
Ann. Sc. Norm. Super. Pisa Cl. Sci. (5)
Vol. XXI (2020), 1087-1102

An Andreotti-Grauert theorem with Lr estimates

ERIC AMAR

Abstract. By a theorem of Andreotti and Grauert if ! is a (p, q) current, q < n,
in a Stein manifold, @̄ closed and with compact support, then there is a solution
u to @̄u = ! still with compact support. The main result of this work is to show
that if moreover ! 2 Lr (dm), where m is a suitable “Lebesgue” measure on the
Stein manifold, then we have a solution u with compact support and in Lr (dm).
We prove it by estimates in Lr spaces with weights.

Mathematics Subject Classification (2010): 32W05 (primary); 32Q28 (sec-
ondary).

1. Introduction

Let ! be a @̄ closed (p, q) form in Cn with compact support K := Supp! and such
that ! 2 Lr (Cn), the Lebesgue space inCn. Setting K in a ball B := B(0, R) with
R big enough, we know, by a theorem of Ovrelid [14], that we have a (p, q � 1)
form u 2 Lr (B) such that @̄u = !. On the other hand we also know, at least when
q < n, that there is a current v with compact support such that @̄v = !, by a
theorem of Andreotti-Grauert [6].

So a natural question is: may we have a solution u of @̄u = ! with compact
support and in Lr (Cn)?

There is a work by H. Skoda [16] who proved such a result. Let � be a strictly
pseudo-convex bounded domain in Cn with smooth boundary then in [16, Corol-
laire page 295], H. Skoda proved that if f is a (p, q)-form with measure coef-
ficients, q < n, @̄ closed and with compact support in �, then there is a solu-
tion U to the equation @̄U = f such that kUkLr (�)  C(�, r)k f k1, for any r
such that 1 < r < 2n+2

2n�1 and U has zero boundary values in the sense of Stokes
formula. This means that essentially U has compact support and, because � is
bounded, k f k1 . k f kLr (�). So he got the answer for � strictly pseudo-convex
and 1 < r < 2n+2

2n�1 .
We answered this question by the affirmative for any r 2 [1,1] in a joint

work with S. Mongodi [5] linearly by the “method of coronas”. This method asks
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for extra Lr conditions on derivatives of coefficients of !, when q < n; we shall
denote the set of ! verifying these conditionsWr

q(�), as in [5].
The aim of this work is to extend this result to Stein manifolds and get rid of the

extra Lr conditionsWr
q(�). For it we use a completely different approach inspired

by the Serre duality [15]. Because Hahn Banach theorem is used, this method is no
longer constructive as in [5].

The basic notion we shall use here is the following:
Definition 1.1. Let X be a complex manifold equipped with a Borel � -finite mea-
sure dm and � a domain in X ; let r 2 [1, 1], we shall say that � is r regular
if for any p, q 2 {0, ..., n}, q � 1, there is a constant C = Cp,q(�) such that
for any (p, q) form !, @̄ closed in � and in Lr (�, dm) there is a (p, q � 1) form
u 2 Lr (�, dm) such that @̄u = ! and kukLr (�)  Ck!kLr (�).

We shall say that � is weakly r regular if for any compact set K b �
there are 3 open sets �1,�2,�3 such that K b �3 ⇢ �2 ⇢ �1 ⇢ �0 := � and 3
constants C1,C2,C3 such that:

8 j = 0, 1, 2, 8p, q 2 {0, ..., n}, q � 1, 8! 2 Lrp,q(� j , dm), @̄! = 0,

9u 2 Lrp,q�1(� j+1, dm), @̄u = !

and kukLr (� j+1)  C j+1k!kLr (� j ).

I.e., we have a 3 steps chain of resolution.
Of course the r regularity implies the weak r regularity, just taking�1 = �2 =

�3 = �.
Examples of 2 regular domains are the bounded pseudo-convex domains by

Hörmander [10].
Examples of r regular domains in Cn are the bounded strictly pseudo-convex

(s.p.c.) domains with smooth boundary by Ovrelid [14]; the polydiscs in Cn by
Charpentier [7], finite transverse intersections of strictly pseudo-convex bounded
domains in Cn by Menini [13]. A generalisation of the results by Menini was
done in the nice work of Ma and Vassiliadou [12]: they treated also the case of
intersection of q-convex sets.

Examples of r regular domains in a Stein manifold are the strictly pseudo-
convex domains with smooth boundary [3]. (See the previous work for (0, 1) forms
by N. Kerzman [11] and for all (p, q) forms by J-P. Demailly and C. Laurent [8,
Remarque 4, page 596], but here the manifold has to be equipped with a metric with
null curvature. See also [4] for the case of intersection of q-convex sets in a Stein
manifold).

Let X be a Stein manifold and � a domain in X, i.e. an open connected set in
X. Let Hp(�) be the set of all (p, 0) @̄ closed forms in �. If p = 0, H0(�) =
H(�) is the set of holomorphic functions in �. If p > 0, we have, in a chart
(',U), h 2 Hp(�) ) h(z) =

P
|J |=p aJ (z)dz J , where dz J := dz j1 ^ · · · ^ dz jp

and the functions aJ (z) are holomorphic in '(U) ⇢ Cn.
We shall denote Lr,cp,q(�) the set of (p, q)-forms in Lr (�) with compact sup-

port in �.
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We also use the notation r 0 for the conjugate exponent of r, i.e. 1r + 1
r 0 = 1.

Our main theorem is:

Theorem 1.2. Let � be a weakly r 0 regular domain in a Stein manifold X. Then
there is a C > 0 such that for any (p, q) form ! in Lr,c(�), r > 1 with:

• if 1  q < n, @̄! = 0;
• if q = n, 8V ⇢ �, Supp! ⇢ V, ! ? Hn�p(V );

there is a (p, q � 1) form u in Lr,c(�) such that @̄u = ! as distributions and
kukLr (�)  Ck!kLr (�).

The notion of r regularity gives a good control of the support: if the support of
the data ! is contained in �\C where � is a weakly r 0 regular domain and C is a
weakly r regular domain, then the support of the solution u is contained in �\C 0,
where C 0 is any relatively compact domain in C, provided that q � 2. One may
observe that �\C is not Stein in general even if � is.

There is also a result of this kind for q = 1, see Section 3.3.
In particular the support of the solution u is contained in the intersection of all

the weakly r 0 regular domains containing the support of !.
The idea is to solve @̄u = ! in a space Lr (�) with a “big weight ⌘ outside” of

the support of !; this way we shall have a “small solution u outside” of the support
of !. Then, using a sequence of such weights going to infinity “outside” of the
support of !, we shall have a u zero “outside of the support” of !.

Comparing to my previous work [2] the results here are improved and the
proofs are much simpler by a systematic use of the Hodge ⇤ operator.

ACKNOWLEDGEMENTS. I am indebted to G. Tomassini who started my interest
in this subject on precisely this kind of questions and also to S. Mongodi for a lot
of discussions during the preparation of our joint paper [5].

I want to thank C. Laurent for many instructive discussions on this subject.
Finally I also thank the referee for his/her careful reading of the manuscript

and the incisive questions he/she asked.

2. Duality

We shall study a duality between currents inspired by the Serre duality [15].
Let X be a complex manifold of dimension n. We proceed now exactly as in

Hörmander [10, page 119], by introducing a hermitian metric on differential forms
locally equivalent to the usual one on any analytic coordinates system.

We define the “Lebesgue measure” still as in Hörmander’s book [10, Section
5.2]: associated to this metric there is a volume measure dm and we take it for
the Lebesgue measure on X. Moreover, because X is a complex manifold, it is
canonically oriented.
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2.1. Weighted Lr spaces

Let � be a domain in X. We denote also dm the volume form on X. We shall take
the following notation from the book by C. Voisin [17].

To a (p, q)-form ↵ on � we associate its Hodge ⇤ (n � p, n � q)-form ⇤↵.
This gives us a pointwise scalar product and a pointwise modulus:

(↵,�)dm := ↵ ^ ⇤�; |↵|2 dm := ↵ ^ ⇤↵, (2.1)

because ↵ ^ ⇤� is a (n, n)-form hence is a function time the volume form dm.
We are also given a scalar product h↵,�i on (p,q)-forms such that

R
� |↵|2dm<

1 and the link between these notions is given by [17, Lemme 5.8, page 119]:

h↵,�i =
Z

�
↵ ^ ⇤�. (2.2)

We shall define now Lrp,q(�) to be the set of (p, q)�forms ↵ defined on � such
that

k↵krLrp,q (�) :=
Z

�
|↵(z)|r dm(z) < 1,

where |↵| is defined by (2.1).

Lemma 2.1. Let ⌘ > 0 be a weight. If u is a (p, q)-current defined on (n� p, n�
q)-forms ↵ in Lr 0

(�, ⌘) and such that

8↵ 2 Lr
0

(n�p,n�q)(�, ⌘), |hu, ⇤↵i|  Ck↵kLr 0 (�,⌘),

then kukLrp,q (�,⌘1�r )  C.

Proof. We use the classical trick: set ↵̃ := ⌘1/r
0
↵; ũ := 1

⌘1/r 0
u then we have

hu, ⇤↵i =
Z

�
u ^ ↵ =

Z

�
ũ ^ ↵̃ = hũ, ⇤↵̃i

and k↵̃kLr 0 (�) = k↵kLr 0 (�,⌘).

We notice that k↵̃kLr 0 (�) = k⇤↵̃kLr 0 (�) because we have (⇤↵̃, ⇤↵̃)dm = ⇤↵̃ ^

⇤ ⇤ ↵̃ but ⇤ ⇤ ↵̃ = (�1)(p+q)(2n�p�q)↵̃, by [17, Lemma 5.5], hence, because
(⇤↵̃, ⇤↵̃) is positive, (⇤↵̃, ⇤↵̃) = |↵̃|2 .

By use of the duality Lrp,q(�) � Lr 0

n�p,n�q(�), done in Lemma A.3, we get

kũkLrp,q (�) = sup
↵2Lr 0n�p,n�q (�), ↵ 6=0

|hũ, ⇤↵̃i|

k↵̃kLr 0 (�)

.

But

kũkrLrp,q (�) :=
Z

�
|u|r ⌘� r

r 0 dm =
Z

�
|u|r ⌘1�r dm = kukrLr (�,⌘1�r )

.
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So we get

kukLrp,q (�,⌘1�r ) = sup
⇤↵2Lr 0p,q (�,⌘), ↵ 6=0

|hu, ⇤↵i|

k↵kLr 0 (�,⌘)

.

The proof is complete.

It may seem strange that we have such an estimate when the dual of Lr 0
(�, ⌘)

is Lr (�, ⌘), but the reason is, of course, that in the duality current-form there is no
weights. The point here is that when ⌘ is small, ⌘1�r is big for r > 1.

3. Solution of the @̄ equation with compact support

3.1. r regular domains

Aswe have seen, examples of r regular domains in Stein manifolds are the relatively
compact s.p.c. domains with smooth boundary. To prove that a Stein manifold � is
weakly r regular we shall need the following lemma.
Lemma 3.1. Let � be a Stein manifold. Then it contains an exhaustive sequence
of open relatively compact strictly pseudo-convexs sets {Dk}k2N with C1 smooth
boundary.
Proof. For the case of � pseudo-convex in Cn, the proof was already done ex-
plicitely in the proof of [9, Theorem 2.8.1, page 86].

By Theorem 5.1.6 of Hörmander [10] there exists a C1 strictly plurisubhar-
monic (s.p.s.h.) exhausting function ' for �. Take K b � such that d' 6= 0 on K .
Because ' is s.p.s.h. then K 6= ;. Then we use the [9, Lemma 2.12.2, page 93], to
get: 8✏ > 0, 9⇢✏ s.p.s.h. C1-function on � such that:
(i) ' � ⇢✏ together with its first and second derivatives is less than ✏ on �.
(ii) The set Crit(⇢✏) := {z 2 � :: d⇢✏(z) = 0} is discrete in �. (In a formula, the

notation :: means “such that”.)
(iii) ⇢✏ = ' on K .

As stated in Lemma 2.12.2 if ' 2 C2 then ⇢✏ 2 C2, but in fact the proof of this
Lemma 2.12.2 gives ⇢✏ = ' +

P
� j , where

P
� j is C1 (see [9, page 93]). Hence

⇢✏ has the same Ck regularity than '.
Fix ✏ > 0, then the function ⇢ := ⇢✏ is also a s.p.s.h. exhausting function for

�, because, from �✏  ' � ⇢✏  ✏, we get that, for any ↵ 2 R,

{z 2 � :: ⇢✏(z) < ↵} ⇢ {z 2 � :: '(z) < ✏ + ↵}

and, because ' is an exhausting function, this set is relatively compact in �.
Because the set of critical points of ⇢ is discrete in �, the same way as in the

proof of [9, Theorem 2.8.1, page 86], we can find a sequence ck 2 R, ck ! 1,
such that Dk := {z 2 � :: ⇢(z) < ck} make an exhaustive sequence of open
relatively compact sets in �, @⇢ 6= 0 on @Dk, hence Dk is strictly pseudo-convex
with C1 smooth boundary, and finally Dk % �. The proof is complete.
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Proposition 3.2. A Stein manifold � is weakly r regular.

Proof. By Lemma 3.1 there is an exhaustive sequence of open relatively compact
s.p.c. sets in �, {Dk}k2N with C1 smooth boundary. Let ! 2 Lrp,q(�), @̄! = 0,
by [3], we can solve @̄u = ! in Dk with u 2 Lrp,q�1(Dk) and

kukLr (Dk)  Ckk!kLr (Dk)  Ckk!kLr (�).

Hence if 0 is a compact set in �, there is a Dk such that 0 b Dk and we can take
�1 = �2 = �3 = Dk . This proves the weak r regularity of �.

3.2. The main result

Let X be a Stein manifold and� a domain in X. In order to simplify notation, we set
the pairing for ↵ a (p, q)-form and � a (n� p, n�q)-form: ⌧ ↵,� �:=

R
� ↵ ^ �.

With this notation we also have h↵,�i =⌧ ↵, ⇤� � .
Let � be a weakly r 0 regular domain in X. We set K := Supp! b � and, by

the definition of the r 0 weak regularity, we get 3 open sets such that K b �3 ⇢
�2 ⇢ �1 ⇢ �0 = � with: 8 j = 0, 1, 2, 8p, q 2 {0, ..., n}, q � 1,

8↵ 2 Lrp,q(� j ), @̄↵ = 0, 9' 2 Lrp,q�1(� j+1), @̄' = ↵.

Set the weight ⌘ = ⌘✏ :=1�1(z) + ✏1�\�1(z) for a fixed ✏ > 0.
Let ! 2 Lr,cp,q(�). Suppose moreover that ! is such that @̄! = 0 if 1  q < n

and for any open V b �, Supp! b V we have ! ? Hn�p(V ) () 8h 2
Hn�p(V ), ⌧ !, h �= 0 if q = n.

We shall use the following lemma, with the previous notation:

Lemma 3.3. Let E be the set of (n� p, n� q + 1) forms ↵ 2 Lr 0
(�, ⌘), @̄ closed

in �. Let us define L! on E as follows:

L!(↵) := (�1)p+q�1 ⌧ ',! �,

where ' 2 Lr 0
(�1) is such that @̄' = ↵ in �1. Then the form L! is well defined

and linear.

Proof. Because ✏ > 0 we have ↵ 2 Lr 0
(�, ⌘) ) ↵ 2 Lr 0

(�) and the weak r 0

regularity of � gives a ' 2 Lr 0
(�1) with @̄' = ↵ in �1.

Let us see that L! is well defined.

• Suppose first that q < n.
In order for L! to be well defined we need

8', 2 Lr
0

(n�p,n�q)(�1), @̄' = @̄ = ↵ )⌧ ',! �=⌧  ,! � .
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This is meaningful because ! 2 Lr,c(�), r > 1, Supp! b �1. Then we have
@̄(' �  ) = 0 in �1, hence, because � is weakly r 0 regular, we can solve @̄ in
Lr 0

(�2):
9� 2 Lr

0

(n�p,n�q�1)(�2) :: @̄� = (' �  ).

So ⌧ ' �  ,! �=⌧ @̄� ,! �= (�1)p+q�1 ⌧ � , @̄! �= 0 because ! is
compactly supported in �2 and @̄ closed. Hence L! is well defined in that case.
• Suppose now that q = n.

For ',  (n � p, 0) forms in �1, such that @̄' = @̄ = ↵, we need to have
⌧ ',! �=⌧  ,! � . But then @̄('� ) = 0,which means that h := '� is a
@̄ closed (n � p, 0) form, hence h 2 Hn�p(�1). Taking V = �1 in the hypothesis
! ? Hn�p(V ), we get⌧ h,! �= 0, and L! is also well defined in that case.

It remains to see that L! is linear.
• Suppose first that q < n.

Let ↵ = ↵1 + ↵2, with ↵ j 2 Lr 0
(�, ⌘), @̄↵ j = 0, j = 1, 2; we have ↵ =

@̄', ↵1 = @̄'1 and ↵2 = @̄'2, with ', '1, '2 in Lr
0
(�1) so, because @̄(' � '1 �

'2) = 0, we have

' = '1 + '2 + @̄ , with  in Lr
0
(�2),

so

L!(↵) = (�1)p+q�1 ⌧ ',! �= (�1)p+q�1 ⌧ '1 + '2 + @̄ ,! �=

= L!(↵1) + L!(↵2) + (�1)p+q�1 ⌧ @̄ ,! �,

but again⌧ @̄ ,! �= 0, hence L!(↵) = L!(↵1) + L!(↵2).
The same for ↵ = �↵1.

• Suppose now that q = n.We have

L!(↵) := (�1)p+n�1 ⌧ ',! �,

where ' 2 Lr 0
(�1) is such that @̄' = ↵ in �1. Let ↵ = ↵1 + ↵2, with ↵ j 2

Lr 0
(�, ⌘), @̄↵ j = 0, j = 1, 2; we have ↵ = @̄', ↵1 = @̄'1 and ↵2 = @̄'2, with

', '1, '2 in Lr
0
(�1) so, because @̄(' � '1 � '2) = 0, we have ' � '1 � '2 is a

(n � p, 0) @̄-closed form, hence:

' = '1 + '2 + h, with h 2 Hn�p(�1).

So

L!(↵) = (�1)p+q�1 ⌧ ',! �= (�1)p+q�1 ⌧ '1 + '2 + h,! �

= L!(↵1) + L!(↵2) + (�1)p+q�1 ⌧ h,! � .

Taking V = �1 in the hypothesis ! ? Hn�p(V ), we get ⌧ h,! �= 0, hence
L!(↵) = L!(↵1) + L!(↵2). The same for ↵ = �↵1. The proof is complete.
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Remark 3.4. If � is Stein, we can take the domain �1 to be s.p.c. with C1

smooth boundary, hence also Stein. So because K := Supp! ⇢ �1 ⇢ �, the
A(�1) convex hull of K , K̂�1 is still in �1, and any holomorphic function in �1
can be uniformly approximated on K̂�1 by holomorphic functions in �.

Then for q = n instead of asking ! ? Hn�p(�1)we need just ! ? Hn�p(�).

Theorem 3.5. Let � be a weakly r 0 regular domain and ! be a (p, q) form in
Lr,c(�), r > 1. Suppose that ! is such that:

• if 1  q < n, @̄! = 0;
• if q = n, 8V ⇢ �, Supp! ⇢ V, ! ? Hn�p(V ).

Then there is a C > 0 and a (p, q � 1) form u in Lr,c(�) such that @̄u = ! as
distributions and kukLr (�)  Ck!kLr (�).

Proof. Because � is weakly r 0 regular there is a �1 ⇢ �, �1 � Supp! such that

8↵ 2 Lr
0
(�), @̄↵ = 0, 9' 2 Lr

0
(�1) :: @̄' = ↵, k'kLr 0 (�1)  C1k↵kLr 0 (�).

There is a �2 such that Supp! b �2 ⇢ �1 ⇢ � with the same properties as �1.
Let us consider the weight ⌘ = ⌘✏ :=1�1(z) + ✏1�\�1(z) for a fixed ✏ > 0 and the
form L! defined in Lemma 3.3. By Lemma 3.3 we have that L! is a linear form on
(n � p, n � q + 1)-forms ↵ 2 Lr 0

(�, ⌘), @̄ closed in �.

If ↵ is a (n � p, n � q + 1)-form in Lr 0
(�, ⌘), then ↵ is in Lr 0

(�) because
✏ > 0.

The weak r 0 regularity of � gives that there is a ' 2 Lr 0
(�1) :: @̄' = ↵ which

can be used to define L!(↵).
We have also that ↵ 2 Lr 0

(�1), @̄↵ = 0 in �1, hence, still with the weak r 0

regularity of �, we have

9 2 Lr
0
(�2) :: @̄ = ↵, k kLr 0 (�2)  C2k↵kLr 0 (�1).

• For q < n,we have @̄('� ) = ↵�↵ = 0 on�2 and, by the weak r 0 regularity of
�, there is a �3 ⇢ �2, such that Supp! ⇢ �3 ⇢ �2, and a � 2 Lr 0

(�3), @̄� =
' �  in �3. So we get

⌧ ' �  ,! �=⌧ @̄� ,! �= (�1)p+q�1 ⌧ � , @̄! �= 0,

this is meaningful because Supp! ⇢ �3.HenceL!(↵) =⌧ ',! �=⌧  ,! � .

• For q = n, we still have @̄('� ) = ↵� ↵ = 0 on �2, hence '� 2 Hp(�2);
this time we choose V = �2 and the assumption gives ⌧ ' �  ,! �= 0 hence
again L!(↵) =⌧ ',! �=⌧  ,! � .

In any cases, by Hölder inequalities done in Lemma A.1,

|L!(↵)|  k!kLr (�1)k kLr 0 (�2)  k!kLr (�)k kLr 0 (�2).
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But, by the weak r 0 regularity of �, there is a constant C2 such that

k kLr 0 (�2)  C2k↵kLr 0 (�1).

Of course we have
k↵kLr 0 (�1)  k↵kLr 0 (�, ⌘)

because ⌘ = 1 on �1, hence

|L!(↵)|  C2k!kLr (�)k↵kLr 0 (�, ⌘).

So we have that the norm of L! is bounded on the subspace of @̄ closed forms in
Lr 0

(�, ⌘) by Ck!kLr (�) which is independent of ✏.
We apply the Hahn-Banach theorem to extend L! with the same norm to all

(n � p, n � q + 1) forms in Lr 0
(�, ⌘). As in the Serre Duality Theorem [15, page

20], this is one of the major ingredients in the proof.
This means, by the definition of currents, that there is a (p, q � 1) current u

which represents the extended form L!: L!(↵) =⌧ ↵, u � . So if ↵ := @̄' with
' 2 C1

c (�), we get

L(↵) =⌧ ↵, u �=⌧ @̄', u �= (�1)p+q�1 ⌧ ',! �

hence @̄u = ! as distributions because ' is compactly supported. And we have:

sup
↵2Lr 0 (�,⌘), k↵k=1

|⌧ ↵, u �|  Ck!kLr (�).

By Lemma 2.1 with the weight ⌘, this implies

kukLr (�,⌘1�r )  Ck!kLr (�)

because |⌧ ↵, u �|=|h↵, ⇤ui| and, as already seen,

kukLr (�,⌘1�r ) =k⇤ukLr (�,⌘1�r ) =k⇤ukLr (�,⌘1�r ).

In particular kukLr (�)  Ck!kLr (�) because with ✏ < 1 and r > 1, we have
⌘1�r � 1.

Now for ✏ > 0 with ⌘✏(z) :=1�1(z) + ✏1�\�1(z), let u✏ 2 Lr (�, ⌘1�r✏ ) be the
previous solution, then

ku✏krLr (�,⌘1�r✏ )


Z

�
|u✏ |r ⌘1�r dm  Crk!krLr (�).

Replacing ⌘ by its value we get
Z

�1

|u✏ |r dm +
Z

�\�1
|u✏ |r ✏1�r dm  Crk!krLr (�)

)
Z

�\�1
|u✏ |r ✏1�r dm  Crk!krLr (�)
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hence Z

�\�1
|u✏ |r dm  Cr✏r�1k!krLr (�).

Because C and the norm of ! are independent of ✏, we have that ku✏kLr (�) is
uniformly bounded and r > 1 implies that Lrp,q�1(�) is a dual by Lemma A.3,
hence there is a sub-sequence {u✏k }k2N of {u✏}which converges weakly, when ✏k !
0, to a (p, q�1) form u in Lrp,q�1(�), still with kukLrp,q�1(�)  Ck!kLrp,q (�). Let
us write uk := u✏k .

To see that this form u is 0 a.e. on �\�1 let us write the weak convergence:

8↵ 2 Lr
0

p,q�1(�), huk,↵i =
Z

�
uk ^ ⇤↵ ! hu,↵i =

Z

�
u ^ ⇤↵.

As usual take ↵ :=
u
|u|
1E where E := {|u| > 0} \ (�\�1) then we get

Z

�
u ^ ⇤↵ =

Z

E
|u| dm = lim

k!1

Z

�
uk ^ ⇤↵ = lim

k!1

Z

E

uk ^ ⇤u
|u|

.

Now we have, by Hölder inequalities:
�
�
�
�

Z

E

uk ^ ⇤u
|u|

�
�
�
�  kukkLr (E)k1EkLr 0 (E).

But

kukkrLr (E) 
Z

�\�1
|uk |r dm  (✏k)

r�1Ck!kLr (�) ! 0, k ! 1

and k1EkLr 0 (E) = (m(E))1/r
0
. Hence

�
�
�
�

Z

E
|u| dm

�
�
�
� = lim

k!1

Z

E

uk ^ ⇤u
|u|

 lim
k!1

Cr (m(E))1/r
0
(✏k)

r�1k!krLr (�) = 0,

so
R
E |u| dm = 0 which implies m(E) = 0 because on E, |u| > 0.
Hence we get that the form u is 0 a.e. on �\�1.

So we proved

8' 2 Dn�p,n�q(�), (�1)p+q�1 ⌧ ',! �=⌧ @̄', u✏ �!⌧ @̄', u �

)⌧ @̄', u �= (�1)p+q�1 ⌧ ',! �

hence @̄u = ! in the sense of distributions. The proof is complete.



AN ANDREOTTI-GRAUERT THEOREM WITH Lr ESTIMATES 1097

Remark 3.6. As in remark 3.4 if � is Stein for q = n instead of asking ! ?
Hp(�2) we need just ! ? Hp(�).

Remark 3.7. The condition of orthogonality toHp(V ) in the case q = n is neces-
sary: suppose there is a (p, n � 1) current u such that @̄u = ! and u with compact
support in an open set V ⇢ �, then if h 2 Hp(V ), we have

h 2 Hp(V ), ⌧ !, h �=⌧ @̄u, h �= (�1)n+p ⌧ u, @̄h �= 0,

because, u being compactly supported, there is no boundary term and

⌧ @̄u, h �= (�1)n+p ⌧ u, @̄h � .

This kind of condition was already seen for extension of CR functions, see [1] and
the references therein.

3.3. Finer control of the support

Here we shall get a better control on the support of a solution.

Theorem 3.8. Let � be a weakly r 0 regular domain in a Stein manifold X.
Suppose the (p, q) form ! is in Lr,c(�, dm), @̄! = 0, if q < n, and ! ?

Hp(V ) for any V such that Supp! ⇢ V, if q = n, with Supp! ⇢ �\C, where C
is a weakly r regular domain.

For any open relatively compact setU in C, there is a u 2 Lr,c(�, dm) such
that @̄u = ! and with support in �\Ū , provided that q � 2.

Proof. Let ! be a (p, q) form with compact support in �\C then there is a v 2
Lrp,q�1(�), @̄v = !, with compact support in �, by theorem 3.5 or, if � is a
polydisc in Cn and if ! 2Wr

q(�), by the theorem in [5].
Because ! has compact support outside C we have ! = 0 in C; this means

that @̄v = 0 in C. Because C is weakly r regular and q � 2, we have

9C 0 ⇢ C, C 0 � Ū , 9h 2 Lrp,q�2(C
0) s.t. @̄h = v in C 0.

Let � be a smooth function such that � = 1 in U and � = 0 near @C 0; then set
u := v� @̄(�h).We have that u = v��@̄h� @̄� ^h = v��v� @̄� ^h hence u is
in Lr (�); moreover u = 0 in Ū because � = 1 in U hence @̄� = 0 there. Finally
@̄u = @̄v � @̄2(�h) = ! and we are done.

If � and C are, for instance, pseudo-convex in Cn then �\C is no longer
pseudo-convex in general, so this theorem improves actually the control of the sup-
port.
Remark 3.9. The correcting function h is given by kernels in the case of Stein
domains, hence it is linear; if the primitive solution v is also linear in !, then the
solution u is linear too. This is the case in Cn with the solution given in [5].
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This theorem cannot be true for q = 1 as shown by the following example: take
a holomorphic function ' in the open unit ball B(0, 1) in Cn such that it extends to
no open ball of center 0 and radius > 1. For instance '(z) := exp (� z1+1

z1�1 ). Take
R < 1, then ' is C1(B̄(0, R)) hence by a theorem ofWhitney ' extends C1 toCn;
call 'R this extension. Let � 2 C1

c (B(0, 2)) such that � = 1 in the ball B(0, 3/2)
and consider the (0, 1) form ! := @̄(�'R). Then Supp! ⇢ B(0, 2)\B(0, R), !
is @̄ closed and is C1 hence in Lr0,1(B(0, 2)).Moreover B(0, R) is strictly pseudo-
convex hence r 0 regular, but there is no function u such that @̄u = ! and u zero
near the origin because any solution u will be C.R. on @B(0, R) and by Hartog’s
phenomenon will extends holomorphically to B(0, R), hence cannot be identically
null near 0.

Nevertheless in the case q = 1, we have:

Theorem 3.10. Let � be a weakly r 0 regular domain in a Stein manifold X. Then
for any (p, 1) form ! in Lr,c(�), @̄! = 0, with support in �1\C where �1 is a
weak r 0 regular domain in � and C is a domain such that C ⇢ � and C\�1 6= ;;
there is a u 2 Lr,c(�) such that @̄u = ! and with support in �\C.

Proof. There is u 2 Lrp,0(�1) such that @̄u = ! with compact support in �1, by
theorem 3.5. Then @̄u = 0 in C hence u is locally holomorphic in C. Because
C\�1 6= ;, there is an open set in C\�1 ⇢ �\�1 where u is 0 and holomorphic,
hence u is identically 0 in C, C being connected.

Remark 3.11. If there is a u 2 Lr,cp,0(�1) which is 0 in C, we have

8h 2 Lr
0

n�p,n�1(C) :: Supp @̄h ⇢ C, 0 =⌧ u, @̄h �=⌧ !, h �,

hence the necessary condition:

8h 2 Lr
0

n�p,n�1(C) :: Supp @̄h ⇢ C, ⌧ !, h �= 0.

We proved in [5]:

Theorem 3.12. Let f 2 O(D̄n) be a holomorphic function in a neighborhood of
the closed unit polydisc in Cn and set Z := f �1(0). Then for any (0, q) form ! in
Lr (Dn\Z) \Wr

q(�), @̄! = 0, with compact support in Dn\Z , for any k 2 N, we
can find a (0, q � 1)-form � 2 Lr,c(Dn) such that @̄( f k�) = !. Equivalently we
can find a (0, q�1)-form ⌘ = f k� such that ⌘ 2 Lr,c(Dn), ⌘ is 0 on Z up to order
k and @̄⌘ = !.

And by Remark 6.3 of this paper, the solutions are given by a bounded linear oper-
ator.

The following corollary will generalise strongly this result but at the price that
we have not the linearity, nor even the constructivity of the solution.
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Corollary 3.13. Let � be a Stein manifold. Let f be a holomorphic function in
� and set Z := f �1(0). Then for any (p, q) form ! in Lr,c(�\Z), @̄! = 0, if
1  q < n, and ! ? Hp( �\Z) if q = n, there is a (p, q � 1) form u 2 Lr (�\Z)

such that @̄u = ! and u has its support still in �\Z .

Proof. We first show that �\Z is Stein. Because f 6= 0 in �\Z we have that ' :=
1

| f |2
is plurisubharmonic in �\Z and C1(�\Z). Because � is Stein we have, by

Theorem 5.1.6 of Hörmander [10], a strictly plurisubharmonic exhausting function
⇢ in C1(�). Now the function � := '+⇢ is still strictly plurisubharmonic and C1

in �\Z . Now we shall prove:

8↵ 2 R, K↵ := {z 2 �\Z :: � (z) < ↵} is relatively compact in �\Z .

We have ⇢(z) < ↵ � '(z) < ↵ on K↵ because '(z) � 0, hence, because ⇢ is
exhaustive in �, we have that K↵ is contained in a compact set F in �. So on F,
hence on K↵, we have that ⇢(z) � A > �1 because ⇢ is continuous.

We also have '(z) < ↵ � ⇢(z) on K↵ i.e. | f (z)|2 > 1
↵�⇢(z) . So, on the set

K↵, ↵ > ⇢(z) � A > �1, hence | f (z)| >
1

↵ � A
> 0 on K↵, so K↵ is far away

from Z , hence K↵ is relatively compact in �\Z .
So we can apply [10, Theorem 5.2.10, p. 127] to get that �\Z is a Stein

manifold.
Now we are in position to apply Theorem 3.5. Let ! be a (p, q) form in

Lr,c(�\Z), @̄! = 0, if 1  q < n, and ! ? Hp( �\Z) if q = n, Theorem 3.5
gives a (p, q � 1) form u 2 Lr (�\Z) such that @̄u = ! and u has its compact
support in �\Z . The proof is complete.

Remark 3.14. This leaves open the question to have a linear (or a constructive)
solution to this problem even in the case of the polydisc.

A. Appendix

Here we shall prove certainly known results on the duality Lr�Lr 0 for (p, q)-forms
in a complex manifold X. Because I was unable to find precise references for them,
I prove them here.

Recall we have a pointwise scalar product and a pointwise modulus for (p, q)-
forms in X :

(↵,�)dm := ↵ ^ ⇤�; |↵|2 dm := ↵ ^ ⇤↵.

By the Cauchy-Schwarz inequality for scalar products we get:

8x 2 X, |(↵,�)(x)|  |↵(x)| |�(x)| .

This gives Hölder inequalities for (p, q)-forms:
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Lemma A.1. (Hölder inequalities) Let ↵ 2 Lrp,q(�) and � 2 Lr
0

p,q(�). We have

|h↵,�i|  k↵kLr (�)k�kLr 0 (�).

Proof. We start with h↵,�i =
R
� (↵,�)(x)dm(x) hence

|h↵,�i| 
Z

�
|(↵,�)(x)| dm 

Z

�
|↵(x)| |�(x)| dm(x).

By the usual Hölder inequalities for functions we get
Z

�
|↵(x)| |�(x)| dm(x) 

✓Z

�
|↵(x)|r dm

◆1/r✓Z

�
|�(x)|r

0
dm

◆1/r 0

,

which ends the proof of the lemma.

Lemma A.2. Let ↵ 2 Lrp,q(�). Then

k↵kLrp,q (�) = sup
�2Lr 0p,q (�), � 6=0

|h↵,�i|

k�kLr 0 (�)

.

Proof. We choose � := ↵ |↵|r�2 , then:

|�|r
0
= |↵|r

0(r�1) = |↵|r ) k�kr
0

Lr 0 (�)
= k↵krLr (�).

Hence
h↵,�i =

D
↵,↵ |↵|r�2

E
=

Z

�
(↵,↵) |↵|r�2 dm = k↵krLr (�).

On the other hand we have

k�kLr 0 (�) = k↵kr/r
0

Lr (�) = k↵kr�1Lr (�),

so
k↵kLr (�)⇥k�kLr 0 (�) = k↵krLr (�) = h↵,�i.

Hence
k↵kLr (�) =

|h↵,�i|

k�kLr 0 (�)

.

A fortiori for any choice of �:

k↵kLr (�)  sup
�2Lr 0 (�)

|h↵,�i|

k�kLr 0 (�)

.

To prove the other direction, we use the Hölder inequalities, Lemma A.1:

8� 2 Lr
0

p,q(�),
|h↵,�i|

k�kLr 0 (�)

 k↵kLr (�).

The proof is complete.
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Now we are in a position to state:

Lemma A.3. The dual space of the Banach space Lrp,q(�) is Lr
0

n�p,n�q(�).

Proof. Suppose first that u 2 Lr 0

n�p,n�q(�). Then consider:

8↵ 2 Lrp,q(�), L(↵) :=
Z

�
↵ ^ u = h↵, ⇤ui.

This is a linear form on Lrp,q(�) and its norm, by definition, is

kLk = sup
↵2Lr (�)

|h↵, ⇤ui|
k↵kLr (�)

.

By use of Lemma A.2 we get

kLk = k⇤ukLr 0p,q (�) = kukLr 0n�p,n�q (�)
.

So we have
⇣
Lrp,q(�)

⌘⇤
� Lr 0

n�p,n�q(�) with the same norm.
Conversely take a continuous linear form L on Lrp,q(�). We have, again by

definition, that:

kLk = sup
↵2Lr (�)

|L(↵)|

k↵kLr (�)

.

Because Dp,q(�) ⇢ Lrp,q(�), L is a continuous linear form on Dp,q(�), hence,
by definition, L can be represented by a (n � p, n � q)-current u. So we have:

8↵ 2 Dp,q(�), L(↵) :=
Z

�
↵ ^ u = h↵, ⇤ui.

Moreover we have, by Lemma A.2,

kLk = sup
↵2Dp,q (�)

|h↵, ⇤ūi|
k↵kLr (�)

= k⇤ukLr 0 (�)

because Dp,q(�) is dense in Lrp,q(�). So we proved
⇣
Lrp,q(�)

⌘⇤
⇢ Lr

0

n�p,n�q(�)

with the same norm. The proof is complete.
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