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Degree counting theorems for singular Liouville systems

YI GU AND LEI ZHANG

Abstract. Let (M, g) be a compact Riemann surface with no boundary and
u = (u1, ..., un) be a solution of the following singular Liouville system:
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where i = 1, ..., n, h1, ..., hn are positive smooth functions, p1, ..., pN are dis-
tinct points on M , �pt are Dirac masses, ⇢ = (⇢1, ..., ⇢n) (⇢i � 0) and (�1, ..., �N )
(�t > �1 ) are constant vectors. If the coefficient matrix A = (ai j )n⇥n satis-
fies standard assumptions, we identify a family of critical hyper-surfaces 0k for
⇢ = (⇢1, .., ⇢n) so that a priori estimate of u holds if ⇢ is not on any of the 0ks.
Thanks to the a priori estimate, a topological degree for u is well defined for ⇢
staying between every two consecutive 0ks. In this article we establish this de-
gree counting formula which depends only on the Euler Characteristic of M and
the location of ⇢. Finally if the Liouville system is defined on a bounded do-
main in R2 with Dirichlet boundary condition, a similar degree counting formula
that depends only on the topology of the domain and the location of ⇢ is also
determined.

Mathematics Subject Classification (2010): 35R01 (primary); 35B44, 35J57,
35J91, 47H11 (secondary).

1. Introduction

In this article we study the following Liouville system defined on a compact Rie-
mann surface (M, g) with no boundary:
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for i 2 I := {1, ..., n}, �il > �1, for i 2 I, l = 1, ..., N ;

(1.1)
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where h⇤
1, ..., h

⇤
n are positive smooth functions on M , ⇢1, ..., ⇢n are nonnegative

constants, volg(M) is the volume of M , p1, ..., pN are distinct points on M , �pl are
singular sources at pl and �il > �1 (i = 1, .., n, l = 1, ...N ) are constants as well.
Equation (1.1) is called Liouville system if all the entries in the coefficient matrix
A = (ai j )n⇥n are nonnegative.

System (1.1), in its generality, covers a large number of models in different
subjects of mathematics, physics and other disciplines as well. In physics Liouville
systems can be derived from the mean field limit of point vortices of the Euler flow
( see [8–10, 23]). The study of Liouville systems finds applications in nonabelian
Chern-Simons-Higgs theory ( [18, 20, 21, 41]) and the electroweak theory (see [1,
35–41]).Various Liouville systems are also used to describe models in theories of
chemotaxis ( [11, 22]), the physics of charged particle beams [6, 17, 24, 25], and
other gauge field models [19, 26]. Even if the system is reduced to one equation,
it has profound background in geometry: if the equation has no singular source, it
interprets the Nirenberg problem of prescribing Gauss curvature; if the equation has
singular sources, the solution represents a metric with conic singularity [27]. It is
just impossible to overestimate the importance of Liouville systems.

One of the main goals in the study of Liouville system is to identify the role that
the topology of M plays in the structure of solutions. In particular, people seek to
identify a family of hyper-surfaces for ⇢ := (⇢1, ..., ⇢n), so that if ⇢ does not belong
to these hyper-surfaces, a priori estimate of u holds and the Leray-Schauder degree
can be defined. The explicit computation of the Leray-Schauder degree, which
depends on the topology of M , gives rise to existence of solution if the degree is
not zero. Usually the identification of critical hyper-surfaces requires detailed study
of blowup solutions, and it is well known that local, geometric information, such
as the Gauss curvature plays a crucial role in determining the asymptotic behavior
of blowup solutions, the main purpose of this article is to establish a link between
local analysis, the structure of solutions and the topology of 2-manifolds for a class
of singular Liouville systems.

If the system is reduced to Liouville equation, Chen and Lin completed the
program in a series of pioneering works [12–14]. The readers may read into [3,
4, 28, 29, 42, 43] for background and related discussions. Chen-Lin’s work was
extended by Lin and the second author [32–34] to Liouville systems with no Dirac
sources. Since singular sources have significant geometric applications, the main
purpose of this article is to extend Lin-Zhang’s degree counting formula to systems
with Dirac poles.

For the coefficient matrix A we postulate two conditions: The first one is called
a standard assumption:

(H1) : A is symmetric, non-negative, irreducible and invertible.

Here we note that A being irreducible means there is no partition of the index set
I := {1, ..., n} into two disjoint subsets I = I1 [ I2 such that ai j = 0 for all i 2 I1
and j 2 I2. In other words, the Liouville system cannot be written as two separated
sub-systems. The second assumption, which is made on the inverse of A, that is
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A�1 = (ai j )n⇥n , is called a strong interaction assumption: For I = {1, ..., n},

(H2) :

8
<

:

aii  0 8i 2 I, ai j � 0, 8i 6= j, i, j 2 I
P

j2I ai j � 0 8i 2 I.

The reason that (H2) is called a strong interaction assumption can be justified from
the following two examples: For n = 2, the matrix

A =

✓
a11 a12
a12 a22

◆

satisfies (H1) and (H2) if and only if ai j � 0, max(a11, a22)  a12, and det (A) 6=
0. For n = 3, the following matrix

A1 =

0

@
0 a1 a2
a1 0 a3
a2 a3 0

1

A

satisfies both (H1) and (H2) if and only if ai > 0 and ai + a j � ak for i, j, k all
different from one another.

The second main assumption is that around each singular source, the strength
of the singular source for each component is the same: �il = �l > �1 for all
i = 1, ..., n. This assumption is crucial for ruling out all partial blowups later. Also
for convenience we assume that the volume of the manifold is 1, thus (1.1) can be
written as
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Around each singular source, the leading term of u⇤
i is a logarithmic function that

comes from the following Green’s function G(x, q):
8
<

:

�1xG(x, q) = �q � 1
R
M G(x, q)dx = 0.

(1.3)

It is a common practice to define

ui = u⇤
i � 4⇡

NX
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and rewrite (1.2) as
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where

hi (x) = h⇤
i (x)exp

(

�
NX

l=1
4⇡�lG(x, pl)

)

,

which implies that around each singular source, say, pl , in local coordinates, h j can
be written as

h j (x) = |x |2�l g j (x)

for some positive, smooth function g j (x).
Obviously, equation (1.4) remains the same if ui is replaced by ui + ci for any

constant ci . Thus we might assume that each component of u = (u1, ..., un) is in

Ḣ1(M) :=

⇢
v 2 L2(M); rv 2 L2(M), and

Z

M
vdVg = 0

�
.

Then equation (1.4) is the Euler-Lagrange equation for the following nonlinear
functional J⇢(u) in H̊1(M):

J⇢(u) =
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Let N+ be the set of positive integers. We shall use the following notation:

6 :=

(

8m⇡ +
X

pl2A
8⇡(1+ �l); A ⇢ {p1, ..., pN }, m 2 N+ [ {0}

)

\ {0} .

Writing 6 as
6 =

�
8⇡nk | n1 < n2 < ...

 
(1.5)

we state our first main result in the form of a priori estimate:

Theorem 1.1. Let A = (ai j )n⇥n satisfy (H1) and (H2). For k 2 N+ [ {0}, and

Ok =

(

(⇢1, ..., ⇢n)|⇢i �0, i 2 I ; and 8⇡nk
X

i2I
⇢i <

X

i, j2I
ai j⇢i⇢ j <8⇡nk+1

X

i2I
⇢i .

)

Suppose h⇤
i s are positive and C

1 functions on M and K is a compact subset ofOk .
Then there exists a constant C such that for any solution u = (u1, ..., un) of (1.4)
with ⇢ 2 K and ui 2 Ḣ1(M), we have

|ui (x)|  C, for i 2 I, and x 2 M.
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Note that the set Ok is bounded if all aii > 0 and is unbounded if aii = 0 for some
i . By Theorem 1.1, the critical parameter set for (1.4) is

0k =

(

⇢; 8⇡nk
X

i2I
⇢i =

X

i, j2I
ai j⇢i⇢ j

)

.

Thanks to Theorem 1.1, for ⇢ 62 0k , we can define the nonlinear map T⇢ =
(T 1, ..., T n) from Ḣ1,n = Ḣ1(M) ⇥ ... ⇥ Ḣ1(M) to Ḣ1,n by

T i = �1�1
g
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Obviously T⇢ is compact from Ḣ1,n to itself. Then we can define the Leray-
Schauder degree of (1.4) by

dg = deg(I � T⇢; BR, 0),

where R is sufficiently large and BR = {u; u 2 Ḣ1,n, and
Pn

i=1 kuikH1 < R}.
By the homotopic invariance and Theorem 1.1, d⇢ is constant for ⇢ 2 Ok and is
independent of h = (h1, ..., hn).

To state our degree counting formula for d⇢ we consider the following gener-
ating function g:

g(x) =
�
1+ x + x2 + ...

���(M)+N
5N
l=1

�
1� x1+�l

�
,

where �(M) = 2 � 2ge(M) is the Euler Characteristic of M (ge(M) is the genus
of M). It is obvious to observe that if ��(M) + N > 0,

�
1+ x + x2 + ...

���(M)+N
=

�
1� x

��(M)�N
.

Writing g(x) in the following form

g(x) = 1+ b1xn1 + b2xn2 + ...,

we use b1, b2, ... to describe our degree counting theorem:

Theorem 1.2. Let d⇢ be the Leray-Schauder degree for (1.4). Suppose
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then

d⇢ =
kX

j=0
b j , where b0 = 1.
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For most applications �l are positive integers, which implies that

6 = {8⇡m; m 2 N+}.

Thus in this case (�l 2 N+) if �(M)  0 we have

g(x) = (1+ x + x2 + ...)��(M)5N
l=1
1� x1+�l

1� x
= (1+ x + x2 + ...)��(M)5N

l=1(1+ x + ... + x�l )

= 1+ b1x + b2x2 + ... + bkxk + ...

(1.6)

Obviously b j � 0 for all j � 1, which implies

d⇢ = 1+
kX

j=1
b j > 0.

Corollary 1.3. Suppose all �l 2 N+ and �(M)  0. Then d⇢ > 0 if
X

i j2I
ai j⇢i⇢ j 6= 8⇡m

X

i2I
⇢i 8m 2 N+.

Thus (1.4) always has a solution in this case.

For an open, bounded smooth domain in R2, we are also interested in the following
system of equations:
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where h⇤
1,...,h

⇤
n are smooth functions on �̄ and p1, ..., pN are distinct points in the

interior of �.
Let

g(x) = (1+ x + x2 + ...)��(�)+N5N
l=1(1� x1+�l ) =

1X

j=0
b j xn j ,

where �(�) = 1�ge(�) (ge(�) is the number of holes bounded by�) is the Euler
Characteristic number of �, and b0 = 1. Then we have

Theorem 1.4. Suppose
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P
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P
i ⇢i for any m 2 N, we have d⇢ > 0 and the existence of a solution to (1.7).
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If the Liouville system on (M, g) is written as
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we can write (1.8) as
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If M is a torus and �l 2 N+, we can compute the Leray-Schauder degree whenP
l �l is odd.

Theorem 1.5. Suppose M is a torus, �l 2 N+ and
P

l �l is odd. Then the Leray-
Schauder degree for (1.8) is 125

N
l=1(1+ �l).

Here we would like to point out that if the topology of the manifold is trivial, Bar-
tolucci [2] studied another delicate Liouville system and proved some existence
results when the topological degree is zero.

The main ideas of proofs in this article are motivated by a number of related
works. One major difficulty comes from the “partial blowup phenomenon”, which
means when a system is scaled according to the maximum of all its branches, some
components disappear after taking the limit. One crucial step is to prove that no
component is lost after scaling. We call this a fully bubbling phenomenon. For this
part we use the idea in [33]. Another major difficulty comes from the non-simple
blowup phenomenon. When a singular source happens to be a blowup point, it
is possible to have a finite number of disjoint bubbling disks all tending to the
singular source. Such a blowup picture is called “non-simple blowup”, studied by
Kuo-Lin [27] and independently by Bartolucci-Tarantello [5] for singular Liouville
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equations. In this article, using ideas in [30, 31] we extend the results of Kuo-Lin,
Bartolucci-Tarantello to Liouville systems and prove that the non-simple blowup
phenomenon can only occur if the strength of the singular source is a multiple
of 4⇡ .

Finally we would like to explain the role of (H1) and (H2) and how the blowup
analysis of Liouville systems is different from that of Toda systems [30, 31]. For
Liouville systems, the total integration (energy) of global solutions belongs to a
hypersurface [32], which means the energy is not discrete. To rule out the diffi-
culty caused by the abundance of energy we need to use (H1) and (H2) to prove
that the profiles of bubbling solutions around different blowup points are the same.
Moreover, there is almost no energy outside the bubbling disks. However, for Toda
systems, even though the energy of global solutions is quantized, a major difficulty
comes from the fact that there is a lot of energy outside bubbling disks. In [31],
tools in algebraic geometry are used to prove that energy outside bubbling disks is
also quantized.

The organization of this article is as follows: In Section 2 we analyze the
asymptotic behavior of solutions near a blowup point and we prove, using ideas
in [33] that the energy of uki must satisfy certain rules around different blowup
points. In this section we also establish certain estimates for non-simple blowup
points. Then in Section 3 we prove all the main theorems. In particular the proof of
degree counting theorems is by reducing the systems to Liouville equation and use
the previous results of Chen-Lin [13,14].

2. Asymptotic behavior around a singular source

Since the proof of all the main theorems boils down to detailed analysis of locally
defined blowup solutions, in this section we consider a locally defined Liouville
system

1uki +
nX

j=1
ai j hkj e

ukj = 4⇡� �0, i 2 I, in B� ⇢ R2, (2.1)

where hk1, ..., h
k
n are positive smooth functions on B� (the ball centered at the origin

with radius � > 0) with uniform bounds:

0 < c1  hki  c2, khki kC1  c3, i 2 I, (2.2)

for c1, c2, c3 > 0 independent of k. Let � > �1 is the strength of �0, A = (ai j )n⇥n
satisfy (H1), (H2), and we assume the uniform bound on the integral of hki e

uki and
its oscillation on @B� (the boundary of B�) :

Z

B�

hki e
uki  C (2.3)

max
i

max
x,y2@B�

|uki (x) � uki (y)|  C, (2.4)
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for some C independent of k. Then in this section we consider the case that the
origin is the only blowup point in B�: let

ũki (x) = uki (x) � 2� log |x |, i 2 I := {1, ..., n} (2.5)

and write the equation for ũk = (ũk1, ..., ũ
k
n) as

1ũki +
X

j
ai j |x |2� hkj e

ũkj = 0 in B�. (2.6)

Then we assume that

Mk = max
i
max
x2B�

ũki (x)
µ

where µ = 1+ � , (2.7)

tends to infinity:

Mk ! 1 and given ✏ 2 (0, �),max
i

max
x2B�\B✏

uki  C(✏) (2.8)

for some C(✏) > 0 independent of k.
In this case the profile of blowup solutions is more intriguing than that around

a regular point. There are two possibilities: either

max
i
max
x2B�

uki (x) + 2 log |x |  C (2.9)

or along a subsequence

max
i
max
x2B�

uki (x) + 2 log |x | ! 1. (2.10)

We call the blowup phenomenon “simple” if (2.9) holds. Otherwise, if (2.10) holds
we use “non-simple-blowup” to describe uk .

2.1. Simple-blowup

First we consider the case when (2.9) holds. Let

ṽki (y) = ũki (✏k y) + 2µ log ✏k, where ✏k = e�
1
2Mk .

Then it is easy to verify that ṽki  0 and

1ṽki (y) +
X

j
ai j h j (✏k y)|y|2� eṽ

k
j (y) = 0, |y|  �✏�1

k . (2.11)

Then we prove
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Lemma 2.1.
max
i

ṽki (0) � �C. (2.12)

Proof. From (2.8) we see that there exists yk 2 B(0, �✏�1
k ) such that maxi ṽki (yk) =

0 and |yk | = o(1)✏�1
k . Let rk = |yk | and

zki (y) = ṽki (rk y) + 2µ log rk � c0, |y|  2, i 2 I

where c0 is chosen to make zki  �1 (see (2.9)). We write the equation of zki as

1zki +

P
j ai j |y|2� h

k
j e
zkj+c0

zki
zki = 0, |y|  2.

Using zki  �1 we see that |
P

j ai j h
k
j e
zki +c0

zki
| is bounded. Standard Harnack inequality

for linear equations gives

max
@B1

(�zki )  C min
@B1

(�zki ), i 2 I. (2.13)

Thus maxi min ṽki � �C on @Brk . Then (2.12) follows easily from standard maxi-
mum principle. Lemma 2.1 is established.

The proof of Lemma 2.1 also implies that at least one component of ṽki is
bounded below over any compact subset of R2, which means these components
converge to a global function along a subsequence. Thus we use I1 to be the indexes
of converging components. In other words, for indexes not in I1, the corresponding
components tend to minus infinity over any fixed compact subset of R2.

Let ṽi be the limit of ṽki and we use

�i =
1
2⇡

Z

R2
|y|2� eṽi , i 2 I1

to denote the energy of ṽk in R2. Here for convenience we assumed hki (0) = 1, but
this assumption is not essential. Traditional method can be used to prove

ṽi (y) = �mi log |y| + O(1), |y| > 1, i 2 I1,

where mi =
Pn

j=1 ai j� j . For i 2 I1 we have

mi > 2µ, µ = 1+ � , i 2 I1. (2.14)

Let � ki denote the energy of u
k
i in B�:

� ki =
1
2⇡

Z

B�

hki |x |
2� eũ

k
i , i = 1, ..., n,
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Then it is immediate to observe that

lim
k!1

� ki � �i , i 2 I1.

Corresponding to � ki we set m
k
i to be

mk
i =

nX

j=1
ai j� kj .

Before we proceed we extend (2.14) to all i 2 I :

Lemma 2.2.
mi =

X

j2I
ai j� j > 2µ, i 2 I \ I1. (2.15)

Proof. First we invoke a result from [33]: For A satisfying (H1) and (H2), ai j > 0
if i 6= j . We prove (2.15) by contradiction. Suppose m = min{mi , i 2 I }  2µ.
Then we immediately observe two facts: first mi > m for all i 2 I1 because
mi > 2µ for i 2 I1. Second m > 0 because �i = 0 if i 62 I1 and ai j > 0 if i 6= j .
Let J = {i 2 I ; mi = m}. Clearly J is not empty, I1 \ J = ; and we use J1 to
denote I \{I1[ J }. Moreover we use m̄ = min{mi ; i 2 I1[ J1}. Clearly m̄ > m.
For each i 2 J , we have �i = 0 since i 62 I1. Thus

0 = �i =
X

j
ai jm j =

X

i2J
mai j +

X

j2J1[I1

ai jm j .

Using m j > m̄ for i 62 J and ai j > 0 for i 6= j , we have

0 � m
X

j2J
ai j +

X

j 62J
ai j m̄ = m

X

j2I
ai j +

X

j 62J
ai j (m̄ � m). (2.16)

In view of (H2), which includes
P

j ai j � 0, we see that equality in (2.16) holds
and

ai j = 0, 8i 2 J and 8 j 2 I \ J.

Thus A�1 can be written as a block-diagonal form, which means A can also be
written as a block diagonal form (after possible rearrangement of indexes), which is
a contradiction to the irreducibility of A. (2.15) and Lemma 2.2 are established.

The following lemma gives an estimate of the behavior of uki near @B�:

Lemma 2.3. Let Mk be defined in (2.7) and 0 be a simple blowup point of uk , then
we have

� ki = �i + o(1), i = 1, 2..., n,

ũki (x) = �mk
i log |x | �

mk
i � 2µ
2

Mk + O(1), x 2 @B�, i 2 I1,
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and

ũki (x) = �mk
i log |x |�

mk
i � 2µ
2

Mk+(ũki (0)�µMk)+O(1), x 2 @B�, i 62 I1.

Remark 2.4. Note that we use o(1) to denote a quantity tending to 0 as k ! 1,
and O(1) to denote a quantity whose absolute value does not tend to infinity as
k ! 1. For i 62 I1, ũki (0) � µMk ! �1. Also even for i 62 I1, limk!1mk

i > 0
because ai j > 0 for i 6= j .

Proof of Lemma 2.3. As mentioned before, at least one component of ṽk converges
uniformly over any fixed compact subset of R2. Then it is easy to find Rk ! 1 to
make the following hold:

1
2⇡

Z

BRk
|y|2� hki (✏k y)e

ṽki (y)dy = �i + o(1), i 2 I1,

1
2⇡

Z

BRk
|y|2� hki (✏k y)e

ṽki (y)dy = o(1), i 2 I \ I1.

Let ṽki (r) be the spherical average of ṽ
k
i on @Br , the differentiation of ṽki (r) gives

d
dr

ṽki (r) =
1
2⇡r

Z

Br
1ṽki = �

1
2⇡r

Z

Br

X

j
ai j hkj (✏k y)|y|

2� eṽ
k
j .

Since ai j � 0 and all mi > 2µ, it is easy to use Green’s representation of ṽki to
prove

ṽki (r) = ṽki (y) + O(1), |y| = r, Rk  r 
�

2
✏�1
k

and

ṽki (y)  �ṽki (Rk) � (2µ + �1) log |y| + O(1), |y| � Rk, i 2 I (2.17)

for some �1 > 0 independent of k. Even though �1 > 0 may be small, it leads to
the smallness of the energy of ṽki :

Z

B
✏�1k �

\Br
|y|2� hki (✏k y)e

ṽki = O(r��1)

Thus we can give an accurate estimate of the energy of ṽki as:

1
2⇡

Z

Br
|y|2� hki (✏k y)e

ṽki = mk
i � O(r��1), Rk  r  �✏�1

k . (2.18)
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By the smallness of the error term in (2.18) and standard estimates from the Green’s
representation for ṽki , we easily obtain

ṽki (y) = �mk
i log |y| + O(1), 1 < |y| < ✏�1

k �, 8i 2 I1.

The estimate for ṽki near infinity can be translated into the following estimate
for ũki :

ũki (x) = ṽki (y) � 2µ log ✏k for |x | = �, |y| = ✏�1
k �,

= �mk
i log |y| � 2µ

✓
�
1
2
Mk

◆
+ O(1)

= �mk
i log |x | + mk

i log ✏k + µMk + O(1)

= �mk
i log |x | �

mk
i � 2µ
2

Mk + O(1).

(2.19)

Thus the estimate for i 2 I1 for uki is established.
It is also straight forward to prove that for all i 62 I1,

Z

B(0,✏�1
k �)\Br

|y|2µhki (✏k y)e
ṽki (y) = O(r��1), Rk  r  ✏�1

k �.

With this estimate the behavior of ṽki for i 62 I1 can be written as

ṽki (y) = ṽki (0) �

 
X

j2I1

ai j� kj

!

log |y| + O(1), i 62 I1.

Consequently for ũki we have, for |x | = � and |y| = ✏�1
k |x |,

ũki (x) = ṽki (y) � 2µ log ✏k

= ṽki (0) �

 
X

j2I1

ai j� kj

!

log |y| + µMk,

= �mk
i log |x | �

mk
i � 2µ
2

Mk + (ũki (0) � µMk).

Lemma 2.3 is established.

Remark 2.5. Even though some components of (�1, ...., �n) may be zero,
(�1, ..., �n) still satisfies the standard Pohozaev identity:

X

i, j2I
ai j�i� j = 4

X

i
(1+ � )�i . (2.20)
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The derivation of (2.20) is standard and we mention the argument here for the con-
venience of readers. The Pohozaev identity for uk on � is

X

i2I

✓Z

�
(x · rhki )e

uki + 2hki e
uki

◆

=
Z

@�

✓X

i
(x · ⌫)hki e

uki +
X

i, j
ai j

✓
@⌫ukj (x · ruki ) �

1
2
(x · ⌫)(ruki · rukj )

◆◆

Setting � = B� \ B✏ and let ✏ ! 0, we have

�

Z

@B�

X

i j2I
ai j (@⌫uki @⌫ukj �

1
2
ruki · rukj ) +

X

i2I
�

Z

@B�

hki e
uki

= 2
X

i2I

Z

B�

hki e
uki +

X

i2I

Z

B�

(x · rhki )e
uki + 4⇡

X

i j2I
ai j� 2.

where we have used

ruki = 2� x/|x |2 + a bounded function

near the origin. In order to evaluate other terms we can use standard elliptic estimate
to obtain

ruki (x) =

 
X

i2I
ai j� j � 2� + o(1)

!

/|x |, |x | = �.

Then (2.20) follows from direct computation. We refer the readers to [30] and [32]
for more detailed computation.
Remark 2.6. If the blowup point p is not a singular source, the scaling is centered
at pk ! p where the maximum of ũki is attained. In this case we have maxi v

k
i (0)=0

and the non-simple blow-up does not happen.

2.2. The comparison of blowup solutions around different blowup points

Under the same context as in the previous subsection, we establish the following
lemma which compares the behavior of solutions outside bubbling disks.

Lemma 2.7. Let p and q be two disjoint blowup points of

1uki +
X

j
ai j hkj e

ukj = 4⇡�p�p + 4⇡�q�q , i 2 I

in � b R2 where p, q 2 �, �p, �q > �1. Suppose the assumption on hki is
the same as before: Uniformly bounded above and below by positive constants and
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uniformly bounded in C1 norm. Moreover we assume that the sequence of solutions
has an uniform bound on the energy and on the boundary oscillation:

Z

�
hki e

uki  C, max
x,y2@�

|uki (x) � uki (y)|  C.

We use (� k1 , ..., � kn ) and (�̄ k1 , ..., �̄ kn ) to denote the integration of uk in B(p, �) and
B(q, �), respectively:

� ki =
1
2⇡

Z

B(p,�)
hki e

uki , �̄ ki =
1
2⇡

Z

B(q,�)
hki e

uki .

If p or q is a regular point instead of a singular source, we have �p = 0 or �q = 0.
Correspondingly we set

mk
i =

X

j2I
ai j� kj , m̄k

i =
nX

j=1
ai j �̄ kj .

Assume in addition that

uki |@B(p,�) = uki |@B(q,�) + O(1).

Then if p and q are both simple blowup points, we have

µq

µp
lim
k!1

� ki = lim
k!1

�̄ ki , i 2 I. (2.21)

Remark 2.8. If p or q is a regular point, it is a simple blowup already.

Proof of Lemma 2.7. Since p and q can be a singular source or a regular point on
the manifold, we use µp = 1 + �p if p is a singular source. Otherwise µp = 1.
Let Mk = maxi2I ũki (x)/µp for x 2 B(p, �) and M̄k = maxi ũki (x)/µq in B(q, �),
where ũki is u

k
i minus a corresponding logarithmic term in local coordinates. Sup-

pose Mk is attained at pk that tends to p and M̄k is attained at qk that tends to q.
Using Lemma 2.3 we have, for i 2 I

mk
i � 2µp

2
Mk + (µpMk � ũki (pk))

=
m̄k
i � 2µq

2
M̄k + (µq M̄k � ũki (qk)) + O(1).

(2.22)

Here we further remark that, say around p, if the first l components of ũk converge
to a system of l equations after scaling, µpMk � ũki (pk) are uniformly bounded
for 1  i  l. In this case µpMk � ũki (pk) can be replaced by O(1). For i > l,
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µpMk � ũki (pk) tends to infinity. The right hand side of (2.22) can be understood
similarly. For each i 2 I , if

µpMk � ũki (pk) > µq M̄k � ũki (qk),

we let

lki =
�
µpMk � ũki (pk)

�
�

�
µq M̄k � ũki (qk)

�
, and l̄ki = 0.

On the other hand, if

µpMk � ũki (pk)  µq M̄k � ũki (qk),

we let

lki = 0, and l̄ki = (µq M̄k � ũki (qk)) � (µpMk � ũki (pk)).

Set

I1 :=

(

i 2 I ; lim
k!1

lki
Mk

> 0

)

, and I2 :=

(

i 2 I ; lim
k!1

l̄ki
Mk

> 0

)

.

It is easy to observe that I1 \ I2 = ;. We claim that I1 = ;, which is now proved
by contradiction:

Suppose I1 6= ;, then we consider two cases: I2 6= ; and I2 = ;.

Case one: I2 6= ;.
Let

� = lim
k!1

Mk

M̄k
, �i = lim

k!1

lki
M̄k

, �̄i = lim
k!1

l̄ki
M̄k

.

We claim that these limits exist along a subsequence. Indeed, using the definition
of lki and l̄

k
i (2.22) can be written as

mk
i � 2µp

2
Mk

M̄k
+

lki
M̄k

=
m̄k
i � 2µq

2
+

l̄ki
M̄k

+ o(1).

Take i 2 I1, the right hand side tends to
m̄i�2µq

2 , which means along a subsequence,
the two terms on the left hand side tend to mi�2µp

2 and �i , respectively( we use �i
to denote the limit of � ki . mi , m̄i , �̄i are understood in a similar fashion). On the
other hand for j 2 I2, the left hand side tends to

mi�2µp
2 �, which forces the right

hand side to converge to m̄i�2µq
2 + �̄i along a subsequence. Now (2.22) leads to

�
mi � 2µp

2
+ �i =

m̄i � 2µq

2
+ �̄i , 8i 2 I. (2.23)
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Here we recall that �i >0 in I1 and �̄i >0 in I2. We also will use �i�i =0 for all i .
From �̄i = 0 in I2, we have

0 = �̄i =
X

j2I2

ai j m̄ j +
X

j 62I2

ai j m̄ j .

Since A is irreducible, there exist i 2 I2 and j 62 I2 such that ai j > 0. Multiplying
�̄i on both sides and taking the summation for i 2 I2, we have

X

i, j2I2

ai j m̄i �̄ j < 0.

So trivially there exists ĩ 2 I2 such that
X

j2I2

aĩ j �̄ j < 0. (2.24)

From the comparison of the ĩ th component, we have

�
X

j
aĩ j

✓
m j � 2µp

2

◆
+

X

j
aĩ j� j =

�̄ĩ
2

�
X

j
aĩ jµq +

X

j
aĩ j �̄ j .

The second term on the left is nonnegative because �i = 0 if i 2 I2 and aĩ j � 0 if
ĩ 6= j . The first term on the right is 0, the last term on the right is negative. Thus
the equation above is reduced to

�

2
�ĩ � �µp

X

j
aĩ j < �

X

j
aĩ jµq .

Since �ĩ � 0, the strict inequality and (H2) imply
P

j aĩ j > 0, thus we have

� > µq/µp.

On the other hand the same argument applied to i 2 I1 gives

� <
µq

µp
.

Thus this case (I1 6= ;, I2 6= ; ) is ruled out.
Next under the assumption I1 6= ; we consider the case that I2 = ;.
Since all �̄i = 0 we have

mi � 2µp

2
� + �i =

m̄i � 2µq

2
, i 2 I.
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Using this expression in

X

i j
ai j

✓
m̄i � 2µq

2

◆✓
m̄ j � 2µq

2

◆
=

X

i j
ai jµ2q ,

which is equivalent to the Pohozaev identity for (�̄1, ..., �̄n) (see Remark 2.5) we
have

�2
X

i j
ai jµ2p + 2�

X

i j
ai j

✓
mi � 2µp

2

◆
� j +

X

i, j2I1

ai j�i� j =
X

i j
ai jµ2q (2.25)

where we have used
X

i j
ai j

✓
mi � 2µp

2

◆✓
m j � 2µp

2

◆
=

X

i j
ai jµ2p.

The second term on the left hand side of (2.25) can be written as

�

 
X

j
� j� j � 2µp

X

j

 
X

i
ai j

!

� j

!

,

which is nonpositive because �i�i = 0 and
P

i ai j � 0. We further claim that the
third term on the left hand side of (2.25) is nonpositive. This is because all the
eigenvalues of (ai j )I1⇥I1 are non-positive. This is proved in [33] and we include
it here for convenience: Without loss of generality we assume I1 = {1, ..., i0}
and let F = (ai j )i0⇥i0 for i, j 2 I1. Let µ be the largest eigenvalue of F and
⌘ = (⌘1, ..., ⌘i0) be an eigenvector corresponding to µ. Here ⌘ is the vector that
attains

max
v2Ri0

vTFv, vT v = 1.

Since ai j � 0 for all i 6= j , we can choose ⌘i � 0 for all i 2 I1. For each i 2 I1,

0 = �i =
X

j2I1

ai jm j +
X

j 62I1

ai jm j .

Thus by (H2) X

j2I1

ai jm j  0, i 2 I1.

Multiplying both sides by ⌘i and taking summation on i , we have

0 �
X

i, j2I1

ai j⌘im j =
X

j2I1

µ⌘ jm j .

Using ⌘i � 0 (at least one of them is strictly positive) and mi > 0 for i 2 I1, we
have µ  0.
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Thus from (2.25) we have

� �
µq

µp
.

Note that we have used
P

i j ai j > 0 because otherwise A�1 would not be invertible.
Next using the proof of (2.24) we can find some i 2 I1 such that

P
j2I1 a

i j� j < 0.
For this i , from

X

j
ai j

✓
m j � 2µp

2
� + � j

◆
=

X

j
ai j

m̄ j � 2µq

2

we write it as

�
X

j
ai jµp� +

X

j2I1

ai j� j = �̄i/2�
X

j
ai jµq ,

where we have used �i = 0 for i 2 I1. Using �̄i � 0 and
P

j2I1 a
i j� j < 0 we have

� <
µq

µp
.

Therefore this case (I1 6= ;, I2 = ;) is also ruled out. We have proved that I1 = ;.
In a similar manner I2 = ; can also be established.

Finally using

�
mi � 2µp

2
=
m̄i � 2µq

2
, i 2 I, (2.26)

in the Pohozaev identity for (�̄1, ..., �̄n) we have

� = lim
k!1

Mk

M̄k
=

µq

µp
. (2.27)

Using (2.27) in (2.26) we further have

µq

µp
mi = m̄i ,

µq

µp
�i = �̄i , i 2 I. (2.28)

Lemma 2.7 is established.

Finally we deduce the asymptotic behavior of uk when non-simple-blowup
occurs.
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2.3. Non-simple blowup

Now we consider the second possibility, the non-simple blowup. This phenomenon
happens when (2.10) holds. Recall that uk = (uk1, ..., u

k
n) satisfies (2.1). If (2.10)

holds, a standard selection process [30] determines a finite number of bubbling
disks: B(pkl , r

k
l ) for l = 1, ..., N where pkl are local maximums of some u

k
i and r

k
l s

are determined as follows: Scale uk with respect to the maximum of maxi uki (p
k
l ),

then the system converges to a possibly smaller global system with finite energy.
Note that we use B(p, �) to denote the ball centered at p with radius �. Then it is
easy to choose Rk ! 1 such that the integral of the scaled functions over B(0, Rk)
is only o(1) different from the energy of entire solutions. Scaling back to uk we have
that the integral of eu

k
i over B(pkl , r

k
l ) is o(1) different from the energy of its global

limit. Moreover, if we use (� kl1, ..., �
k
ln) to denote the energy in B(pkl , r

k
l ) we have

X

i, j2I
ai j� kli�

k
l j = 4

X

i
� kli + o(1).

Here we shall invoke some argument in [30]. The main result in this part is:

Proposition 2.9. If (2.10) holds, µ 2 N+.

First we mention the following simple lemma:

Lemma 2.10. Let A= (ai j )n⇥n be a matrix that satisfies (H1). Suppose (�
(1)
1 , ...

..., �
(1)
n ) and (�

(2)
1 , ..., �

(2)
n ) are two vectors with nonnegative components. If they

both satisfy
X

i, j
ai j� (l)

i �
(l)
j = 4µ

nX

i=1
�

(l)
i

for l = 1, 2 and some µ > 0. If
nX

j=1
ai j� (1)

j > 2µ, i = 1, ..., n (2.29)

and
�

(2)
i � �

(1)
i i = 1, ..., n.

Then
�

(1)
i = �

(2)
i , i = 1, ..., n.

Proof of Lemma 2.10. The proof is immediate. Let si = �
(2)
i � �

(1)
i . Then si � 0.

The difference between the two equations in (2.29) gives

2
X

i

 
X

j
ai j� (1)

j � 2µ

!

si +
X

i, j
ai j si s j = 0.

By the assumption (H1) and the nonnegativity of si we have si = 0 for all i .
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Proof of Proposition 2.9. First we use

6k =
�
0, pk1, ..., p

k
N
 

to denote the set of blowup points and the origin. Note that there may also be a
bubbling disk centered at the origin, as described in Lemma 2.1. Here we invoke
the definition of group in [30]. If a few bubbling disks are of comparable distance to
one another and are much further to other bubbling disks, the set of these bubbling
disks (that of comparable distance to one another) is called a group. See [30, 31]
for more detailed discussions. For example, pk1, p

k
2, p

k
3 are called in a group if

dist(pk1, p
k
2) ⇠ dist(pk1, p

k
3) ⇠ dist(pk2, p

k
3) and

dist(pk1, q)/ dist(pk1, p
k
2) ! 1

for any q 2 6k \ {pk1, p
k
2, p

k
3}.

Now we make two important observations: First, there is no group far away
from the origin. The reason is if there were such a group, say B(pk, lk) and
B(qk, lk) belong to a group and dist(0, pk)/ dist(pk, qk) ! 1. First by the ar-
gument of Lemma 2.14 and Lemma 2.3 all the components of uki have faster decay
than harmonic function near @B(pk, lk) and @B(qk, lk): in precise terms, if we use
(� kp1, ..., �

k
qn) and (� kq1, ..., �

k
qn) to denote the energy in B(pk, lk) and B(qk, lk),

respectively, we have
X

i j
ai j� kpi�

k
pj = 4

X

i
�pi + o(1),

and X

i j
ai j� kqi�

k
q j = 4

X

i
�qi + o(1).

Moreover, as in Lemma 2.14

mk
pi :=

X

i j
ai j� kpj > 2, mk

qi :=
X

j
ai j� kq j > 2, 8i 2 I. (2.30)

Let dk be the distance from pk to the nearest member in 6k not in the group of pk
and qk . Then (2.30) means all components of uk decay so fast that there is little
energy in B(pk, dk/2) \ (B(pk, lk) [ B(qk, lk)). Looking at the average of uki it is
easy to find l̄k  dk/2 which satisfies

l̄k/ lk ! 1, l̄k = o(1) dist
�
pk,6k \ the group of pk

�
.

And on @B(pk, l̄k) we still have

uki (x) + 2 log lk ! �1, i 2 I. (2.31)
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From (2.31) it is easy to use the Green’s representation formula to evaluate the
Pohozaev identity and obtain (see [30])

X

i, j
ai j� kl̄i�

k
l̄ j = 4

X

i
� kl̄i + o(1), (2.32)

where � kl̄i = 1
2⇡

R
B(pk ,l̄k) h

k
i e
uki . Since (� kl̄1, ..., �

k
l̄n) and (� kp1, ..., �

k
pn) satisfy the

same equation but � kl̄i � � kpi + � kqi , by Lemma 2.10 we easily get a contradiction.
Here we briefly review how (2.31) leads to (2.32). Roughly speaking (2.31) means
the value of uki is very small on @B(pk, l̄k) and by Harnack inequality, most energy
of uki in B(pk, l̄k) is concentrated near pk , which implies that all the derivatives of
uki are very easy to estimate on @B(pk, l̄k). The evaluation of the derivatives of uki
and the smallness of eu

k
i on @B(pk, l̄k) lead to (2.32).

The second main observation is that for the group containing the orgin, there
is no bubbling disk centered at the origin. In other words, if there is a group that
contains the origin, it has to be the case that there are finitely many bubbling disks,
say B(pk1, r

k
1 ),...,B(pkl , r

k
l ), with p

k
1,...,p

k
l all of comparable distance to the origin

and there is no bubbling disk centered at the origin. This fact is also proved by
contradiction. Suppose around the origin there is a bubbling disk whose energy is
(� k1 , ...� kn ). We have already known that

X

i j
ai j� ki � kj = 4µ

X

i
� ki + o(1).

If there is another bubbling disk, say B(pk1, lk) in the group, we can find l̄k such that
B(0, l̄k) encloses all the bubbling disks in this group and l̄k is less than half of the
distance from 0 to any member in 6k outside the group. The fast decay property as
before also gives

uki (x) + 2 log l̄k ! �1, x 2 @B(0, l̄k).

Using the same argument as in [30] we have
X

i j
� kl̄i�

k
l̄ j = 4µ

X

i
� kl̄i + o(1),

where � kī = 1
2⇡

R
B(0,l̄k) h

k
i e
uki . Since �l̄ i is significantly greater than � ki for at least

one component, Lemma 2.10 gives a contradiction as before.
By the two observations before we only need to consider the case that there are

finitely many bubbling disks around the origin and their centers are of comparable
distance to the origin. Suppose these local maximums are pk1,...,p

k
N , and we suppose

|pkt | ⇠ �k .
Let

3k = max
i
max
x
uki (x) + 2 log |x |.
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Without loss of generality we suppose 3k is attained at p1,k . Let �k = |p1,k | and

vki (y) = uki (p1,k + �k y) + 2 log �k, i 2 I. (2.33)

It is immediate to observe that the domain of vki contains B(0, ���1
k ) for some small

� > 0. Standard selection process can be employed to obtain finite bubbling disks
centered at p2,k ,...,pN ,k such that not only |p j,k | ⇠ �k , but also |pm,k � pl,k | ⇠ �k
for all l 6= m. Let zkl be the images of pl,k by the scaling in (2.33). Then clearly
zk1 is the origin and the distance between any two z

k
l s is comparable to 1. So we

assume, B(zkl , �) are mutually disjoint for some small � > 0. The definition of vki
clearly implies that

max
i
max
B�

vki = 3k .

Let I1 be the set of convergent components after scaling according to the maximum
of all components. Then using previous discussion we have

8
<

:
vki (y) = �mk

i log |y| �
mk
i �2
2 3k + O(1) i 2 I1 y 2 @B�

vki (y) = �mk
i log |y| �

mk
i �2
2 3k + vki (0) � 3k + O(1) i 62 I1 y 2 @B�,

for some � > 0. Here we use (� k1 , ..., � kn ) and (mk
1, ...,m

k
n) to denote the energy

around p1,k :

� ki =
1
2⇡

Z

B(0,�)
hki (p1,k + �k y)ev

k
i , i 2 I, mk

i =
X

j
ai j� kj .

If we use (�̄ k1 , ..., �̄ kn ) and (m̄k
1, ..., m̄

k
n) to denote energy around another bubbling

disk in this group. Lemma 2.7 gives

lim
k!1

� ki = lim
k!1

�̄ ki , i 2 I.

The Pohozaev identity for (� k1 , ..., � kn ) is
X

i j
ai j� ki � kj = 4

X

i
� ki + o(1). (2.34)

The equation for (�̄ k1 , ..., �̄ kn ) is the same. If we use 3̄k to denote the maximum
around the bubbling disk that �̄ ki represents, the proof of Lemma 2.7 gives

3k/3̄k = 1+ o(1).

Let �i = limk!1 � ki . Then (�1, ..., �n) satisfies
X

i j
ai j�i� j = 4

X

i
�i .
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On a fast decay radius that encloses all bubbling disks in the group around the
singular source, we have

X

i j
ai j (N�i )(N� j ) = 4µ

X

i
(N�i ).

Thus µ = N ( that is � = N � 1) and Proposition 2.9 is established.

Next we derive the asymptotic behavior of uki on @B� for some � > 0 small if
the non-simple blowup phenomenon occurs. Recall that �k is the distance from 0
to a local maximum of uki . Here we abuse the notation of vki by defining it slightly
differently:

vki (y) = uki (�k y) + 2 log �k, i 2 I.
Then we have

1vki (y) +
X

j
ai j hkj (�k y)e

vkj = 4⇡� �0, |y| < ���1
k , i 2 I.

If we use v̄ki (r) to denote the spherical average of vki at @Br , we have, for r >> 1
(so Br contains all the N bubbling disks around the origin),

d
dr

v̄ki (r) = �
1
r

✓
1
2⇡

Z

Br
ai j hkj e

vkj � 2�
◆

.

Thus based on the asymptotic behavior of vki around each of the N bubbling disks,
we have

d
dr

v̄ki (r) =
�Nmk

i + 2� + o(r��1)

r
for some �1 > 0. So for r ⇠ ��1

k we have, for i 2 I1,

vki (y) = �
mk
i � 2
2

3k + (�Nmk
i + 2� ) log ��1

k + O(1), |y| ⇠ ��1
k .

Using � = N � 1 and the definition of vki in (2.33), we have

uki |@B(p,�) = vki |@B(0,���1
k )

+ 2 log �k

= �
mk
i � 2
2

3k �

 
mk
i � 2
2

!

2N log ��1
k + O(1),

= �
mk
i � 2
2

(3k + 2N log �k) + O(1), i 2 I1.

(2.35)

For i 2 I \ I1, we have

uki |@B(p,�) = �
mk
i � 2
2

(3k + 2N log �k) � Nk, (2.36)

for some Nk = 3k � vki (0) + O(1) ! 1.
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From (2.35) and (2.36) we see that even if the non-simple blowup phenomenon
happens around a singular source, still the argument of Lemma 2.7 can be applied
to compare the energy of two blowup points, regardless of they are simple or not.
Thus under the same context of Lemma 2.7 except that we remove the simple-
blowup requirement, we still have

�pi

µp
=

�qi

µq
, i 2 I. (2.37)

where (�p1, ..., �pn) and (�q1, ..., �qn) are energy at p and q, respectively.

3. Proof of the a priori estimates and the degree counting theorems

Proof of Theorem 1.1. Let u = (u1, ..., un) be a solution of (1.4). We set

vi = ui � log
Z

M
hieui dVg, i = 1, ..., n, (3.1)

which immediately gives
Z

M
hievi dVg = 1, i 2 I. (3.2)

The equation for v = (v1, ..., vn) now becomes

1gvi +
X

j2I
⇢ j ai j (h j ev j � 1) = 0, i 2 I. (3.3)

To prove a priori estimate for u, we only need to establish

|vi (x)|  C, i 2 I, (3.4)

because with (3.4) we have

log
Z

M
hieui � C  ui (x)  log

Z

M
hieui + C. (3.5)

The fact that u 2 Ḣ1,n(M) implies that for each i , there exists x0,i 2 M such that
ui (x0,i ) = 0. Hence by (3.5) we have

| log
Z

M
hieui |  C, i 2 I. (3.6)

In view of (3.1) and (3.6), the bound for u is a direct consequence of the bound
of v. Also we only need to prove the upper bound for v, because the lower bound
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of v can be obtained from the upper bound of v and standard Harnack inequality.
Therefore our goal is to prove

vi (x)  C, i 2 I. (3.7)

The proof of (3.7) is by contradiction. Suppose there exists a sequence vk to (3.3)
that limk!1maxi maxx vki (x) ! 1. Then we consider two separate cases.

Case one: ⇢ki ! ⇢i > 0 as k ! 1, for all i 2 I .

The equation for vk is

1gv
k
i +

X

j2I
⇢kj ai j (h j e

vkj � 1) = 0, i 2 I. (3.8)

By an argument similar to a Brezis-Merle type lemma [7] it is easy to see that there
are only finite blowup points: {p1, ...pN }. Since vki is uniformly bounded above in
any compact subset away from the blowup set, vki converges to

PN
l=1milG(x, pl)

uniformly in compact sets away from {p1, ..., pn}. Here we use the notation
(
mil =

P
j2I ai j� jl

�il = limk!1
1
2⇡

R
B(pl ,�) ⇢kj h j e

vkj dVg,

for some � > 0, such that B(pl , 2�) \ B(ps, �) = ; for all l 6= s. To apply the
local estimate we rewrite the equation for vki in local coordinates. For p 2 M , let
y = (y1, y2) be the isothermal coordinates near p such that yp(p) = (0, 0) and yp
depends smoothly on p. In this coordinates ds2 has the form

e�(yp)
⇥
(dy1)2 + (dy2)2

⇤
,

where
r�(0) = 0, �(0) = 0.

Also near p we have

1yp� = �2Ke�, where K is the Gauss curvature.

When there is no ambiguity we write y = yp for simplicity. In local coordinates,
the equation for vki can be written as

�1vki = e�
nX

j=1
ai j⇢kj (h j e

vkj � 1), in B(0, �), i 2 I. (3.9)

Let f ki solve

�1 f ki = �e�
X

j2I
⇢kj ai j , in B(0, �), i 2 I,
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and f ki (0) = |r f ki (0)| = 0. Set ṽki = vki � f ki and

Hk
i = e�⇢ki e

f ki hi ,

then the equation for ṽki becomes

�1ṽki =
X

j2I
ai j Hk

j e
ṽkj , in B(0, �). (3.10)

Here we observe that
Z

B(0,�)
Hk
i e

ṽki dx =
Z

B(0,�)
⇢ki hi e

vki dVg.

Since vki tends to �1 in M \ [N
j=1B(p j , �), we have

|ṽki (x) � ṽki (y)|  C, 8x, y 2 M \ [N
j=1B(p j , �/2), i 2 I. (3.11)

By Lemma 2.2 and the proof of Lemma 2.3 it is easy to see that
Z

M\[N
j=1B(p j ,�)

hi ev
k
i dVg ! 0, i 2 I, (3.12)

and

lim
k!1

Z

B(pl ,�)
⇢ki hi e

vki dVg/µpl = lim
k!1

Z

B(pm ,�)
⇢ki hi e

vki dVg/µpm (3.13)

for i 2 I and any pair of l,m between 1 and N .
If we use µpl to represent the possible strength of the singular source at each

pl , by (2.37) we have, for each i 2 I ,

�i,1
µ1

=
�i,2
µ2

= ... =
�i,N

µN
,

and
2⇡(�i,1 + �i,2 + ... + �i,N ) = ⇢i .

Thus
�i,l =

⇢iµi

2⇡
Pn

s=1 µs
, i 2 I, l = 1, ..., N .

For each l, the Pohozaev identity for (�1,l , ..., �n,l) can be written as
X

i, j2I
ai j

�i,l

µi

� j,l

µ j
= 4

X

i2I

�i,l

µi
.



1130 YI GU AND LEI ZHANG

Thus if blowup does happen, (⇢1, ..., ⇢n) satisfies

X

i, j2I
ai j⇢i⇢ j = 8⇡

NX

l=1
µl

X

i2I
⇢i . (3.14)

Thus if ⇢ is not on critical hyper-surfaces 0k , the a priori estimate holds in this case.

Case two: Some of ⇢ki tend to 0. Without loss of generality we assume that
limk!1 ⇢ki = ⇢i > 0, i 2 I1 := {1, ..., l}, limk!1 ⇢ki = 0 for i > l.

Let Mk = max{vk1, ...., v
k
l } and M̄k = max{vkl+1, ..., v

k
n}. We first show that

M̄k � Mk  C. (3.15)

If (3.15) is not true, we have M̄k � Mk ! 1, then we let

V k
i (y) = vki (e

�M̄k/2y + pk) � M̄k,

where pk is where M̄k is attained: vki0(pk) = M̄k . Clearly i0 > l. Thanks to the fact
that V k

i ! �1 for i  l and ⇢ki ! 0 for i > l, V k
i0 converges uniformly to

8
><

>:

�1Vi0 = 0 in R2

Vi0(0) = 0.

The fact that Vi0 ⌘ 0 in R2 contradicts the finite energy of the component i0. Thus
(3.15) is established.

We use the same notation as in Case one. Let p1,...,pN be blowup points for
vki . Then around each blowup point, say, p1, the equation for vk can be written in
local coordinates as (3.10) with ṽki and H

k
i defined as in case one. Without loss of

generality we assume that ⇢ki > 0 for all k and l + 1  i  L and ⇢ki = 0 for
all k and i > L . Then we observe from the definition of Hk

i that H
k
i ! 0 for

l + 1  i  L and Hk
i = 0 for i > L .

To reduce case two to case one, we need to adjust the terms involving vanishing
Hk
i s. To do this we let f̂

k
i as

8
><

>:

�1 f̂ ki =
Pn

j=L+1 ai j e
ṽkj�Mk in B(0, �)

f̂ ki (x) = 0 on @B(0, �).

Since maxi vki � Mk is bounded above for all i , we have

k f̂ ki kC1  C
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for some C independent of k. Now we define

v̂ki =

8
><

>:

ṽki + f̂ ki i = 1, ..., l
ṽki + log ⇢ki + f̂ ki l + 1  i  L
ṽki � Mk + f̂ ki L + 1  i  n.

and

Ĥ k
i =

8
>><

>>:

Hk
i e

� f̂ ki 1  i  l
Hk
i

⇢ki
e� f̂ ki = e�+ f ki � f̂ ki hi l + 1  i  L

e f̂
k
i L + 1  i  n.

The definition of Ĥ k
i immediately gives

1
c

 Ĥ k
i  c, in B(0, �)

for some c > 0 independent of k. Next the equation for ṽki is

�1v̂ki =
X

j2I
ai j Ĥ k

j e
v̂kj , in B(0, �), i 2 I.

It is easy to see that max v̂ki � Mk ! �1 for l + 1  i  n. Therefore case two is
reduced to case one, which gives

�il/µl = �im/µm, 8l,m 2 {1, ..., N }, 1  i  l,

and �im = 0 for all i > l and all m 2 {1, ..., N }. Then as in case one if
(⇢1, ..., ⇢l , 0, .., 0) is not on any critical hyper-surfaces, the a priori estimate holds.
Theorem 1.1 is established.

Proof of Theorem 1.2. The main idea of the proof of the degree counting theorem
is to reduce the whole system to the single equation.

Case one: At least one of aii > 0. We may assume a11 > 0. Thanks to Theorem
1.1, the Leray-Schauder degree of (1.4) for ⇢ 2 Ok is equal to the degree for the
following specific system corresponding to (⇢1, 0, ..., 0):

8
><

>:

1gu1 + ⇢1a11
⇣

h1eu1R
M h1eu1dVg

� 1
⌘

= 0

1gu j + ⇢1a j1
⇣

h1eu1R
M h1eu1dVg

� 1
⌘

= 0 for j � 2,
(3.16)

where ⇢1 satisfies
8⇡nk < a11⇢1 < 8⇡nk+1.
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It is easy to see that (⇢1, 0, ..., 0) 2 Ok , using the degree counting formula of Chen-
Lin [14] for the single equation, we obtain the desired formula.

Case two: aii = 0 for all i 2 I .
Using a12 > 0, we reduce the degree counting formula for ⇢ 2 Ok to the

following system:
8
>>>><

>>>>:

1gu1 + a12⇢2
⇣

h2eu2R
M h2eu2dVg

� 1
⌘

= 0

1gu2 + a12⇢1
⇣

h1eu1R
M h1eu1dVg

� 1
⌘

= 0

1gui + ⇢1ai1
⇣

h1eu1R
M h1eu1dVg

⌘
+ ⇢2a12

⇣
h2eu2R

M h2eu2dVg
� 1

⌘
= 0 i � 3,

(3.17)

where ⇢1, ⇢2 satisfy

8⇡nk(⇢1 + ⇢2) < 2a12⇢1⇢2 < 8⇡nk+1(⇢1 + ⇢2).

It is easy to see that (⇢1, ⇢2, 0, ..., 0) 2 Ok . Now we consider the special case
⇢1 = ⇢2, h1 = h2 = h. In this case a simple application of the maximum principle
gives u1 = u2 + C . Since they both have average equal to 0, we have u1 = u2.
Then the first two equations in (3.17) turn out to be

1gu + a12⇢
✓

heu
R
M heudVg

� 1
◆

= 0,

where ⇢ 2 (8⇡nk, 8⇡nk+1). Again the degree counting formula of Chen-Lin [14]
for the single equation gives the desired formula. Theorem 1.2 is established.

Remark 3.1. The proof of Theorem 1.4 requires that there is no blowup point on
@�. Since all the singular sources are in the interior of �, a standard moving plane
argument can be employed to prove this fact. The interested readers may read
into [33] for the detail of the proof. Then the remaining part is similar to the proof
of Theorem 1.2.

Finally we prove Theorem 1.5: since the genus of the torus M is 1, �(M) = 0
and the generating function is

g(x) = 5N
p=1

1� xµp

1� x
= 5N

p=1(1+ x + x2 + ... + x�p )

= 1+ b1x + b2x2 + ... + bkxk + ... + xm,

where m =
P

p �p. Let

⇢i =

 
X

j2I
ai j

!

4⇡
NX

p=1
�p,
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it is easy to see that

8⇡nk
X

i
⇢i <

X

i j
ai j⇢i⇢ j < 8⇡nk+1

X

i
⇢i

for nk = (m � 1)/2 and nk+1 = (m + 1)/2. Thus the Leray-Schauder degree d⇢

can be computed as

d⇢ =
(m�1)/2X

l=0
bl .

Using bm�l = bl for l = 0, 1, ..,m we further write d⇢ as

d⇢ =
1
2

mX

l=1
bl =

g(1)
2

=
5N
p=1(1+ �p)

2
.

Theorem 1.5 is established.
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[41] Y. YANG, “Solitons in Field Theory and Nonlinear Analysis”, Springer Monographs in
Mathematics, Springer, New York, 2001.

[42] L. ZHANG, Blowup solutions of some nonlinear elliptic equations involving exponential
nonlinearities, Comm. Math. Phys. 268 (2006), 105–133.

[43] L. ZHANG, Asymptotic behavior of blowup solutions for elliptic equations with exponential
nonlinearity and singular data, Commun. Contemp. Math. 11 (2009), 395–411.

Department of Mathematics
University of Florida
1400 Stadium Rd
Gainesville FL 32611
yigu57@ufl.edu
leizhang@ufl.edu


