Ann. Sc. Norm. Super. Pisa Cl. Sci. (5)
Vol. XXI (2020), 1103-1135

Degree counting theorems for singular Liouville systems

Y1 GU AND LEI ZHANG

Abstract. Let (M, g) be a compact Riemann surface with no boundary and
u = (uy, ..., up) be a solution of the following singular Liouville system:

1t hjeti 1
Aolt: S J _ 4 -,
gui+ ) aijpy (fM hje"idVy volg(M)) Z ™ ( 2 vozg(M))

j=1

where i = 1,...,n, hy, ..., h, are positive smooth functions, py, ..., py are dis-
tinct points on M, § 5, are Dirac masses, p = (01, ..., pn) (p; > 0) and (yy, ..., ¥N)
(y+ > —1) are constant vectors. If the coefficient matrix A = (a;j)nxn satis-
fies standard assumptions, we identify a family of critical hyper-surfaces I'y for
p = (p1, .., pn) so that a priori estimate of u holds if p is not on any of the I'ys.
Thanks to the a priori estimate, a topological degree for u is well defined for p
staying between every two consecutive [';s. In this article we establish this de-
gree counting formula which depends only on the Euler Characteristic of M and
the location of p. Finally if the Liouville system is defined on a bounded do-
main in R? with Dirichlet boundary condition, a similar degree counting formula
that depends only on the topology of the domain and the location of p is also
determined.

Mathematics Subject Classification (2010): 35R01 (primary); 35B44, 35J57,
35J91,47H11 (secondary).

1. Introduction

In this article we study the following Liouville system defined on a compact Rie-
mann surface (M, g) with no boundary:

h*,euj 1
J
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for iel:={,..,n}, yu>—-1foriel,l=1,...N
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where h’f, ..., b} are positive smooth functions on M, py, ..., p, are nonnegative
constants, vol, (M) is the volume of M, p1, ..., py are distinct points on M, §,, are
singular sources at p; and y;; > —1({ = 1,..,n,l = 1,...N) are constants as well.
Equation (1.1) is called Liouville system if all the entries in the coefficient matrix
A = (ajj)nxn are nonnegative.

System (1.1), in its generality, covers a large number of models in different
subjects of mathematics, physics and other disciplines as well. In physics Liouville
systems can be derived from the mean field limit of point vortices of the Euler flow
( see [8-10,23]). The study of Liouville systems finds applications in nonabelian
Chern-Simons-Higgs theory ( [18,20,21,41]) and the electroweak theory (see [1,
35-41]).Various Liouville systems are also used to describe models in theories of
chemotaxis ( [11,22]), the physics of charged particle beams [6,17,24,25], and
other gauge field models [19,26]. Even if the system is reduced to one equation,
it has profound background in geometry: if the equation has no singular source, it
interprets the Nirenberg problem of prescribing Gauss curvature; if the equation has
singular sources, the solution represents a metric with conic singularity [27]. It is
just impossible to overestimate the importance of Liouville systems.

One of the main goals in the study of Liouville system is to identify the role that
the topology of M plays in the structure of solutions. In particular, people seek to
identify a family of hyper-surfaces for p := (o1, ..., pn), so thatif p does not belong
to these hyper-surfaces, a priori estimate of u holds and the Leray-Schauder degree
can be defined. The explicit computation of the Leray-Schauder degree, which
depends on the topology of M, gives rise to existence of solution if the degree is
not zero. Usually the identification of critical hyper-surfaces requires detailed study
of blowup solutions, and it is well known that local, geometric information, such
as the Gauss curvature plays a crucial role in determining the asymptotic behavior
of blowup solutions, the main purpose of this article is to establish a link between
local analysis, the structure of solutions and the topology of 2-manifolds for a class
of singular Liouville systems.

If the system is reduced to Liouville equation, Chen and Lin completed the
program in a series of pioneering works [12—14]. The readers may read into [3,
4,28,29,42,43] for background and related discussions. Chen-Lin’s work was
extended by Lin and the second author [32-34] to Liouville systems with no Dirac
sources. Since singular sources have significant geometric applications, the main
purpose of this article is to extend Lin-Zhang’s degree counting formula to systems
with Dirac poles.

For the coefficient matrix A we postulate two conditions: The first one is called
a standard assumption:

(H1): A is symmetric, non-negative, irreducible and invertible.

Here we note that A being irreducible means there is no partition of the index set
I :={l, ..., n} into two disjoint subsets / = I U I, such thatq;; = 0 forall i € I;
and j € I,. In other words, the Liouville system cannot be written as two separated
sub-systems. The second assumption, which is made on the inverse of A, that is
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Al = (aij)nxn, is called a strong interaction assumption: For I = {1, ..., n},

a’ <0 Viel, a’l >0, Vi#ji jel
(H2): Ny
Yjerdd =0Viel

The reason that (H?2) is called a strong interaction assumption can be justified from
the following two examples: For n = 2, the matrix

ail a
A= 11 412
apz a

satisfies (H'1) and (H?2) if and only if a;; > 0, max (a1, az2) < aj2,and det(A) #
0. For n = 3, the following matrix

0 a; ar
Ail=|a 0 a3
ar az 0

satisfies both (H 1) and (H?2) if and only if a; > 0 and a; + a; > a; for i, j, k all
different from one another.

The second main assumption is that around each singular source, the strength
of the singular source for each component is the same: y; = y; > —1 for all
i =1, ..., n. This assumption is crucial for ruling out all partial blowups later. Also
for convenience we assume that the volume of the manifold is 1, thus (1.1) can be

written as
h*e"f
% u*
Juhieid Vg

gu +Zp,a”

Around each singular source, the leading term of u is a logarithmic function that
comes from the following Green’s function G (x, gq):

N
= 4y, —1D. (12
=1

—AG(x,q) =68, -1
(1.3)
[y Gx,q)dx =0.

It is a common practice to define

N

i =uf —4m Y yGx, p),
=1

and rewrite (1.2) as

4 hieli
Agu; + a-'p~<'17,—1>=0, i=1,..n, (14)
8% yrj
j; Juhje"
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where
N
hi(x) = hj(x)exp {— 4y G (x, pz)} ,

=1

which implies that around each singular source, say, p;, in local coordinates, & j can
be written as

hj(x) = |x|?g;(x)

for some positive, smooth function g; (x).
Obviously, equation (1.4) remains the same if u; is replaced by u; + ¢; for any
constant ¢;. Thus we might assume that each component of u = (u1, ..., u,) is in

H' (M) = {v e L’ (M); Vv e L*(M),and / vdV, = 0} .
M

Then equation (1.4) is the Euler-Lagrange equation for the following nonlinear
functional J, (1) in H'(M):

1 n - n
Jp(u) = 5/ > @IV VouidVy =y pi log/ hie"idV,.
M j=1 i=1 M
Let N be the set of positive integers. We shall use the following notation:
T = {8m7r + Y 8x(l+w): AC{pi..py}, meNTU {0}} \ {0}.
PIEA

Writing ¥ as
Y= {87mk | ni<ny< } (1.5)

we state our first main result in the form of a priori estimate:

Theorem 1.1. Let A = (a;jj)nxn satisfy (H1) and (H2). For k € N+ U {0}, and

O = {(/01, wo, P)|Pi =>0,1€l; and 8ny Z 0i < Z aijpiPj <8Tniyq Z pi.}
iel i,jel iel

Suppose h’'s are positive and C ! functions on M and K is a compact subset of Oy.

Then there exists a constant C such that for any solution u = (uy, ..., un) of (1.4)

with p € K and u; € H' (M), we have

lui(x)| <C, foriel, and xe M.
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Note that the set Oy is bounded if all ¢;; > 0 and is unbounded if a;; = 0 for some
i. By Theorem 1.1, the critical parameter set for (1.4) is

Ly = {p; 87”11(2:01' = Z aijpipj} .
iel i,jel

Thanks to Theorem 1.1, for p ¢ I'y, we can define the nonlinear map 7, =
(Tl,...,Tn) from H]’nzHl(M)X...XI"Il(M)tO Hl,n by

Ti -1 hje's 1 e
= —Ag l;a,,p, W — , lLel.

Obviously 7, is compact from H'" to itself. Then we can define the Leray-
Schauder degree of (1.4) by

dy = deg(I — T,; Bg,0),
where R is sufficiently large and Bgp = {u; u € H'“" and S lluill g < RY.
By the homotopic invariance and Theorem 1.1, d,, is constant for p € Oy and is
independent of & = (hy, ..., hy).

To state our degree counting formula for d, we consider the following gener-
ating function g:

g) = (14x+x2+..) 7NN (1—x17),

where x (M) = 2 — 2g,(M) is the Euler Characteristic of M (g.(M) is the genus
of M). It is obvious to observe that if —y (M) + N > 0,

(14 x 427 4 .) 1IN — (0=,
Writing g(x) in the following form
gx) =14+b1x" + bpx" + ..,

we use by, by, ... to describe our degree counting theorem:

Theorem 1.2. Let d,, be the Leray-Schauder degree for (1.4). Suppose

n n
8mwny Zpi < Zaijpipj < 8mng4 Zpi,

then

d, = ij, where by = 1.
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For most applications y; are positive integers, which implies that

Y ={8wm; meNT}.
Thus in this case (y; € NT) if y (M) < 0 we have
1 —x!tn
l—x
= (I4x4+x>+. )MV (14 x4 ... +x7)
=14+bix+bax*>+ ...+ bpxF + ...

g(x) = (1 +x +x2+..)~ ¥l
(1.6)

Obviously b; > 0 for all j > 1, which implies

k
dy=1+Y b;>0.
j=1

Corollary 1.3. Suppose all y; € NT and x (M) < 0. Thend,, > 0 if
Zaij,o,-,oj ;é 8Tm Zp,‘ Vm € N+.
ijel iel

Thus (1.4) always has a solution in this case.

For an open, bounded smooth domain in ]Rz, we are also interested in the following
system of equations:

h*.e“j N
Au; +3"_ajipi—t— =4n Y ) Vb, i€l
! 2]71 ijPj /Q hje"‘] Zlfl Yiop, (17)
uilgg =0 iel,
where hT,...,hﬁ are smooth functions on Q and p1, ..., py are distinct points in the
interior of £2.
Let

o0
g() = (1+x +x2 ) OV IN (1= ) = 3 b,
j=0

where x (2) = 1 — g.(2) (g.(€2) is the number of holes bounded by £2) is the Euler
Characteristic number of 2, and by = 1. Then we have

Theorem 1.4. Suppose

Brmi Y pi < Y aijpipj <8Tnii1 Y pi.

iel i,jel iel

Thend, :Zl;:o bj. Ify1, ..., yn €NT, Qis not simply connected and > ijqijpiPj F#
8wm ) ; pi for any m € N, we have d,, > 0 and the existence of a solution to (1.7).
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If the Liouville system on (M, g) is written as

N
Aguf + Y aijhe"s =4m Yy " ysy, i€l (18)
jel =1

with the same assumptions on A, A7, y; and vol(M) = 1, we first remark that (1.8)
is a special case of (1.4). Indeed, integrating (1.8) on both sides, we have

Zaij/ hje”jf =4x Zy;.
M ]

jel

Thus
/ hie'i =4m ) " a'l (Z y,) , el (1.9)
M jel 1

Setting

jel 1
we can write (1.8) as

h*_eu_’;

Aguf + Y aijpj | ——— = 1| = dnp@, -1, iel
J Ju hje / p

If M is a torus and y; € N, we can compute the Leray-Schauder degree when
> ;v is odd.

Theorem 1.5. Suppose M is a torus, y; € N* and )", yi is odd. Then the Leray-
Schauder degree for (1.8) is %l’[ll\;l a1+ yp).

Here we would like to point out that if the topology of the manifold is trivial, Bar-
tolucci [2] studied another delicate Liouville system and proved some existence
results when the topological degree is zero.

The main ideas of proofs in this article are motivated by a number of related
works. One major difficulty comes from the “partial blowup phenomenon”, which
means when a system is scaled according to the maximum of all its branches, some
components disappear after taking the limit. One crucial step is to prove that no
component is lost after scaling. We call this a fully bubbling phenomenon. For this
part we use the idea in [33]. Another major difficulty comes from the non-simple
blowup phenomenon. When a singular source happens to be a blowup point, it
is possible to have a finite number of disjoint bubbling disks all tending to the
singular source. Such a blowup picture is called “non-simple blowup”, studied by
Kuo-Lin [27] and independently by Bartolucci-Tarantello [5] for singular Liouville
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equations. In this article, using ideas in [30,31] we extend the results of Kuo-Lin,
Bartolucci-Tarantello to Liouville systems and prove that the non-simple blowup
phenomenon can only occur if the strength of the singular source is a multiple
of 4m.

Finally we would like to explain the role of (H 1) and (H?2) and how the blowup
analysis of Liouville systems is different from that of Toda systems [30,31]. For
Liouville systems, the total integration (energy) of global solutions belongs to a
hypersurface [32], which means the energy is not discrete. To rule out the diffi-
culty caused by the abundance of energy we need to use (H 1) and (H2) to prove
that the profiles of bubbling solutions around different blowup points are the same.
Moreover, there is almost no energy outside the bubbling disks. However, for Toda
systems, even though the energy of global solutions is quantized, a major difficulty
comes from the fact that there is a lot of energy outside bubbling disks. In [31],
tools in algebraic geometry are used to prove that energy outside bubbling disks is
also quantized.

The organization of this article is as follows: In Section 2 we analyze the
asymptotic behavior of solutions near a blowup point and we prove, using ideas
in [33] that the energy of uf.‘ must satisfy certain rules around different blowup
points. In this section we also establish certain estimates for non-simple blowup
points. Then in Section 3 we prove all the main theorems. In particular the proof of
degree counting theorems is by reducing the systems to Liouville equation and use
the previous results of Chen-Lin [13,14].

2. Asymptotic behavior around a singular source

Since the proof of all the main theorems boils down to detailed analysis of locally
defined blowup solutions, in this section we consider a locally defined Liouville
system

n
k
Auf + ) ajjhte"s =4y, iel, in By CR% 2.1)
j=1

where h’f, hﬁ are positive smooth functions on Bs (the ball centered at the origin
with radius § > 0) with uniform bounds:

0<ci<hf<ecy W01 <es, el (22)

for ¢y, ¢z, c3 > O independent of k. Let y > —1 is the strength of 8p, A = (@ )nxn

satisfy (H1), (H?2), and we assume the uniform bound on the integral of hf.‘ e”i'{ and
its oscillation on d Bs (the boundary of By) :

/ ket < C 23)
Bs

max max |uf(x) —uf(y) <C, (2.4)
i x,y€dBs
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for some C independent of k. Then in this section we consider the case that the
origin is the only blowup point in Bjs: let

¥ () =uf(x) —2ylog|x|, iel:={1,...n) (2.5)
and write the equation for ik = (ﬁ’{ s eees ﬁ/fl) as

~k
Aiif + ) Jay e =0 in By, 20
J

Then we assume that

~k

u; (x)
M), = max max where pu=1+y, 2.7)
i X€Bgs 2
tends to infinity:
My — oo and given € € (0,8), max max u’ < C(e) (2.8)
i x€Bs\Be

for some C(¢) > 0 independent of k.
In this case the profile of blowup solutions is more intriguing than that around
a regular point. There are two possibilities: either

max max u (x) +2log x| < C 2.9)
i Xx€Bs
or along a subsequence
max max u* (x) 4+ 2log |x| — oo. (2.10)
i x€Bs

We call the blowup phenomenon “simple” if (2.9) holds. Otherwise, if (2.10) holds
we use “non-simple-blowup” to describe u*.

2.1. Simple-blowup
First we consider the case when (2.9) holds. Let
f)l{‘(y) = ﬁf-‘(eky) +2unloger, where ¢ = e_%M".

Then it is easy to verify that f)f < 0and

- ik _
ATE) + Y aijhje@)ly? e’ =0, |yl < s 2.11)
J

Then we prove
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Lemma 2.1.
max 9 (0) > —C. (2.12)
l

Proof. From (2.8) we see that there exists y; € B(0, ¢, 1) such that max; f)lk () =
0and |ye| = o(1)e; . Let rx = |yi| and

() =0 ey) +2ulogry —co, Iyl <2, i€l
where cq is chosen to make sz < —1 (see (2.9)). We write the equation of zf-‘ as

k
2y 1k Z54c
Ejaij|y| the] 0

AZE + *=0, |yl<2

i k i
i
k Zk-%—c
. k Z/ aijh- i 0 . . .
Using z; < —1 we see that |+| is bounded. Standard Harnack inequality
i
for linear equations gives
max(—z~) < Cmin(—z5), iel. (2.13)
dBy 0B,

Thus max; min T)Ik > —C on 0B,,. Then (2.12) follows easily from standard maxi-

mum principle. Lemma 2.1 is established. O

The proof of Lemma 2.1 also implies that at least one component of ﬁf is

bounded below over any compact subset of R?, which means these components
converge to a global function along a subsequence. Thus we use /] to be the indexes
of converging components. In other words, for indexes not in /1, the corresponding
components tend to minus infinity over any fixed compact subset of R?.

Let v; be the limit of 51(‘ and we use

1 ~ .
m=—/m%%zul
2 R2

to denote the energy of v in R2. Here for convenience we assumed hf.‘(O) =1, but
this assumption is not essential. Traditional method can be used to prove

vi(y) = —mjlogly|+ O(l), |yl>1, i€l
where m; = Z?:l ajjoj.Fori € I} we have
m; >2un, wpu=I1l+y, 1ie€l. (2.14)
Let Uik denote the energy of uf in Bs:

1 ~k .
of = — | hix|7e", i=1,..n,
2 Bs
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Then it is immediate to observe that

klim Ul-kZO',', i el.
—00

Corresponding to al-k we set mf to be

n
k _ R 4
m; —Zaljaj.
j=1

Before we proceed we extend (2.14) to all i € I:

Lemma 2.2.

m; = ZaijO'j > Z/L, iel \ 1. (215)
Jel

Proof. First we invoke a result from [33]: For A satisfying (H'1) and (H2),a;; > 0
if i # j. We prove (2.15) by contradiction. Suppose m = min{m;, i€ I} <2u.
Then we immediately observe two facts: first m; > m for all i € I; because
m; > 2u fori € I1. Second m > O because o; =01ifi ¢ Iy anda;; > 0if i # j.
LetJ ={i € I; m; = m}. Clearly J is not empty, I} N J = J and we use J; to
denote I \ {I; U J}. Moreover we use m = min{m;; i € I;UJ;}. Clearly m > m.
Foreachi € J, we have 6; = O since i ¢ I;. Thus

0=o0; = Za”m.,- = Zma” + Z a’m.
J

ieJ jeiul

Usingm; > mfori ¢ J and gq;; > 0 fori # j, we have

0=mY a’/+> aym=m) dal+Y a(m—m). (2.16)

jelJ jéJ jel jéJ

In view of (H2), which includes i a'’ > 0, we see that equality in (2.16) holds
and
a’=0, VieJand Vjel\J.

Thus A~! can be written as a block-diagonal form, which means A can also be
written as a block diagonal form (after possible rearrangement of indexes), which is
a contradiction to the irreducibility of A. (2.15) and Lemma 2.2 are established. [

The following lemma gives an estimate of the behavior of uf.‘ near d Bs:

Lemma 2.3. Let My be defined in (2.7) and 0 be a simple blowup point of u*, then
we have

O'ik = 0; —|—0(1), l = 1, 2, n,
k

~k k m; 192 .
i (x) = —mj log |x| — ?Mk +0(), xedBs, i€l
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and

k

mi —2
ﬁﬂm=~mﬁmyﬂ——L5i3@+@ﬁm—uMw+oax x€dBy, igl

Remark 2.4. Note that we use o(1) to denote a quantity tending to 0 as k — oo,
and O(1) to denote a quantity whose absolute value does not tend to infinity as
k — oo.Fori ¢ Il,ﬁi.‘(O) — uMy; — —o0. Also even fori ¢ Il,limk_momi.‘ >0
because a;; > 0 fori # j.

Proof of Lemma 2.3. As mentioned before, at least one component of v converges
uniformly over any fixed compact subset of R?. Then it is easy to find Ry — oo to
make the following hold:

1 ~k
> V12 hE (exy)e’t Vdy = o; +o(1), i€l
BRk
1 e
P 912 ¥ (e y)e™ Ddy = o(1), iel\1.
JT BRk

Let ﬁl{‘ (r) be the spherical average of ﬁl’.‘ on d B, the differentiation of T)l/? (r) gives
d 1 1 =k
~k ~k k 2y VU
— " = — AV = ——— E i h" Veli.
dr ! ") 2r ./B, i 27r /Br 7 “ j(eky)M ¢

Since a;; > 0 and all m; > 2, it is easy to use Green’s representation of ﬁf‘ to
prove

ko _ o~k _ §
v;(r)=v;(y»)+0), |yl=r, Rg=<rc= 26

and
() < =R — @+ loglyl +0(1), |yl >R, i€l (217

for some §; > 0 independent of k. Even though §; > 0 may be small, it leads to
the smallness of the energy of ﬁf:

/1 Iy BE (eey)e’ = 0
Bek_l(ﬁ\Br

Thus we can give an accurate estimate of the energy of 171].‘ as:

1 )
7 / Y REeye =mb— 0¢), R <r < 8e;. (2.18)
B,
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By the smallness of the error term in (2.18) and standard estimates from the Green’s
representation for ﬁf‘, we easily obtain

() =—miloglyl+0), 1<|yl<e's, Viel.

The estimate for 1711.‘ near infinity can be translated into the following estimate
for ﬁf :
if(x) = 3f (v) —2plogex  for|x| =3, |yl =¢.'s,
1
— —mflog|yl —2u (—EMk) +0(1)

. . (2.19)
= —mj log|x| + m; logex + uMy + O(1)
k
2
— —m¥log x| — TMM,{ + o).

Thus the estimate for i € I; for uf? is established.
It is also straight forward to prove that for all i & Iy,

f PR et = 0, Ry <r < efls.
B(0,¢; '8)\ B,

With this estimate the behavior of f)l/.‘ for i & I can be written as
() = 5 (0) — (Zau )log|y| +0(), i¢h.
Jeh
Consequently for u u we have, for [x| = § and |y| = ¢, |x|
~kooN =~k
u; (x) = v; (y) — 2 log e

=7;(0) — (Z aijo )1og |yl + My,

Jeh
k mj — 2 ~k
= —m; log |x| — TMk + (u; (0) — uMy).

Lemma 2.3 is established. O

Remark 2.5. Even though some components of (oy,....,0,) may be zero,
(o1, ..., o) still satisfies the standard Pohozaev identity:

> ajjoioj = 42(1 + ¥)ai. (2.20)

i,jel
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The derivation of (2.20) is standard and we mention the argument here for the con-
venience of readers. The Pohozaev identity for u* on Q is

3 (/Q(x  VhYet + 2h{.<e“f-‘)

iel
¥ 1
N / (Z(x ket 36 (avu,;(x Vi) = S0Vt - Vu'E)) )
AT i

Setting 2 = B;s \ B¢ and let ¢ — 0, we have

y 1
5/ > al @b a,uk —Vu{?-w’;)JrZ(s/ hk et
Bs jjer 2 9B

iel
=2Z/ hk et +Z/ (x - Vib)et + 4 > aly?.
icl Y Bs icl Y Bs ijel

where we have used
Vuf-‘ = 2)/)c/|)c|2 + a bounded function

near the origin. In order to evaluate other terms we can use standard elliptic estimate
to obtain

Vuk(x) = <Za,~ja,~ —2y + 0(1)) /lxl,  |x] =8.
iel

Then (2.20) follows from direct computation. We refer the readers to [30] and [32]

for more detailed computation.

Remark 2.6. If the blowup point p is not a singular source, the scaling is centered
at pry — p where the maximum of 125‘ is attained. In this case we have max; vf 0)=0
and the non-simple blow-up does not happen.

2.2. The comparison of blowup solutions around different blowup points

Under the same context as in the previous subsection, we establish the following
lemma which compares the behavior of solutions outside bubbling disks.

Lemma 2.7. Let p and q be two disjoint blowup points of

k
Auk + Za,-jh];e”./ =48, +4my,8y, i€l
J

in Q € R? where p,q € 2, Yp»Vq > —L1. Suppose the assumption on hf.‘ is
the same as before: Uniformly bounded above and below by positive constants and
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uniformly bounded in C' norm. Moreover we assume that the sequence of solutions
has an uniform bound on the energy and on the boundary oscillation:

k
/ Rke'i <€,  max |uF(x) —uf(y)| < C.
Q x,y€02

We use (alk, ey a,’f) and (c'rf‘, s 6,’,‘) to denote the integration ofuk in B(p, 6) and
B(q, ), respectively:

1 k 1 k
aik = — hketi 5= — h{fe“i.
27 Jp(p,s) 27 JB(g.5)

If p or q is a regular point instead of a singular source, we have y,, = 0 or y, = 0.
Correspondingly we set

n
k __ .k -k _ =k
m; = E ajjo;, m; = E ajjo;.
j=1

Jjel
Assume in addition that

Ukl B(p.s) = ullopig.5 + O(1).

Then if p and q are both simple blowup points, we have

= lim &%

Hg .
24 Him ok i

MUp k—o0 i k— 00

iel 221)

Remark 2.8. If p or g is a regular point, it is a simple blowup already.

Proof of Lemma 2.7. Since p and g can be a singular source or a regular point on
the manifold, we use , = 1 + y, if p is a singular source. Otherwise , = 1.
Let My = max;e; ik (x)/up for x € B(p, §) and My = max; i (x)/11q in B(q, 5),
f f‘ minus a corresponding logarithmic term in local coordinates. Sup-
pose Mj, is attained at py that tends to p and Mj is attained at g that tends to g.
Using Lemma 2.3 we have, fori € 1

where u is u

mf‘ —2up

S M+ My — i (pr))

(2.22)

-k
m; —2fig - -
= 'Tqu + (ug My — ¥ (qr)) + 0(1).

Here we further remark that, say around p, if the first / components of ii* converge
to a system of / equations after scaling, M) — ftf (px) are uniformly bounded

for 1 <i <. In this case pu, My — ftf(pk) can be replaced by O(1). Fori > [,
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wp My — ﬁf‘ (px) tends to infinity. The right hand side of (2.22) can be understood
similarly. For each i € I, if

pMi — it (pr) > g My — iif (qo),
we let
If = (rpMi — it (po) = (ng My — iif (qr), and I} =0.
On the other hand, if
i My — ¥ (pr) < g My — i (q),
we let
k _ Tk __ Y ~k ~k
l; =0, and [} = (ugMip —u;(qr)) — (pMir — u; (pr)).

Set

I* I
I = {ie]; lim #>0} ,and D= {iel; lim #>0}.
k—o00 My k—o00 My
It is easy to observe that I} N I = ). We claim that /; = (J, which is now proved
by contradiction:
Suppose 11 # @, then we consider two cases: I, # () and I, = 0.

Case one: I, # (.
Let . -
M ) _ [

A= lim =%, & = lim -, & = lim —.

k—o00 M} k—o00 M} k—o00 M}
We claim that these limits exist along a subsequence. Indeed, using the definition

of l;‘ and ll{‘ (2.22) can be written as
mjf—zup%+ 1 mb -2,

1

2 M;, M_k N 2 M;,
Take i € Iy, the right hand side tends to MFTZ’”, which means along a subsequence,
the two terms on the left hand side tend to m,—Tzu,, and §;, respectively( we use o;
to denote the limit of al.k. m;, m;, 0; are understood in a similar fashion). On the
other hand for j € I, the left hand side tends to W_TZ’”’A, which forces the right

hand side to converge to m’_TZM" + &; along a subsequence. Now (2.22) leads to

e
po ="M 5 viel (2.23)

}\mi —2up
2

2
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Here we recall that §; >0 in I; and §; >0 in I. We also will use 0;8; =0 for all ;.
From 6; = 0 in I, we have

0=0 = E aljl’l_/lj—i- E alJI’ﬁj.
Jjeh Jgh

Since A is irreducible, there exist i € I, and j ¢ I, such that '/ > 0. Multiplying

8; on both sides and taking the summation fori € I, we have
Z ai-jn_@igj < 0.
i,jelz

So trivially there exists i € I such that

Y dlis; <o. (2.24)

From the comparison of the ith component, we have
T, mj_2Mp T, 67 7. T .=
P (1) e

The second term on the left is nonnegative because §; = 0 if i € I and a’Tj > 0if
i # j. The first term on the right is 0, the last term on the right is negative. Thus
the equation above is reduced to

A 7. 7.
5 —kupZa” < —Za”uq.
J J

Since o5 > 0, the strict inequality and (H2) imply ) ja'’ >0, thus we have

A> pg/ip-
On the other hand the same argument applied to i € I; gives

A<ﬂ.

Hp

Thus this case (11 # @, I, # ) is ruled out.
Next under the assumption /1 # ¥ we consider the case that I, = @.
Since all §; = 0 we have

m,‘—2/¢op)b+8'_n_1,~—2uq
— 7 = —"

, el
) l
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Using this expression in

Zaij (n_ii —22Mq>< 2:U~q> Zaz]'uq’

ij

which is equivalent to the Pohozaev identity for (o1, ..., 0,) (see Remark 2.5) we
have

m; — 2
AZZa”up+2AZ ‘J( ! > ””)3 + Y d's;s; —Za”,uq (2.25)
i,jel
where we have used

() (52) g

ij

The second term on the left hand side of (2.25) can be written as
A (ZUJ'(SJ' — 2/,Lp Z (Zaij> 5]') y
J J i

which is nonpositive because 0;8; = 0 and Y_; a’/ > 0. We further claim that the
third term on the left hand side of (2.25) is nonpositive. This is because all the
eigenvalues of (a') 1,x1, are non-positive. This is proved in [33] and we include
it here for convenience: Without loss of generality we assume I1 = {l, ..., ig}
and let F = (a'/)jyx;, for i, j € I. Let u be the largest eigenvalue of F and
n = (n, ..., ni,) be an eigenvector corresponding to w. Here 5 is the vector that
attains

max v’ Fv, vlv=1.

veR0

Since a'/ > 0 for all i # j,we can choose n; > 0 foralli € I . Foreachi € I,
0= =X i+ Y
Jjeh Jéh

Thus by (H2) -
Za”mj <0, iel.
Jjeh

Multiplying both sides by 7; and taking summation on i, we have
0= Z amimj = Zl“’ljmj-
i,jeh jeli

Using n; > 0 (at least one of them is strictly positive) and m; > 0 fori € I;, we
have u < 0.
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Thus from (2.25) we have
Hq
Hp

A >

Note that we have used ) _, j a'/ > 0 because otherwise A~! would not be invertible.

Next using the proof of (2.24) we can find some i € I; such that jen ais i <0.
For this i, from

.. P ) omi =2
Zall (—mj 5 Mp)\.+8j) ZZal]m] 5 Hq
J J

we write it as

—Zaijup)»—}— Zaijﬁj =0;/2 — Zaijuq,
J

jeh J
where we have used ; = 0 fori € I;. Using 6; > 0 and Zjell aij8j < 0 we have

k<ﬁ.
Hp

Therefore this case (I # @, I = ) is also ruled out. We have proved that I} = @.
In a similar manner I, = ¢ can also be established.

Finally using

A = e, (2.26)

in the Pohozaev identity for (o1, ..., 6,) we have

M
A= lim = = e 2.27)
k— 00 Mk p(,p
Using (2.27) in (2.26) we further have
By =i, Moy =, iel (2.28)
p p
Lemma 2.7 is established. O

Finally we deduce the asymptotic behavior of u* when non-simple-blowup
occurs.
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2.3. Non-simple blowup

Now we consider the second possibility, the non-simple blowup. This phenomenon
happens when (2.10) holds. Recall that uk = (ulf, ey uﬁ) satisfies (2.1). If (2.10)
holds, a standard selection process [30] determines a finite number of bubbling
disks: B(p;‘, rlk) for/ =1, ..., N where pl]‘ are local maximums of some uf.‘ and rlks

are determined as follows: Scale u* with respect to the maximum of max; uff ( p;‘ ),
then the system converges to a possibly smaller global system with finite energy.
Note that we use B(p, §) to denote the ball centered at p with radius §. Then it is
easy to choose Ry — oo such that the integral of the scaled functions over B(0, Ry)
is only o(1) different from the energy of entire solutions. Scaling back to u; we have

that the integral of eti over B( pf , rlk ) is o(1) different from the energy of its global
limit. Moreover, if we use (alkl, al’jl) to denote the energy in B( pf, rlk ) we have

Y aijofof; =4 of +o().

i,jel i
Here we shall invoke some argument in [30]. The main result in this part is:
Proposition 2.9. If (2.10) holds, u € N*.

First we mention the following simple lemma:

Lemma 2.10. Let A = (a;j)nxn be a matrix that satisfies (HI). Suppose (01(1),

. 0,51)) and (0](2) - 0,52)) are two vectors with nonnegative components. If they

both satisfy
n
nH _( !
> aioy o) =4u o
iJ i=1

forl =1,2 and some u > 0. If

n
Y ayol >2u, i=1...n (2.29)
j=1
and
ai(z) > O’i(l) i=1,..,n.
Then
oV=6?, i=1,..n

Proof of Lemma 2.10. The proof is immediate. Let s; = ai(z) — ai(l). Then s; > 0.
The difference between the two equations in (2.29) gives

2 Z (Z a,'jdj(-l) — 2/L> si + ZaijsiSJ =0.
i j i,j

By the assumption (H 1) and the nonnegativity of s; we have s; = 0 for all ;. O
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Proof of Proposition 2.9. First we use

g = {O, p]f, vy plfv}

to denote the set of blowup points and the origin. Note that there may also be a
bubbling disk centered at the origin, as described in Lemma 2.1. Here we invoke
the definition of group in [30]. If a few bubbling disks are of comparable distance to
one another and are much further to other bubbling disks, the set of these bubbling
disks (that of comparable distance to one another) is called a group. See [30,31]
for more detailed discussions. For example, pll‘ , p’2< , pé‘ are called in a group if

dist(p’l‘, péﬁ) ~ dist(plf, pg‘) ~ dist(plzc, pé‘) and
dist(py, ¢)/ dist(p}, p) — oo

forany ¢ € ¢ \ {pf, ph, pi}.

Now we make two important observations: First, there is no group far away
from the origin. The reason is if there were such a group, say B(pg, ;) and
B(gk, Ir) belong to a group and dist(0, px)/ dist(px, gx) — oo. First by the ar-
gument of Lemma 2.14 and Lemma 2.3 all the components of uf.‘ have faster decay
than harmomc function near d B(px, Ix) and 0B (g, lx): in precise terms, if we use

(orpl, .. ) and (aql, aé‘n) to denote the energy in B(pyg, lx) and B(qk, lx),

respectlvely, we have
D00y =4 opi +o(1),
ij i

and

Zau _420q1+0(1)

Moreover, as in Lemma 2.14

mb = ajok =2, mh Zaua >2, Viel (2.30)
ij

Let di be the distance from py to the nearest member in X; not in the group of pi
and g;. Then (2.30) means all components of u¥ decay so fast that there is little
energy in B(pr, di/2) \ (B(pk, lx) U B(qk, lx)). Looking at the average of uf it is
easy to find I, < dj /2 which satisfies

I/l = 00, I = o(1) dist (pk, i \ the group of pk).
And on 9 B(py, Ix) we still have

uf(x) +2logly — —oo, i€l (2.31)
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From (2.31) it is easy to use the Green’s representation formula to evaluate the
Pohozaev identity and obtain (see [30])

Za,-_,-ol_’;al_"j =4 af +o(l), (2.32)
i,j i

k 1 kuk q k k k

where o7 = EfB(pk,l_k) hie"i. Since (o7, ..., 07 ) and (o), ..,
same equation but al-’; > o;fl. + aé‘l., by Lemma 2.10 we easily get a contradiction.
Here we briefly review how (2.31) leads to (2.32). Roughly speaking (2.31) means

the value of uf.‘ is very small on  B(py, [;) and by Harnack inequality, most energy

k .
0,,) satisty the

of uf.‘ in B(py, I;) is concentrated near Pk, which implies that all the derivatives of
uf? are very easy to estimate on d B(py, [x). The evaluation of the derivatives of uf

and the smallness of e”i‘{ on dB(py, Iy) lead to (2.32).

The second main observation is that for the group containing the orgin, there
is no bubbling disk centered at the origin. In other words, if there is a group that
contains the origin, it has to be the case that there are finitely many bubbling disks,
say B(p’l‘, r{‘),...,B(p;‘, rlk), with p’fpf all of comparable distance to the origin
and there is no bubbling disk centered at the origin. This fact is also proved by
contradiction. Suppose around the origin there is a bubbling disk whose energy is
(alk, ...o*,]l‘). We have already known that

Za,-_,-aikajl.C =4u Z aik + o(1).
ij i

If there is another bubbling disk, say B( p’l‘ , l) in the group, we can find I; such that

B(0, I;) encloses all the bubbling disks in this group and j is less than half of the
distance from O to any member in ¥ outside the group. The fast decay property as
before also gives

uk(x) +2logly — —oo, x € 3B(0, ).

Using the same argument as in [30] we have
k_k __ k
Zal-ial-j =4u Z oj. + o(1),
ij i

ko L
where al-_k = % /, BO.0y) hg‘e“i . Since o7; is significantly greater than Uik for at least
one component, Lemma 2.10 gives a contradiction as before.

By the two observations before we only need to consider the case that there are
finitely many bubbling disks around the origin and their centers are of comparable
distance to the origin. Suppose these local maximums are p’l‘ yeees p’,‘\,, and we suppose

k| ~ $
|p t | k-
Let
A = max max uf?(x) + 2log |x]|.
i X
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Without loss of generality we suppose Ay is attained at pj . Let 8y = |p1 x| and
k() = uF(prx +8ky) +2logs, i€l (2.33)

It is immediate to observe that the domain of vf contains B(0, 63, ]) for some small
8 > 0. Standard selection process can be employed to obtain finite bubbling disks
centered at p; k,...,pn x such that not only |p; x| ~ 8, but also |pm x — pi k| ~ S

forall I # m. Let zf‘ be the images of p; x by the scaling in (2.33). Then clearly

z’l‘ is the origin and the distance between any two zf‘s is comparable to 1. So we

assume, B (zf‘, 8) are mutually disjoint for some small § > 0. The definition of vl{‘
clearly implies that
max max vl{‘ = Ag.
i B
Let 11 be the set of convergent components after scaling according to the maximum
of all components. Then using previous discussion we have

k_o .
vE(y) = —mf log |y| — “5=Ag + O(1) iel, yedB;

k_o .
vk(y) = —mFlog |yl — “5= Ak +vK(0) — Ak + O(1) i €11 yedBs,

for some § > 0. Here we use (olk, s a,’l‘) and (m’f, s mﬁ) to denote the energy
around p1 k:

k 1

k vk ; k k
o = — h;(prx+&yei, iel, m;= E a;ios.
! 2 B(0,5) ! L > Urj

k

If we use (61]‘, ..., 0 ) and (rﬁlf, s n_ftfl) to denote energy around another bubbling

disk in this group. Lemma 2.7 gives

k k

lim o/ = lim o;7, i€l
k— o0 k—00
The Pohozaev identity for (of, ..., o) is
Y aijolof =4 ol +o(1). (2.34)
ij i

The equation for (c'rf‘, 6,’5) is the same. If we use Ax to denote the maximum
around the bubbling disk that 6l.k represents, the proof of Lemma 2.7 gives

Ar/A; =14+ 0(1).

Let 0; = limy— oo oik. Then (o1, ..., 0,) satisfies

E a;jjoi0; = 4201-.
ij i
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On a fast decay radius that encloses all bubbling disks in the group around the
singular source, we have

Y aij(No)(Noj) =4y (Noy).
ij i

Thus uw = N (thatis y = N — 1) and Proposition 2.9 is established. O

Next we derive the asymptotic behavior of uf.‘ on d Bs for some 6 > 0 small if
the non-simple blowup phenomenon occurs. Recall that §; is the distance from 0
to a local maximum of uf. Here we abuse the notation of vlk by defining it slightly
differently:
vlk(y) = uf(Sky) +2logér, i€l

Then we have

k
Avf () + ) aihk(ey)e's = dmydo, Iyl <88 iel
j

If we use f)lk (r) to denote the spherical average of vf‘ at 0B,, we have, forr >> 1
(so B, contains all the N bubbling disks around the origin),

d _, 1/1 © vk

Thus based on the asymptotic behavior of vf‘ around each of the N bubbling disks,

we have
—Nmf-‘ +2y +o(r™0)

r

d i
d_r i(”)—

for some 6; > 0. So forr ~ 8,:1 we have, fori € I,

k
keoy My —2 k —1 1
vi(y) = — > Ak + (=Nm; +2y)logé, " +O0(), |yl~3d, .

Using y = N — 1 and the definition of vf‘ in (2.33), we have

uflanep.s) = vll'{|BB(0,88k_l) + 2log &

mf —2 mf —2 4

k
ms —2
=— ’2 (Ax +2Nlogdy) +O(1), iel.

Fori € I \ I1, we have

mk —2

i

uNop(p.s) = — (Ar 4 2N log &) — Ni., (2.36)

for some N, = Ay — vf(O) + 0(1) — oo.
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From (2.35) and (2.36) we see that even if the non-simple blowup phenomenon
happens around a singular source, still the argument of Lemma 2.7 can be applied
to compare the energy of two blowup points, regardless of they are simple or not.
Thus under the same context of Lemma 2.7 except that we remove the simple-
blowup requirement, we still have

Iri _ %t o, (2.37)
Kp  Hq

where (0p1, ..., 0py) and (oy1, ..., 04,) are energy at p and g, respectively.

3. Proof of the a priori estimates and the degree counting theorems
Proof of Theorem 1.1. Letu = (uy, ..., u,) be a solution of (1.4). We set
v = u; —log/ hie"'dVy, i=1,..n, (3.1)
M
which immediately gives
/ hieVidVy =1, iel. (3.2)
M

The equation for v = (v, ..., v,) now becomes

Agvi+ Y pjaij(hje’ —1) =0, i€l (33)
jel

To prove a priori estimate for u, we only need to establish
i) <C, iel, (34)

because with (3.4) we have
log/ hie"n —C <u;(x) < log/ hie" + C. (3.5)
M M

The fact that u € H'" (M) implies that for each i, there exists xo; € M such that
u;(xo,;) = 0. Hence by (3.5) we have

|log/ hie"'| < C, i€l (3.6)
M

In view of (3.1) and (3.6), the bound for u is a direct consequence of the bound
of v. Also we only need to prove the upper bound for v, because the lower bound
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of v can be obtained from the upper bound of v and standard Harnack inequality.
Therefore our goal is to prove

vix) <C, iel (3.7)

The proof of (3.7) is by contradiction. Suppose there exists a sequence v¥ to (3.3)
that limy _, o max; max, vl’? (x) — oo. Then we consider two separate cases.

Case one: ,of — p;i >0ask — oo,foralli € I.
The equation for v¥ is
k
Agvf + > phaijhje'i —1) =0, iel (3.8)
jel

By an argument similar to a Brezis-Merle type lemma [7] it is easy to see that there
are only finite blowup points: {p1, ...pn}. Since vl{‘ is uniformly bounded above in

any compact subset away from the blowup set, vl’.‘ converges to Z;V: 1miuG(x, pr)
uniformly in compact sets away from {py, ..., p,}. Here we use the notation

Mil = ey 4ijojI
X k
1 1 k . Vo
oj = limg— 00 5~ fB(p,,a) ,ojh‘,e 1dVy,

for some § > 0, such that B(p;,28) N B(ps,8) = @ for all I # s. To apply the
local estimate we rewrite the equation for vllf in local coordinates. For p € M, let

y = (y', y?) be the isothermal coordinates near p such that yp(p) = (0,0) and y,
depends smoothly on p. In this coordinates ds> has the form

0Py + (dy*?],
where

V¢(0) =0, ¢(0)=0.
Also near p we have

Ay, ¢ = —2Ke?,  where K is the Gauss curvature.

When there is no ambiguity we write y = y,, for simplicity. In local coordinates,
the equation for vl{‘ can be written as

n
k
—Avf =€) aijphhje’i = 1), in B©.5), iel. (3.9)
=
Let fl.k solve

—Aff=—e? " phaij, i B©,5), iel,
jel
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and £5(0) = |V ()| = 0. Set o = v¥ — fFand
Hik = e‘f’pfefikhi,
then the equation for ﬁf‘ becomes

—AT =Y ayHT, in B, ). (3.10)
jel

Here we observe that

/ H,.keﬁf‘dxzf pkhie dv,.
B(0,6) B(0,6)

Since vf‘ tends to —oco in M \ Uﬂ.vle(pj, 8), we have

55 =0 <€, ¥x,y e M\U)_ B(p;,8/2), iel. (.11

By Lemma 2.2 and the proof of Lemma 2.3 it is easy to see that

f hie"dV, — 0, iel, (3.12)
M\ B(P/ 3)
and
lim pkhie" dVy/upy = lim pkhie" dVy /iy, (3.13)
k=00 JB(p;.8) k=00 JB(pm,8)

fori € I and any pair of /, m between 1 and N.
If we use up, to represent the possible strength of the singular source at each
pi,by (2.37) we have, for eachi € I,

Ol _0ia_  _ 0N
wi p2 N
and
2n(oi1 +0i2+ ...+ 0, N) = pi.
Thus il
0i| = ———, iel, I=1,..,N.
27[ ZS:] I’LS

For each [, the Pohozaev identity for (o1 4, ..., 0,1) can be written as

0i,10j] 0il
Dt =4y
ijer MK icr M
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Thus if blowup does happen, (p1, ..., p,) satisfies

N

D aipip; =8m ) Yy pi (3.14)

ijel I=1 el

Thus if p is not on critical hyper-surfaces I'y, the a priori estimate holds in this case.

Case two: Some of ,ol.k tend to 0. Without loss of generality we assume that
limgoo pf = p;i >0, i €li:={1,..10}1limoo pf =0fori > 1.
Let M}, = max{vll‘, s vlk} and My = max{vlkH, e v,’i}. We first show that

My — My < C. (3.15)
If (3.15) is not true, we have My — Mj — oo, then we let
VEG) = v (e ™My + p) — My,

where py is where M is attained: vf.‘o (pr) = M. Clearly ig > [. Thanks to the fact
that Vl." — —oo fori </ and pf — Ofori > 1, Vl’(‘) converges uniformly to

—AVj, =0 in R?
Vip(0) = 0.

The fact that V;, = 0 in R? contradicts the finite energy of the component iy. Thus
(3.15) is established.

We use the same notation as in Case one. Let py,...,py be blowup points for
vf‘. Then around each blowup point, say, p;, the equation for v* can be written in
local coordinates as (3.10) with f)g‘ and Hl.k defined as in case one. Without loss of
generality we assume that ,of‘ > Oforallkand/ +1 <i < L and ,of‘ = 0 for
all k and i > L. Then we observe from the definition of Hl.k that H. l.k — 0 for
I+1<i<Land H* =0fori > L.

To reduce case two to case one, we need to adjust the terms involving vanishing
Hl.k s. To do this we let fik as

A ~k
—AfF =Y e ™™ in B, 8)
fFa =0 on 9B(0,9).
Since max; vf‘ — M, is bounded above for all i, we have

Fl
Ifiller =C



SINGULAR LIOUVILLE SYSTEM 1131

for some C independent of k. Now we define

ok + fk i=1,..1
Of =10 +logpf + fF 1+1<i<L
M+ fF O L+1<izn
and .
Hl_ke—f,-" 1<i<l
k A PS
A = %e—ﬁ":e%ﬂ"—ﬁ"hi I+1<i<L

i L+1<i<n.

The definition of I:Iik immediately gives

<Hf <c, in B3

o | =

for some ¢ > 0 independent of k. Next the equation for ﬁl’.‘ is

A ~k
—Adf =Y ayHfe’, in B9, iel
jel

It is easy to see that max ﬁlk — My — —ooforl+ 1 <i < n. Therefore case two is
reduced to case one, which gives

and 0j,, = O foralli > [ and all m € {1,..., N}. Then as in case one if
(p1, ---» 1,0, .., 0) is not on any critical hyper-surfaces, the a priori estimate holds.
Theorem 1.1 is established. O

Proof of Theorem 1.2. The main idea of the proof of the degree counting theorem
is to reduce the whole system to the single equation.

Case one: At least one of a;; > 0. We may assume a;; > 0. Thanks to Theorem
1.1, the Leray-Schauder degree of (1.4) for p € O is equal to the degree for the
following specific system corresponding to (p1, 0, ..., 0):

Aguy + prai (W - 1) =0

Aguj + praji (W—l)=0 for j > 2,

(3.16)

where o satisfies
8mng < aypr < 8wng4.
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It is easy to see that (o1, 0, ..., 0) € O, using the degree counting formula of Chen-
Lin [14] for the single equation, we obtain the desired formula.

Case two: ajj =0 foralli € I.
Using ajp > 0, we reduce the degree counting formula for p € Oy to the
following system:

hoet2 . _
Agul + 012/02 <‘/‘Mh26u2dvg 1) - 0

Mgz +anp (T —1) =0 (3.17)

el hoe2 .
Bt + pan (7 iy, ) + e (857, —1) =0 123
where p1, p» satisfy
8mni(p1 + p2) < 2a12p102 < 8wngi1(p1 + p2).

It is easy to see that (p1, 02,0, ...,0) € Or. Now we consider the special case
p1 = p2,h1 = ho = h. In this case a simple application of the maximum principle

gives u1 = up + C. Since they both have average equal to 0, we have u| = u,.
Then the first two equations in (3.17) turn out to be
A + het 1) =0
u+a _— =0,
U TARON T Theng v,

where p € (8mny, 8wny41). Again the degree counting formula of Chen-Lin [14]
for the single equation gives the desired formula. Theorem 1.2 is established.  [J

Remark 3.1. The proof of Theorem 1.4 requires that there is no blowup point on
0€2. Since all the singular sources are in the interior of €2, a standard moving plane
argument can be employed to prove this fact. The interested readers may read
into [33] for the detail of the proof. Then the remaining part is similar to the proof
of Theorem 1.2.

Finally we prove Theorem 1.5: since the genus of the torus M is 1, x (M) =0
and the generating function is

1 —xHr
1_
=14+b1x +box? + ... + bpx* + ...+ 2™,

gx) = ngl = ngl(l—l—x + X2 4 4 x7P)

wherem =} ). Let

N
= (z) w3
p=1

jel
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it is easy to see that

87TnkZ,0i < Zaijpipj < 8w np41 Z,Oi
i 77 i

for ny = (m — 1)/2 and ngy1 = (m + 1)/2. Thus the Leray-Schauder degree d,,
can be computed as

(m—1)/2

d, = Z by.
=0

Using b,,—; = b; forl =0, 1, .., m we further write d,, as

N
T2 T 2 ‘

Theorem 1.5 is established.
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