as a simply elliptic singularity
degenerates to a cusp, s decreases by one and r increases by one. In fact, this
only fails in the case where it is numerically impossible since there are four elliptic
singularities. In this case, the (1, 0)-classes become linearly dependent.

Proposition 4.13. The Hodge type is constant on every stratum of the irrationality
stratification of N and they are given as in Figure 4.2.

Proof. Recall from Lemma 2.19 that if X has exactly r cusps, then it is of Hodge
type ⌃r,s for some 0  s  3 � r . It remains to compute s in each possible
case. Recall the set-up in which we proved the lemma. We let Y ! X be the
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Components Minimal model of the resolution Ymin
N; General type, K 2Ymin = 2, �(OYmin) = 4

N1,N1 General type, K 2Ymin = 1, �(OYmin) = 3
N2,N2 Properly elliptic, �(OYmin) = 3, pg(Ymin) = 2
N11,N11,N11 Properly elliptic, �(OYmin) = 2, pg(Ymin) = 1
N012,N

0
12

,N0
12

,N0
12

K3
N0012,N

00
12

,N00
12

,N00
12

Properly elliptic, �(OYmin) = 2, pg(Ymin) = 1
N22,N22,N22 K3
N013,N

0
111

,N0
111

,N0
13

Rational
N0013,N

00
111

,N00
111

,N00
13

Enriques
N0112,N

0
112

, . . . ,N0
112

Rational
N00112,N

00
112

, . . . ,N00
112

Rational
N000112,N

000
112

, . . . ,N000
112

Enriques
N0122,N

0
122

, . . . ,N0
122

Rational
N00122,N

00
122

, . . . ,N00
122

Rational
N23 Rational
N0132,N

00
132 Ruled of genus 1

N24 Ruled of genus 1

Table 4.2. The birational types of the normalisations.

resolution of the elliptic singularities, with exceptional arithmetically elliptic curves
Ei , i = 1, . . . , n, and considered the Mayer–Vietoris exact sequence

H1(Y )!
nM

i=1
H1(Ei )! H2(X)! H2(Y ).

In this set-up, renumbering if necessary, we can suppose that the curves E1, . . . , Ek
are smooth elliptic and that the remaining ones, Ek+1, . . . , En , are cycles of rational
curves. Then the induced exact sequence of (1, 0)-parts becomes:

H1,0(Y )!
kM

i=1
H1(Ei )1,0! (H2(X))1,0! 0.

Thus, s = dim(H2(X))1,0 = k�dim im(H1,0(Y )!
Lk

i=1 H1(Ei )). In particular,
if k = 0, then s = 0. In what follows, we assume k � 1.

Our claims only concern the dimensions in degree (0, 0), (1, 0) and (2, 0); for
this reason and since the remaining singularities of Y are rational, we can assume
without loss of generality that Y is minimal.
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It follows from the proof of Theorem 4.11 that q(Y ) = 0, unless X is ruled of
genus 1. Clearly, if q(Y ) = 0, then s = k.

If Y is ruled of genus 1, then q(Y ) = 1 and the curves Ei , i  k, are multi-
sections of the ruling Y ! C . On the one hand, the pull-back morphism H1(C)!
H1(Ei ) is multiplication with the degree, hence injective. On the other hand, it
factors through H1(Y ) ! H1(Ei ), which is injective as well then. Therefore,
s = k � 1. Note that the strata where Y is ruled are those with n = k = 4 and
r = 0. In conclusion, the members ofN132 orN24 have Hodge type ⌃0,3.

♦0,0
M2,4

♦0,1
N1 , N2

♦0,2
N11 , N12 ,

N22

♦0,3
N111 , N112 ,

N13 2 , N122 ,

N23 , N24

♦1,0
N1 , N2

♦1,1
N11 , N12 ,

N12 , N22

♦1,2
N111 , N112 ,

N112 , N122 ,

N122 , N222

♦2,0
N11 , N12 ,

N22

♦2,1
N111 , N112 ,

N122 , N112 ,

N222

♦3,0
N13 ,N112

N122 , N23

Figure 4.2. Degeneration diagram for Hodge types, cf. Proposition 4.13.

4.2. The loci of non-normal surfaces

We define a stratification of M(n) analogously to the irrationality stratification of
N:
Definition 4.14. Let 1  n  4. Given non-negative integers a, b, c, d � 0, we let
Mn;1a1b2c2d ⇢M(n) be the locus parametrising surfaces X 2M(n) with exactly a
simply elliptic and exactly b cuspidal singularities of degree 1 and exactly c simply
elliptic and exactly d cuspidal singularities of degree 2. We apply the analogous
abbreviation-conventions as before.
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The arguments used to prove Proposition 4.2 and Proposition 4.6 also show:

Proposition 4.15. The strata Mn;1a1b2c2d ⇢ M(n) are locally closed and the clo-
sure of one stratum is contained in a union of strata.

Unlike the irrationality stratification of the locus of normal surfaces, this strat-
ification is not finer than the Hodge type stratification. Namely, singularities of
type J2,1, X1 or Yr,1 strongly affect the Hodge structure in a way that is hard
to control. This is why we concentrate on isolated irrational singularities in the
irrationality stratification of the locus of non-normal surfaces, even though it its
insufficient for reading off the Hodge type. The Examples 4.18 and 4.19 below
illustrate this.

We proceed by investigating which strata are non-empty. Afterwards, we com-
pute their dimensions and the birational types of their members.

The stratumM(4): The members ofM(4) are the double-covers of P2 branched
over the double-quartics with at worst nodes. Thus, there is only one non-empty
stratumM4;; = M(4). It is isomorphic to the moduli space of nodal plane quartics
(cf. Hassett [27]) which is rational (as shown by Katsylo [30]).

The stratum M(3): The members of M(3) are double-covers of P2 branched
over a reduced conic and a double-cubic with at worst nodes. Since a reduced
conic has at worst a node, the members of M(3) do not have isolated irrational
singularities. Hence, yet again, onlyM3;; = M(3) is non-empty.

The stratumM(2): Since a member X 2M(2) is a double-cover ofP2 branched
over B = B0 + 2B00, where B0 is a reduced quartic and B00 is a reduced conic, the
isolated elliptic singularities come from the non-simple singularities of the quartic,
of which only one is possible, namely, an ordinary quadruple-point, arising only as
the union of four concurrent lines by Hui’s classification [29]. Therefore, M(2) =
M2;; [M2;2.

The stratum M(1): A member of M(1) has a branch divisor of the form B0 +
2B00 where B00 is a line and B0 is a reduced sextic. By Proposition A.12, the
only possible non-simple singularities B0 might have are either a (possibly degener-
ate) quadruple-point, or a (possibly degenerate) [3; 3]-point, or two non-degenerate
[3; 3]-points (with distinct distinguished tangent lines). Furthermore, in the last
case, B0 is the union of three conics meeting in the two [3; 3]-points. Thus, the
non-empty strata ofM(1) areM1;;,M1;1,M1;2,M1;1,M1;2 andM1;11.

Proposition 4.16. All the strata M1;;, M1;1, M1;1, M1;2, M1;2, M1;11, M2;;,
M2;2, M3;;, M4;; are irreducible and of dimension as indicated in Table 4.3.

Proof. We first show that M(n) is irreducible for all n = 1, . . . , 4. As in Theo-
rem 3.3, we denote by U ⇢ |OP2(8)| the locus of half-log-canonical plane octics.
The pre-image Un ⇢ |OP2(8 � 2n)| ⇥ |OP2(n)| of U under the closed embedding
|OP2(8�2n)|⇥|OP2(n)|! |OP2(8)|, (B0, B00) 7! B0+2B00 is open, hence smooth
and irreducible. By construction, the composition Un ,! U ! U/PGL(3, C) ⇠=
MGor
2,4 identifies Un/PGL(3, C) with M(n). Since Un is irreducible, so is M(n), as
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Strata Dimension Birational type of normalisation

M(4) = M4;; 6 P2 q P2

M(3) = M3;; 6 Rational
M2;; 11 Weak del Pezzo of degree 2
M2;2 3 Ruled of genus 1
M1;; 21 K3-Surface
M1;1,M1;1 12,11 Rational
M1;2,M1;2 13,12 Rational
M1;11 3 Ruled of genus 1

Table 4.3. The strata for non-normal surfaces.

claimed. In addition, this proves

dimM(n) = dim |OP2(8� 2n)| + dim |OP2(n)|� 8,

which gives dimM(1) = 21, dimM(2) = 11 and dimM(3) = dimM(4) = 6. (The
stabiliser of a general plane curve of degree � 3 is discrete and in the cases under
consideration we have either n � 3 or 8� 2n � 4.) SinceMn;; is open inM(n) we
get the claimed results for these strata.

In the remaining cases, we argue similarly. Let M ⇢ M(n) be any of the
strata. We let V ⇢ Un ⇢ |OP2(8 � 2n)| ⇥ |OP2(n)| be the pre-image of M under
the restricted classifying map Un !M(n). Then V dominatesM, so that it would
be enough to show that V is irreducible. However, it will be customary to restrict
to certain sub-spaces in order to gain more control.

For the strata M ⇢ M(1), where B00 is a line, we can fix this line; then the
condition for B0 along B00 is that their local intersection multiplicities are at most
2 everywhere. That this is an open condition follows as in the proof of Proposi-
tion 4.2.

The easiest case is M = M1;2. For every member B0 + 2B00 2 V , where
p 2 P2 is the quadruple-point of B0, there is a plane automorphism mapping p to
the point (0; 0; 1) and the line B00 to the line at infinity L = {z = 0}, where we
are using homogeneous coordinates (x; y; z) 2 P2. (We could have used any pair
of a point and a line missing the point, of course.) The linear system of sextics
with multiplicity at least 4 in (0; 0; 1) is of dimension 17 [5, sextics.m2 I.1]. Let
V 0 ⇢ |OP2(6)| be the locus of sextics B0 such that B0 + 2L is a member of V .
Then the PGL(3, C)-orbit of V 0 + 2L ⇢ V is all of V and so V 0/PGL(3, C) ⇠=
M. Note that a sextic B0 with a quadruple-point at (0; 0; 1) lies in V 0 if and only
if it is reduced, the quadruple-point is non-degenerate, all remaining singularities
are simple and every intersection with B00 has multiplicity at most 2. All these
conditions are open in the linear system of sextics with multiplicity� 4 in (0; 0; 1).
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Therefore, V 0 is irreducible and, hence, so is V 0/PGL(3, C) ⇠= M1;2. Since the
group of automorphisms fixing a point and a line missing the point is of dimension
4, we conclude thatM1;2 is irreducible and of dimension 17� 4 = 13.

The stratumM1;2 is handled similarly; the difference is that we also have to fix
the special tangent direction, which we can still do using automorphisms. This way,
we get an open sub-set of a linear sub-space of dimension 15 [5, sextics.m2 I.2],
with stabiliser of dimension 3, so that this stratum is irreducible of dimension 12.

Let us turn to M1;1, where we argue similarly. Again, we can fix the singular
point, which we want to be a [3; 3]-point, so we should also fix the distinguished
tangent line and we still have automorphisms left to fix the line B00. The linear
systems of sextics with at least a [3; 3]-point in a fixed point and with fixed special
tangent direction is of dimension 15 [5, sextics.m2 II.1]. By Lemma A.3 b), the
only other singularities a reduced sextic can have besides a [3; 3]-point are at most
triple-points and they have to be off the distinguished tangent line. Furthermore, if
a reduced sextic has a [3; 3]-point, then it has at most one other non-simple singu-
larity, which is another [3; 3]-point; a closed condition. Since the stabiliser is of
dimension 3, again we conclude that the stratum under consideration is irreducible
and 12-dimensional.

The same argument shows thatM1;1 is irreducible and of dimension 14� 3 =
11 since the sub-space of |OP2(6)| parametrising sextics with a degenerate [3; 3]-
point at a fixed point and a fixed tangent (but variable second order direction) is
irreducible and of dimension 14 as computed in [5, sextics.m2 II.2].

We argue a little differently forM1;11. Note that after fixing the locus of [3; 3]-
points with their distinguished tangent directions, the locus of admissible lines B00
is independent of the sextic, for the sextic is a union of three distinct conics passing
through the points in distinguished tangent direction, it meets lines with multiplicity
3 only in the [3; 3]-points and so the double-line may be any line missing those two
points. Since the corresponding space of sextics is irreducible and one-dimensional
[5, sextics.m2 II.3],M1;11 is irreducible and of dimension 3.

The last case we have to work out is M2;2. The inverse image V ⇢ U2 of
M2;2 consists of the octics decomposing as B0 + 2B00 with a reduced quartic B0
and a reduced conic B00, where B0 has a quadruple-point, hence, is a union of four
concurrent lines, and B00 has at worst nodes. Furthermore, the nodes of B00 have
to be off B0. Since there is a 1-parameter family of analytically distinct quadruple-
points, we can neither fix the quartic, nor the conic, which could be smooth or
a union of two lines. However, we can consider the linear system in |OP2(4)| ⇥
|OP2(2)| given by pairs (B0, B00) where B0 is a quartic with a quadruple-point in
(1; 1; 1) and B00 is a conic in the pencil {�xy + µz2 = 0}(�;µ)2P1 . In addition, we
ask that the quartic contains the lines {x = z} and {y = z}. Since for any B = B0+
2B00 2 V , at most two lines in B0 can be tangent to B00, we find for at least two of
the lines in B0 a transversal intersection point with B00. Therefore, B is projectively
equivalent to a member of this 3-dimensional linear system, up to finitely many
choices of parameters. The only exceptional parameters are either (�;µ) = (0; 1),
or those where the quadruple-point is degenerate, or where (�;µ) = (1; 0) and
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where the quartic passes through the point (0; 0; 1). These conditions are clearly
closed, so that we have an open, irreducible sub-scheme which is a finite cover of
M2;2.

Finally, we discuss the birational geometry of the non-normal surfaces:

Proposition 4.17. The minimal models of the minimal resolution of the possible
non-normal Gorenstein stable surfaces X satisfying K 2X = 2 and �(OX ) = 4 are
as listed in Table 4.3 above.

Proof. Let X be a non-normal Gorenstein stable surface satisfying K 2X = 2 and
�(OX ) = 4, let X be its normalisation, denote its minimal resolution by g : Y !
X and let � : Y ! Ymin be a minimal model of Y . By our description of the
normalisation (Proposition 2.11), the branch curve B ⇢ P2 of the canonical double-
cover decomposes as B = B0+2B00 for two reduced effective divisors B0, B00 and X
is the double-cover of P2 branched over B0. We have to have deg(B0) 2 {0, 2, 4, 6},
where X 2M(i) if and only if deg(B0) = 2i .

In case B0 = 0, observe that X = P2 qB00 P2, as the double-cover branched
over 2B00 and Y = X = P2 q P2 is the unbranched double cover of the plane.

For the remaining cases, we make use of formulas and basic facts concerning
double-covers which can be found in Barth, Hulek, Peters, Van de Ven [7, V 22].

If deg(B0) = 2, we have two cases: either B0 is a smooth conic, or the union
of two lines. In the first case, X is P1 ⇥ P1 and in the latter, it is the quadric cone,
which is resolved by the Hirzebruch surface F2. That is, the minimal models are all
rational.

If X 2 M(2), then B0 is a quartic with only simple singularities, unless it is
a union of four concurrent lines (cf. [29, Hui’s classification]). If X 2 M2;;, i.e.,
B0 has only simple singularities, X is a del Pezzo surface of degree 2 (possibly
singular, with ADE-singularities corresponding to those of B0), the double-cover
being defined by the anti-canonical linear system. In fact, �KY = �g⇤KX is
ample, as the pull-back of an ample bundle along a finite morphism and K 2Y =
K 2
X

= 2 since the degree is 2.
If X 2 M2;2, i.e., B0 is the union of four concurrent lines, then the pencil of

lines through their common intersection point gives rise to a ruling of Y over a curve
of genus 1. Explicitly, the blow up of P2 in the quadruple-point is the Hirzebruch
surface F1 and the double-cover over the four fibres of the ruling F1! P1 coming
from the four branches of C induces a ruling Y ! E , where the elliptic curve E is
the double-cover of P1 branched over the four points corresponding to the lines in
question.

Finally, in case X 2M(1), where B0 is a sextic, the only non-simple singulari-
ties B0 can have are: (a) none; (b) a (not necessarily ordinary) quadruple-point, (c)
a (possibly degenerate) [3;3]-point (see A.1 for the definition), (d) a pair of non-
degenerate [3; 3]-points. In case (d), the sextic decomposes as the union of three
conics (of which at least two are smooth), passing through the two [3, 3]-points.
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Here, the cases (a), (b), (c) and (d) correspond to the cases that X 2 M1;;, or
X 2M1;2 [M1;2, or X 2M1;1 [M1;1, or X 2M1;11, respectively.

That Y is a K3-surface in case (a) is well-known. Furthermore, by the canon-
ical bundle formula, in all cases, !X = OX . In the remaining cases (b)–(d), this
implies (Y ) = �1, for, �KY is the sum of the exceptional divisors over the el-
liptic singularities. Therefore, Ymin is either rational (if �(OY ) = 1), or ruled of
genus 1��(OY ) � 1. Thus, we only have to compute the holomorphic Euler char-
acteristic of Y . Since X is a flat degeneration of a K3-surface, �(OX ) = 2. From
this we finally conclude �(OY ) = 1 in case (b) or (c) and �(OY ) = 0 in case (d),
as claimed.

4.2.1. The Hodge type in the non-normal case

For a double-cover of the plane X ! P2 branched over a half-log-canonical curve
B = B0 + 2B00 where B0 and B00 are reduced, the Hodge type of X depends not
just on the irrational singularities of B0, but also on the nodes of B00 and the way
how B0 and B00 meet. In particular, the Hodge type is not constant on the strata
of the irrationality stratification of the locus of non-normal surfaces. The list of
possibilities gets quite complicated for the cases we would have to consider here.
By way of example, we indicate the possible Hodge types on M2;; and M(4) =
M4;;. The remaining strata can be dealt with analogously.
Example 4.18. Given X 2M2;;, we let X ! X be the normalisation and denote
the conductor loci by F ⇢ X and F ⇢ X . As explained in the introduction, X is the
push-out of the diagram F  F ! X and by Peters and Steenbrink [45, Corollary-
Definition 5.37] we get the associated Mayer–Vietoris exact sequence

0! H1(F; C)! H2(X; C)! H2(X; C)� H2(F; C)! H2(F; C).

In fact, the left-most term is H1(X; C) � H1(F; C) = 0, which can be seen as
follows: Recall from Proposition 2.11 that if B = B0 + 2B00 is the branch curve of
X , where B0 is a reduced quartic and B00 is a reduced conic, then X is the double-
cover branched over B0 and F ⇠= B00. In particular, H1(F; C) = 0. Since X is
rational, H1(X; C) = 0 as well.

If, in addition, F is connected, then H2(F; C)!H2(F; C) is an isomorphism.
Thus, dim(H2(X; C))2,0= h2,0(X) = 0, dim(H2(X; C))1,0 = dim(H1(F; C))1,0

and dim(H2(X; C))0,0 = dim(H1(F; C))0,0. Now recall that F is a double-cover
of B00 branched over B0|B00 . Thus, if B0 and B00 meet transversely, then F is a
smooth curve of genus 3, hence X has Hodge type ⌃0,3. As B0|B00 gets doubled
points, either due to tangency or due to double-points of B0 along B00, F acquires
nodes. This results either in a nodal curve of genus 2, a curve of genus 1 with 2
nodes, a curve of genus 0 with 3 nodes, or the union of 2 rational curves meeting
transversely in 4 points. The first two cases give Hodge types ⌃1,2, ⌃2,1, the latter
two have Hodge type ⌃3,0.

If B00 is the union of two lines, then by the same argument as above, the (2, 0)-
part is trivial, so that there are no more possible Hodge types than those above. The
same applies if we pass toM2;2, where B0 has a quadruple-point.
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Example 4.19. Let B00 be a smooth or nodal but reduced quartic in P2. With branch
curve B = 2B00, we get that X = P2 qB00 P2 and X = P2 q P2 with F =
B00 q B00 and F ⇠= B00 in such a way that ⇡ |F : F ! F is the trivial double-cover.
Tracing through the maps in the Mayer–Vietoris sequence for X as the push-out of
the diagram F  F ! X , one quickly finds an isomorphism of Deligne’s mixed
Hodge structures H2(X; C) ⇠= H1(B00; C). Therefore, the surfaces parametrised
by the irreducible stratumM(4) = M4;; realise all Hodge types⌃r,s with r+s = 3.

5. Further remarks and questions

5.1. Comparison with known compact moduli spaces of curves

There are at least three related compactifications of the moduli space of smooth
plane curves of degree 8, namely, the GIT-quotient of |OP2(8)| under the action of
PGL(3, C), Hassett’s moduli space of stable log-surfaces which admit a smoothing
to (P2,C) with C a curve of degree 8 [27] and Hacking’s moduli spaceM8 of so-
called stable pairs of degree 8, namely, pairs (X, D) consisting of a surface X and
an effective Q-Cartier Z-divisor D on X , where OX (3D + 8KX ) ⇠= OX and such
that (X, (38+✏)D) is a stable log-surface for some ✏ > 0, subject to a smoothability
condition that makes sure that the plane octics are dense [23].
Question 5.1. Perhaps, a Q-Gorenstein degeneration of a smooth (or Gorenstein)
stable surface X 2 M2,4, say canonically the double-covers of P2 branched over
B 2 |OP2(8)|, will itself be a double-cover of a surface X 0 branched over some
curve B0, where (X 0, 12 B

0) is semi-log-canonical. This raises the question whether
(the closure of MGor

2,4 in) M2,4 is isomorphic to some projective moduli space of
semi-log-canonical pairs (X, D) which are in some sense degenerations of log-
canonical pairs of the form (P2, 12 B) with an octic B. (For an example, see 5.5
below.)

More concretely, letM8 be Hacking’s moduli stack of Q-Gorenstein smooth-
able families of stable pairs of degree 8, which is a separated, proper and smooth
Deligne–Mumford stack (Hacking [23, Theorem 4.4 & 7.2]), with coarse moduli
space denoted by M8.

Each half-log-canonical octic B 2 U , gives rise to a stable pair of degree 8,
(P2, B), for, (P2, (38 + ✏)B) is a stable log-surface for all 0 < ✏  1

8 . This induces
a morphismMGor

2,4 !M8 which seems worthwhile to study. Does it extend to a
morphismM2,4!M8?

In that case, one naive hope would be that the locus of stable pairs (X, D) of
degree 8 such that (X, 12D) is semi-log-canonical is closed and isomorphic toM2,4,
but this locus is not closed in M8 (see Example 5.6 below).
Remark 5.2. For a stable pair (P2, D) of degree d in the sense of Hacking, the
curve D is GIT-stable, see Hacking [23, Section 10]. In particular, we get a mor-
phism fromMGor

2,4 to the GIT quotient |OP2(8)|ss/PGL(3, C) and, thus, yet another
possible compactification which could be studied.



1172 BEN ANTHES

Remark 5.3. While Hacking’s moduli space M8 properly containsMGor
2,4 , Hassett’s

space P8 is too small; the plane curves it parametrises have to have log-canonical
threshold at least 1.
Question 5.4. Recall that the stratum M(4) = M4;; is isomorphic to the moduli
space of nodal plane quartics. Is the closure of M(4) in M2,4 isomorphic to Has-
sett’s compactification of the space of smooth plane quartics [27]?

5.2. Beyond the Gorenstein locus

We briefly demonstrate that the Gorenstein locus MGor
2,4 is properly contained and

not closed inM2,4.
Example 5.5. The log-canonical surface P(1, 1, 4) has an essentially unique 1-pa-
rameterQ-Gorenstein smoothingZ! A1, whereZ ⇢ P(2, 2, 2, 4)⇥A1 is given
as the vanishing locus of the polynomial x21 + t y � x0x2, where t is the coordinate
of A1 and where x0, x1, x2 and y are the coordinates of P(2, 2, 2, 4), cf. Hacking’s
exposition [24, page 52 f]. For all t 6= 0, the fibreZt is isomorphic to P(2, 2, 2) ⇠=
P2 and Z0 is isomorphic to P(1, 1, 4). Let Q ⇢ P(2, 2, 2, 4) be a sufficiently
general hypersurface of degree 16, defining a relative Cartier divisorZ\Q missing
the singular point in the special fibre. Assume furthermore that each pair (Zt ,

1
2Zt\

Q) is log-canonical, at least for all t sufficiently close to 0. For example, we may
assume that each of the curves Qt := Zt \ Q is smooth. Let X ! Z be the
double-cover branched over Q \ Z; this defines a Q-Gorenstein family over A1
where each fibreXt , t 6= 0, is a double-cover of P2 branched over an octic, hence,
a Gorenstein stable surface with K 2

Xt
= 2 and �(OXt

) = 4, whilst the central
fibre X0 is a double-cover of P(1, 1, 4), branched over a curve Q0 of degree 16
missing the singular point and such that the pair (P(1, 1, 4), 12Q0) is log-canonical.
Hence,X0 is semi-log-canonical and KX0

is the pull-back of theQ-Cartier divisor
KP(1,1,4) + 1

2Q0 2 |OP(1,1,4)(2)|, so thatX0 is stable of Gorenstein-index 2. Since
the family isQ-Gorenstein, we conclude thatX0 is in the closure ofMGor

2,4 inM2,4.
Note that the pair (Z0, Q0) of the above example is an element of Hacking’s

moduli spaceM8 at the boundary of the image ofMGor
2,4 . There are, however, many

elements inM8 which are not contained in the image of MGor
2,4 , despite the fact

that MGor
2,4 is dense inM8. There is also something to say about the boundary of

(the image of) MGor
2,4 in Hacking’s moduli spaceM8 of stable pairs of degree 8

(and, therefore, also in the GIT-quotient). Namely, there are curves C ⇢ P2 such
that (P2,C) is a stable pair of degree 8, but where (P2, 12C) is not log-canonical;
since the image ofMGor

2,4 inM8 is dense, they occur as limits of classes of half-log-
canonical curves, though.
Example 5.6. Every octic C ⇢ P2 with global log-canonical threshold between 3

8
and 1

2 gives rise to a pair in Hacking’s moduli spaceM8 which is not contained in
the image ofMGor

2,4 .
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One kind of example is given by general octics with a singular point of type
Z11, whose log-canonical threshold is 7

15 . (A curve singularity of type Z11 is ana-
lytically locally the union of an E6-singularity and a general line passing through
it. To get an explicit example, we can just take a quartic with an E6-singularity and
a general quartic passing through the E6-singularity, resulting in an octic with one
singularity of type Z11 and 13 ordinary double-points.)

Appendix

A. Half-log-canonical plane curves of small degree

In this appendix, we prove the results about plane curves of degree at most eight
with [3; 3]- and quadruple-points which were used in the earlier chapters. We ob-
struct the existence of certain configurations using basic intersection theory and
well-known results about the Milnor number.

The classification of possible (configurations of) singularities on plane conics
or cubics is easy. In the case of quartics, a complete classification is known; it can
be found in Hui’s thesis [29]. It turns out that the only reduced quartics with a
non-simple singularity are the unions of four concurrent lines, admitting a unique
ordinary quadruple-point, also called singularity of type X9. Degtyarev [11] has
classified all plane quintics up to rigid isotopy and all the possible singularities
on quintics. A list of possible configurations with total Milnor number at least
12 can be found in Wall [53]. The last case where the complete classification is
known, the sextics, is mostly due to Urabe [51], Yang [55] and Degtyarev, see [12,
Section 7.2.3] and the references therein.

Already the list provided by Yang [55] (even though restricted to the sextics
with maximal total Milnor number 19) is so long that for certain questions, it is not
easy to read off the relevant informations from the data. There are 128 irreducible
maximising sextics and many more reducible ones and “[t]he list [of the remaining
reduced sextics] is too long to be printed [in an article]” [55, Remark 4.1]. In
conclusion, the classification of possible configurations of singularities on octic
curves is clearly out of reach. Therefore, we study here just as much as we need to
understand the strata; that is, we ignore simple singularities and concentrate only
on those with log-canonical threshold exactly 12 .

For a start, we recall the notion of an n-fold-point with an infinitely near n-fold-
point, an [n; n]-point, for short. A non-degenerate [n; n]-point should be pictured
as n-fold-points with n local branches with a common tangent direction; however,
degenerate [n; n]-points may have less branches.

Definition A.1. Let 0 2 C ⇢ C2 be the germ of an isolated curve singularity,
defined by a convergent power series f 2 C{x, y}.

1. The germ (or the point, slightly abusively) is said to be a n-fold-point, if f has
multiplicity n, i.e., f 2 (x, y)n � (x, y)n+1;
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2. If, moreover, the degree n-part of f is the product of n pairwise distinct linear
factors, then the germ is said to be an ordinary n-fold-point. That is, C is a union
of n smooth curves meeting transversely in 0;

3. An n-fold-point 0 2 C ⇢ C2 is said to have an infinitely near n-fold-point if
the strict transform C 0 ⇢ X of C in the blow-up (X, E) ! (C2, 0) has an n-
fold-point along E . In this case, the germ is called an [n; n]-point. It is called
non-degenerate if the n-fold-point of C 0 is ordinary;

4. If C ⇢ P2 is a plane curve with an [n; n]-point p 2 C , the point on the ex-
ceptional line E ⇢ BlpP2 where the strict transform C 0 has its n-fold-point
corresponds to a tangent direction at p in P2; we refer to this as the distin-
guished tangent of the [n; n]-point. The unique line in P2 passing through p in
this direction is called the distinguished tangent line.

Remark A.2. Note that the distinguished tangent line ` ⇢ P2 of an [n; n]-point
p 2 C ⇢ P2 is determined by the property that the intersection multiplicity of `
and C at p exceeds n. In particular, if C contains a line through p, then this must
be its distinguished tangent line.

We will mostly be concerned with certain [2; 2]-points, [3; 3]-points and 4-
fold-points, also known as quadruple-points. We give a quick overview:

A [2; 2]-point is a double-point whose strict transform in the blow-up has a
double-point along the exceptional line. That is, the [2; 2]-points are the singulari-
ties of type An as n � 3, where A3 is the non-degenerate [2; 2]-point.

The half-log-canonical [3; 3]-points are the singularities of type J10 (the non-
degenerate [3; 3]-point) and J2,p for p � 1. Blowing up once, the strict transform
of a J10 has a non-degenerate triple-point (a D4) along the exceptional line and
the strict transform of a J2,p has a D4+p along the exceptional line. Moreover,
the branches are transversal to the exceptional line, for otherwise it would be a
quadruple-point (or worse). In particular, no component of a [3; 3]-point is an ordi-
nary cusp A2.

Likewise, the ordinary quadruple-points are the singularities of type X9,
whereas the half-log-canonical degenerate quadruple-points split up into the two
families X p, p � 10 and Yr,s for r, s � 1. The singularities of type X p are,
locally analytically, the union of a degenerate double-point of type Ap�8 and a
non-degenerate double-point and those of type Yr,s are unions of two degenerate
double-points of type Ar+1 and As+1. In particular, an X p, p � 10, has a sin-
gle special tangent direction (the distinguished tangent direction of the underlying
degenerate double-point) and a Yr,s has two such.

Lemma A.3. Let C be a plane curve of degree d. Then the following hold:

a) If C has an n-fold-point, then d � n and d = n if and only if C is a union of n
concurrent lines, the intersection-point being the n-fold-point;

b) If C has an m-fold-point and an n-fold-point, then d � m + n � 1 and if d =
m + n � 1, then C contains the line joining those two points;
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c) More generally, if C has s collinear singular points of multiplicity ni , i =
1, . . . , s, then d � 1 � s +

Ps
i=1 ni and if d = 1 � s +

Ps
i=1 ni , then the

line joining them is contained in C;
d) If C has an [n; n]-point, then d � 2n � 1 and if d = 2n � 1, then C contains

the distinguished tangent line;
e) If C has an [n; n]-point and an m-fold point on the distinguished tangent line of

the [n; n]-point, then d � 2n + m, unless C contains the distinguished tangent,
in which case d � 2n + m � 2;

f) If C has an [m;m]- and an [n; n]-point with a common distinguished tangent
line, then d � 2n+2m�3 and if d < 2n+2m, thenC contains the distinguished
tangent line.

Proof. The proofs of those statements are very similar; by way of example, we only
prove a few of them. Note that since we assumed n-fold-points and [n; n]-points
to be isolated singularities, if C contains a line L through such a point, is does so
with multiplicity 1. In particular, the residual curve C � L (in divisor-notation) has
degree d � 1 and does not contain L .

c) If C is as claimed, then the line L joining the s singular points witnesses d =
CL �

Ps
i=1 ni , unless L ⇢ C , in which case the same argument applied to the

residual curve C 0 = C � L yields d � 1 = C 0L �
Ps

i=1(ni � 1), hence the
claim;

d) If C has an [n; n]-point, then the distinguished tangent line L witnesses that
d = CL � 2n, unless C contains L . In this case, the residual curve C 0 = C � L
has an [n � 1; n � 1]-point with distinguished tangent direction L; thus, we get
d � 1 = C 0L � 2(n � 1), hence, d � 2n � 1, as claimed.

The following is an immediate corollary.

Corollary A.4. Let C be a plane octic curve. Then the following holds:

a) Any two [3; 3]-points on C have distinct distinguished tangent lines;
b) No three [3; 3]-points on C are collinear.

This implies that two [3; 3]-points on a conic are in general position such that there
is exactly a pencil of conics joining both points, passing through them in distin-
guished tangent direction. Three [3; 3]-points on a conic can be in special position
in the sense that the tangents may align along a conic. It turns out that there are
at most three [3; 3]-points on a plane octic, but before we can prove this, we have
to recall a few basic facts from singularity theory. We refer to Milnor’s seminal
book [42] or Wall [54, Chapter 6] for the local theory.

Recall that with a holomorphic function germ f 2 C{x, y} we can associate
the Milnor number µ( f ) = dimC(C{x, y}/J f ) where J f = ( @ f@x ,

@ f
@y ) is the Jaco-

bian ideal of f generated by the partial derivatives. Let C ⇢ P2 be a plane curve
passing through a point p 2 C and choose local holomorphic coordinates x, y at
p 2 P2. Then the curve C is the vanishing locus of a function germ f 2 C{x, y}



1176 BEN ANTHES

and it makes sense to define the Milnor number of C at p, µp(C) := µ( f ). If C is
reduced, we define its total Milnor number µ(C) =

P
p2Csing µp(C).

We recall from Wall’s exposition [54, Sections 7.1 & 7.5]:

Lemma A.5. Let C ⇢ P2 be a reduced plane curve of degree d.

a) The total Milnor number of C is bounded by µ(C)  (d�1)2 and the maximum
µ(C) = (d � 1)2 is attained only by the union of d concurrent lines with its
(d � 1)-fold-point;

b) Let C⌫ be the normalisation of C . Then

�top(C
⌫) = (3� d)d +

X

p2Csing

(µp(C) + rp(C)� 1),

where rp(C) is the number of analytically local branches of C through p.

In particular, if C is a reduced octic with four [3; 3]- or quadruple-points, then C
has at least four rational components, �top(C⌫) � 8, and if C has exactly four
components, then there are no additional singular points.

Proof. For a) and b) see Wall [54, Section 7.5, page 177 & Corollary 7.1.3]. To
conclude the proof, it suffices to show that for a [3; 3]- or quadruple-point p 2 C ,
we have µp(C) + rp(C) � 1 � 12, since then, if there are at least four such,
�top(C⌫) � 8 and equality implies that there are no more singular points and that
µp(C) + rp(C)� 1 = 12 for all four p 2 Csing. As the normalisation decomposes
into disjoint components C⌫ =

`s
i=1 C

⌫
i , we get

Ps
i=1 2� 2g(C⌫i ) = �top(C⌫) �

8, hence g(C⌫i ) = 0 at least four times, which yields four rational components.
Therefore, if C has exactly four components, then all of them are rational and
�top(C⌫) = 8.

To complete the proof, we have to show that [3; 3]- and quadruple-points p 2
C indeed satisfy µp(C) + rp(C)� 1 � 12. For the half-log-canonical singularities
this follows from the classification (Proposition 2.15) since µ(X p) = p as p � 9,
µ(J10) = 10, µ(Yr,s) = 9+ r + s as r, s � 1 and µ(J2,p) = 10+ p for p � 1; cf.
Arnold, Gusein-Zade, Varchenko [6, Chapter 15, page 246 ff]. The more general
case follows from Wall [54, Theorem 6.5.9] using the concept of infinitely near
points; we omit the details.

Using this, we can prove that an octic has at most three [3; 3]-points:

Proposition A.6.

a) If a plane curve has a [3; 3]-point, then its degree is at least 5;
b) If a plane curve has three [3; 3]-points, then its degree is at least 8;
c) If a plane octic curve has three [3; 3]-points with distinguished tangents along

a conic, then the octic contains the conic;
d) There does not exist a plane octic curve with four [3; 3]-points.
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Proof. Statement a) follows immediately from Lemma A.3 d). To prove b), let C be
a plane curve of degree d with three [3; 3]-points pi , i = 1, 2, 3. By Corollary A.4,
they are in general position insofar as that there exists a smooth conic D ⇢ P2
through p1, p2 and p3 which passes through p1 and p2 in distinguished tangent
direction. If D is not contained in C , then 2d = DC � 2 · 6 + 3, hence, d � 8.
If D is contained in C , then the residual curve C 0 = C � D of degree d � 2 has
three [2; 2]-points along D; hence, 2(d � 2) = DC 0 � 12, which yields d � 8.
We analogously conclude part c) since if D also passes through p3 in distinguished
tangent direction but is not contained in C , then 2d � 3 · 6 = 18, hence d � 9.

To prove d), we will derive a contradiction from the assumption that there
exists such a curve C . It follows from part b) above that such a C has to be reduced:
since all four [3; 3]-points are, by assumption, isolated singularities, they have to lie
on the reduced part, which has to have degree at least 7 then, which is impossible
unless C is reduced.

Lemma A.5 implies that C has at least four rational components and that if C
has only 4 components, it has no more singularities than the four [3; 3]-points. To
prove the claim, we have to rule out all possible cases. We distinguish the cases
according to the number of lines in C .

If C would not contain any line, it had to be a union of four smooth conics.
Since a sextic has at most two [3; 3]-points by part b), we had to have three of the
four [3; 3]-points on each of the four conics. Thus, if there were such a conic C ,
it had to be given as follows: Suppose pi 2 C , i = 1, . . . , 4, are pairwise dis-
tinct [3; 3]-points. By Corollary A.4, those points and their distinguished tangents
are sufficiently general such that there are four conics Ci , i = 0, . . . , 3, uniquely
determined by the following properties:

– C0 contains p1, p2 and p3, passing through p1 and p2 in distinguished tangent
direction;

– C1 contains p2, p3 and p4, passing through p2 and p3 in distinguished tangent
direction;

– C2 contains p1, p3 and p4, passing through p1 and p3 in distinguished tangent
direction;

– C3 contains p1, p2 and p4, passing through p1 and p2 in distinguished tangent
direction.

Then C is the union of those four. In particular, C is uniquely determined by the
four points and two of the distinguished tangents. This is the key to the proof that
no such C can exist. With the help of projective automorphism, we can fix three
points pi , i = 1, 2, 3, and two tangent directions in p1 and p2, as long as they do
not point towards any of the remaining two points. From this, we can compute C0
and derive the distinguished tangent at p3. Then we compute C1, C2 and C3 in
dependence of a variable fourth point p4 2 P2 and consider their tangent lines at
p4. If an octic C as desired existed, then for at least one point p4, all three tangent
lines would agree. A computation shows that this happens if and only if p4 lies on
C0, but then C0 = C1 = C2 = C3, which is an irrelevant degenerate case. An
explicit calculation in Macaulay2 can be found in [5, 1111.m2].
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Now suppose thatC contains exactly one line L ⇢ C . Then the only possibility
is that C = E + D1 + D2 + L , where E is an irreducible cubic and D1, D2 are
irreducible conics. Since C has only four components, all four of them are rational
and C has no extra singularities. In particular, E must be rational, hence either
nodal or with an ordinary cusp. But both are impossible since neither nodes nor
ordinary cusps can contribute to [3; 3]-points. Thus, C cannot contain just one line.

It remains to consider the possibility that C decomposes into the union of two
lines and a possibly reducible sextic D ⇢ C . By Lemma A.5 a), µ(D)  25.
From this or Proposition A.6 b) we conclude that D can have at most two [3; 3]-
points. On the other hand, by Corollary A.4 a), two lines on an octic can give rise
to branches of at most two [3; 3]-points of C , so that the residual sextic D had to
have at least two [3; 3]-points. Thus, D had to have exactly two such and along the
lines it had to have two [2; 2]-points, which have Milnor number at least 3, so that
D had to have total Milnor number µ(D) � 26 > 25, yet again a contradiction.

This completes the proof.

Proposition A.7. If C ⇢ P2 is a plane octic, then the following holds:

a) No three quadruple-points on C are collinear;
b) If C has four quadruple-points, then C is a union of four (possibly reducible)

conics, meeting precisely in the (necessarily ordinary) quadruple-points.

Proof. Statement a) is a special case of Lemma A.3 c).
To prove b), let C be a plane octic with four quadruple-points. By part a), the

quadruple-points are in general position so that there is a pencil of conics through
those four points which spans the tangent spaces. First, observe that if a conic D of
this pencil is tangent to a local analytic branch of one of the quadruple-points, then
D has to be contained inC , for otherwise we had to have 16 = DC � 3·4+5 = 17.
Thus, to conclude thatC is a union of four members of the pencil, it suffices to show
that at least one of the quadruple-points is non-degenerate. In fact, they all are: If
one of them were degenerate, then there would exist a conic D of the pencil passing
through it in the corresponding tangent direction, so that D ⇢ C as above and
D(C � D) � 3 · 3 + 4 = 13 > 12, unless 2D ⇢ C , which is excluded since the
quadruple-points are assumed to be isolated singularities.

Lemma A.8. Let C be a plane octic curve. Suppose that C has a [3; 3]-point and
a quadruple-point along the distinguished tangent line L of the [3; 3]-point. Then
C contains L and the residual septic C � L meets L only in those two points. In
particular, there is no second quadruple-point along L .

Proof. Let p1 and p2 be the [3; 3]- and quadruple-point in question. Then C con-
tains L since CL = 8  6 + 4  Ip1(C, L) + Ip2(C, L), where Ip(�,�) denotes
the intersection multiplicity at p. Since C is reduced at p1, L is not contained in the
residual septic D = C � L and so 7 = DL � Ip1(D, L) + Ip2(D, L) � 4+ 3 = 7;
thus, D and L meet only in p0 and p1 and Ip1(D, L) = 4, Ip2(D, L) = 3.
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Remark A.9. The proof of Lemma A.8 furthermore shows that if an octic has a
quadruple-point on the distinguished tangent line of a [3; 3]-point, then it is not
a special tangent line of the quadruple-point as well. Nonetheless, the quadruple-
point could be degenerate.

Proposition A.10. There exists no plane octic curve admitting two [3; 3]-points
and two quadruple-points, or with one [3; 3]-point and three quadruple-points.

Proof. By Proposition A.4 a), b) and Lemma A.8, in both cases, the four points
in question are general enough so that there exists a pencil of conics through all
four points in question. In particular, there exists a conic through all four points,
passing through one of the [3; 3]-points in distinguished tangent direction. In both
cases, this easily gives a contradiction comparing intersection numbers and local
intersection multiplicities as before. We omit the details.

Proposition A.11. Let C ⇢ P2 be a plane octic with three [3; 3]-points and a
quadruple-point. Then C decomposes into four rational components; more pre-
cisely:

Let p1, p2, p3 2 C be the [3; 3]-points with distinguished tangent lines L1, L2,
L3, respectively. Then only the following two configurations are possible.

i) The three distinguished tangent lines L1, L2, L3 meet in a point p4 2
T3

i=1 Li
andC = D5+L1+L2+L3, where D5 is a rational quintic which passes through
p4 and has three A3-singularities (non-degenerate tac-nodes) at p1, p2, p3 with
distinguished tangent lines L1, L2, L3, respectively;

ii) There exists a conic D2 passing through the three [3; 3]-points in distinguished
tangent direction and C = D4 + D2 + L1 + L2, where D4 is a rational quartic
with an ordinary double-point in the intersection p4 2 L1\L2. Furthermore, D4
is tangent to D2 in p1 and p2 and has an A3-singularity at p3 with distinguished
tangent line L3.

In either case, the [3; 3]-points at p1, p2, p3 and the quadruple-point at p4 are
non-degenerate and C has no further singularities.

Proof. Let C be a plane octic with three [3; 3]-points and one quadruple-point.
Then, as in the proof of Proposition A.6 above, we conclude that C is reduced. By
Lemma A.5 b), C has at least four rational components and if C has exactly four,
then there are no extra singularities.

Let C = C0 + C1 + C2 + C3 + C4 with di := deg(Ci ), d1 � d2 � d3 � d4,
and C1, . . . ,C4 rational. (Note that C0 could be empty or reducible).

Clearly, d4  2 and if d4 = 2, then d0 = 0 and d1 = d2 = d3 = 2 as well. That
is, C would be a union of four smooth conics. Going through the list of possible
intersections of pairs of conics shows that there is no way for their union to have a
quadruple- and three [3; 3]-points. Hence, we conclude d4 = 1, i.e., C contains at
least one line.
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Before we continue, note that if C has only four components and contains a
cubic, then the cubic is rational and so has a node or ordinary cusp. Either singular-
ity does not contribute to a [3; 3]-point and so has to be part of the quadruple-point,
since C has no extra singularities.

Now assume that C has no more than the four singularities and contains a
line. Then the line must meet the residual septic in the singular points of C . For the
intersection multiplicities to add up to 7, this has to be the quadruple- and one of the
[3; 3]-points. This shows that d• = (0, 3, 3, 1, 1) is impossible since the quadruple-
point of C had to be the union of the double-points of the two rational cubics, not
allowing either line to pass through the quadruple-point as well. Similarly, this
excludes d• = (0, 3, 2, 2, 1), for, the cubic C1 had to have a double-point at, say,
p 2 C1 and the line C4 would have to pass through it. But in order not to introduce
an extra singularity of C , they must not meet anywhere else, so that the intersection
at p had to be with multiplicity 3, which implies µp(C) + rp(C) � 1 � 13, a
contradiction to (the proof of) Lemma A.5. The only possibilities with d0 = 0
which remain are those corresponding to the claim and since every line has to pass
through one of the [3; 3]-points and the quadruple-point, the configurations have to
be as claimed.

It remains to show that C cannot have five or more components. Note that in
this case, C had to contain at least two lines.

Wefirst exclude the case thatC contains at least four lines, i.e.,d•=(4, 1, 1, 1, 1)
or (1, 4, 1, 1, 1). Suppose C were the union of four lines and a possibly reducible
quartic. Then the quartic had to have at least three non-collinear [2; 2]-points, which
is impossible, e.g., by Hui’s classification [29].

If C had at least five components but at most three lines, then C had to contain
at least two lines, L1, L2, and a smooth conic D. The residual quartic then had to
have exactly two components, of which at least one had to be rational, hence, either
C = L1 + L2 + L3 + D + D0 for a third line L3 and an irreducible cubic D0, or
C = L1 + L2 + D + D0 + D00 for two more irreducible conics D0, D00. Thus, we
are left with these two cases.

If we had C = L1 + L2 + L3 + D + D0 with D0 an irreducible cubic, then
�top(C⌫) = 8 or 10, so that C could have at most one additional singularity, neces-
sarily of type A1 or A2. Therefore, the lines had to be concurrent, for otherwise C
had to have at least three singularities with local branches having different tangent
directions. In particular, the conic D had to meet at least one of the lines trans-
versely. But in that case, one of the intersection points had to be the quadruple-point
ofC ; hence, D would pass through the common intersection point of the three lines.
Therefore, D could be tangent to at most one of them, which would result in too
many singularities for C , a contradiction.

Finally, if C = L1+L2+D+D0+D00 for two more irreducible conics D0, D00,
then �top(C⌫) = 10, so as before, C could have at most one additional singularity,
of type A1 (since lines and conics have no cusps). Therefore, the intersection point
of L1 and L2 had to be an extra double-point or the quadruple-point of C . If it were
an extra double-point, then the residual sextic D+ D0+ D00 had to have two [2; 2]-
points, a [3; 3]-point and a quadruple-point, resulting in a total Milnor number of
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at least 25. But the only sextic with this (maximal) Milnor number is a union of
six concurrent lines by Lemma A.5 a), so this is impossible. Hence, the two lines
had to meet in the quadruple-point of C , so that two of the conics would necessarily
pass through this point as well, say D and D0. But then they could not be tangent
to the lines in the [3; 3]-points, as would be necessary, a contradiction.

This rules out all cases as claimed and completes the proof.

We also have to study the possible configurations of non-simple singularities a
reduced sextic can have. Note that the upper bounds we give below are most likely
far from optimal.

Proposition A.12. Let C be a reduced half-log-canonical plane sextic curve (cf.
Table 2.1). Then the only possible non-simple singularities C can have are:

i) One X p, 9  p  24;
ii) One Yr,s , r, s � 1, r + s  15;
iii) One J10;
iv) One J2,p, 1  p  14;
v) Two J10.

In the last case, C decomposes as a union of three conics, at most one of which
degenerates into a union of two lines.

Proof. The maximal total Milnor number µ(C) of a reduced sextic C ⇢ P2 without
a 6-fold-point is 24. Since all reduced non-simple plane curve singularities with
log-canonical threshold at least 12 have Milnor number greater or equal than 9, we
conclude that C can have at most two such. Moreover, this explains the given upper
bounds since the Milnor number of a singularity of type X p, Yr,s and J2,p is p,
9+ r + s and 10+ p, respectively.

If C has a quadruple-point, then C cannot have a second non-simple singular-
ity: By Lemma A.3 b), it must contain the line L joining them. But then the residual
quinticC 0 = C�L has to have either two triple-points, or a triple-point and a [2; 2]-
point with L as distinguished; both options are impossible by Lemma A.3 b) and e),
respectively.

Thus, it remains to show that if C has two [3; 3]-points, then they are both
non-degenerate and that C is a union of three conics then, meeting tangentially in
both points. In fact, as in the proof of Proposition A.7, we can conclude that if C
has two [3; 3]-points, then it has at least three rational components and that if it has
exactly three, then there are no further singular points. Then either C is the union
of three rational conics, or C contains a line. The only possibility for C to contain
exactly one line is that C = C1 + C2 + C3, with C1 a line, C2 a rational conic
and C3 a rational cubic. But a rational cubic has an A1 or A2-singularity, which
does not contribute to a [3; 3]-point, so that C had to have an extra singular point, a
contradiction. Thus, C contains a conic D (which may be the union of two lines).
Since the residual quartic C 0 = C � D cannot have a [3; 3]-point, the conic D
must pass through both [3; 3]-points in distinguished tangent direction and C 0 has
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to have two [2; 2]-points where C has its [3; 3]-points. But then C 0 decomposes as a
union of two conics meeting tangentially in those two points. Since the intersection
number of any pair of these three conics has to be 4 = 2+ 2, the [3; 3]-points have
to be non-degenerate.

The quartics are easy to deal with: There is only one quartic with a non-simple
singularity, namely, the union of four concurrent lines, giving rise to a single X9-
singularity, see, e.g., Hui [29]. Alternatively, this also follows from Lemma A.5
since the Milnor number of a non-simple singularity is at most 9 = (4� 1)2.

Since this is used in the Macaulay2-code [5, sextics.m2 II.2], note that from
Hui’s classification we also know that there are quartics with globally two different
kinds of A5-singularities, namely, some where the higher order directions are non-
trivial, and some where they are not.

B. The Macaulay2-code

We conclude this article with a quick tour through the arguments used in the
Macaulay2-code which computes the dimension of the various strata and shows
that the components are disjoint. All scripts can be obtained from a GitLab reposi-
tory [5]. They are inspired by a similar script by Sönke Rollenske.

If the singularities we want a plane curve to have are controlled by a config-
uration which can be fixed by a suitable automorphism, then the dimension of this
component is easy to compute using Macaulay2. One puts all constraints in an ideal
and asks the system for a minimal generating set of the module of octics satisfying
these equations. An example illustrating this is given in Listing 1.

Listing 1. Example without parameters

S = QQ[x,y,z]; -- Homog. coordinate ring of PPˆ2
Point = ideal(x,y); -- Homog. ideal of (0;0;1) in PPˆ2
QuadruplePoint = Pointˆ4;
m = super basis(8,QuadruplePoint) -- outputs:
-- | x8 x7y x7z x6y2 x6yz x6z2 x5y3 x5y2z x5yz2 x5z3 x4y4 x4y3z
-- ----------------------------------------------------------------
-- x4y2z2 x4yz3 x4z4 x3y5 x3y4z x3y3z2 x3y2z3 x3yz4 x2y6 x2y5z
-- ----------------------------------------------------------------
-- x2y4z2 x2y3z3 x2y2z4 xy7 xy6z xy5z2 xy4z3 xy3z4 y8 y7z y6z2 y5z3
-- ----------------------------------------------------------------
-- y4z4 |
{assert(numgens source} m == 35);

It shows that the sub-space of the vector space of octic forms in x, y, z whose asso-
ciated plane curve has multiplicity at least four in (0; 0; 1) 2 P2 is of dimension 35.
Thus, their linear system is of dimension 34 and there is an open sub-space V of
octics where the quadruple-point is non-degenerate and which has no further non-
simple singularities. Every plane octic curve with a quadruple-point is projectively
equivalent to one of those with a quadruple-point in (0; 0; 1). Therefore, the space
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of octic curves with exactly one quadruple-point and no other non-simple singular-
ities is the quotient V/G, where G ⇢ PGL(3, C) = Aut(P2) is the stabiliser of the
point (0; 0; 1). Since the dimension ofG is 6, we conclude dim(N2) = 34�6 = 28.

When the configuration cannot be fixed by an automorphism, then we have to
consider parameters. As an example Listing 2, we consider the case of a [3; 3]-point
and a quadruple-point. Up to projective automorphism, there are two distinct con-
figurations; one where the distinguished tangent of the [3; 3]-point points towards
the quadruple-point and one where it does not.

Listing 2. Example with parameters

A = QQ[t]; -- Affine coordinate ring of parameter space
S = A[x,y,z]; -- Homog. coordinate ring of trivial PPˆ2-family
P = ideal(x,y); -- Homog. ideal of (0;0;1) in PPˆ2
PwT = ideal(xˆ2,y-t*x); -- (0;0;1) with tangent direction y-tx
P33 = PwTˆ3; -- Corresponding [3;3]-point constraints
Q = ideal(y,z); -- Homog ideal of (1;0;0)
I0 = intersect(Qˆ4,sub(P33,{t=>0}));
I1 = intersect(Qˆ4,sub(P33,{t=>1}));
m0 = super basis(8,I0);
m1 = super basis(8,I1);
assert(numgens source m0 > numgens source m1);
-- Thus, something special is going on if t = 0. In fact, that is where

y-t*x lies in Q. Another component?
-- We consider the universal octic with a [3;3]-point as prescribed:
m = super basis(8,P33);
n = numgens source m;
RA = A[a_0..a_(n-1)];
params = gens RA;
RS = RA[gens S];
inc = map(RS,S);
f = sum for i from 0 to (n-1) list a_i*inc(m_(0,i));
-- The conditions that it has a quadruple-point at Q:
toBeZero = f%inc(Qˆ4);
toBeZeroCoefficients =
for term in terms toBeZero list leadCoefficient(term);
M = matrix for eq in toBeZeroCoefficients list
for g in gens RA list sub(leadCoefficient(eq//g),A);
-- For every t = t_0, the kernel of sub(M,{t=>t_0}) corresponds to the

space of octic forms with a quadruple-point in Q and a [3;3]-point in
P with distinguished tangent direction y-t_0*x. Thus, the rank of M
drops where something interesting is happening:

droppingRankConditions = minors(numgens target M, mingens image M);
assert(droppingRankConditions == ideal(t));
-- Thus, generically, the rank of M is maximal (10,in fact) and it drops

if and only if t = 0. Furthermore, the difference between the octic
forms obtained for t = 0 and those arising as limits t --> 0, t != 0,
corresponds to the difference between the kernels.

Kspecial = mingens kernel sub(M,{t=>0});
Kgeneral = mingens sub(kernel M, {t=>0});
assert isSubset(image Kgeneral, image Kspecial);
assert(image Kspecial != image Kgeneral);
-- They give rise to the following octics:
special = sub(matrix{ for j from 0 to numgens source Kspecial-1 list
sub(f,for i from 0 to numgens target Kspecial-1 list
params_i=>Kspecial_(i,j))},{t=>0});
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special = sub(special, S);
general = sub(matrix{ for j from 0 to numgens source Kgeneral-1 list
sub(f,for i from 0 to numgens target Kgeneral-1 list
params_i=>Kgeneral_(i,j))},{t=>0});
general = sub(general, S);
-- The line y is contained once in every member of the special locus,but

it is contained twice in every member of the general locus:
use S;
assert( special%y == 0 and not special%yˆ2 == 0 );
assert( general%yˆ2 == 0 );
-- Since non-reduced octics are not allowed in this stratum, the

components are disjoint.

Since jobs like creating the ideals containing the constraints or building a universal
family etc. have to be done multiple times, they are provided as functions in the
file [5, octicsFunctions.m2]. Explanations how they work can be found in the com-
ments there. For example, there is also a function checking whether a quadruple-
point is ordinary. (It blows up once and checks that the discriminant is non-trivial.
Therefore, if applied over a coefficient ring which is not a field, it only means that
it is generically non-degenerate.) Similarly, there is a function checking if a [3; 3]-
point is non-degenerate.
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[11] A. I. DEGTYARËV, Isotopic classification of complex plane projective curves of degree 5,
Algebra i Analiz 1 (1989), 78–101.



GORENSTEIN STABLE SURFACES WITH K 2X = 2 AND �(OX ) = 4 1185
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