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An Andreotti-Grauert theorem with L estimates

ERIC AMAR

Abstract. By a theorem of Andreotti and Grauert if w is a (p, g) current, g < n,
in a Stein manifold, 9 closed and with compact support, then there is a solution
u to du = o still with compact support. The main result of this work is to show
that if moreover w € L" (dm), where m is a suitable “Lebesgue” measure on the
Stein manifold, then we have a solution u with compact support and in L” (dm).
We prove it by estimates in L” spaces with weights.

Mathematics Subject Classification (2010): 32W05 (primary); 32Q28 (sec-
ondary).

1. Introduction

Let w be a d closed (p, ¢) form in C" with compact support K := Supp w and such
that w € L"(C"), the Lebesgue space in C". Setting K inaball B := B(0, R) with
R big enough, we know, by a theorem of Ovrelid [14], that we have a (p, g — 1)
form u € L" (B) such that du = w. On the other hand we also know, at least when
g < n, that there is a current v with compact support such that v = w, by a
theorem of Andreotti-Grauert [6].

So a natural question is: may we have a solution u of du =  with compact
support and in L" (C")?

There is a work by H. Skoda [16] who proved such a result. Let 2 be a strictly
pseudo-convex bounded domain in C" with smooth boundary then in [16, Corol-
laire page 295], H. Skoda proved that if f is a (p, g)-form with measure coef-
ficients, ¢ < n, 9 closed and with compact support in €, then there is a solu-

tion U to the equation U = S such that [|Ullzr @) < C(2,r)|fll;, for any r

such that 1 < r < %ZJ_F% and U has zero boundary values in the sense of Stokes

formula. This means that essentially U has compact support and, because €2 is
bounded, |IfIl; < Il L7 (@)~ So he got the answer for €2 strictly pseudo-convex

2n+2
and 1 <r < 5.

We answered this question by the affirmative for any » € [1, oo] in a joint
work with S. Mongodi [5] linearly by the “method of coronas”. This method asks
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for extra L” conditions on derivatives of coefficients of w, when ¢ < n; we shall
denote the set of w verifying these conditions Wg (2), asin [5].

The aim of this work is to extend this result to Stein manifolds and get rid of the
extra L" conditions Wg (£2). For it we use a completely different approach inspired
by the Serre duality [15]. Because Hahn Banach theorem is used, this method is no
longer constructive as in [5].

The basic notion we shall use here is the following:

Definition 1.1. Let X be a complex manifold equipped with a Borel o -finite mea-
sure dm and 2 a domain in X; let r € [1, oo], we shall say that Q is r regular
if for any p,q € {0,...,n}, g > 1, there is a constant C = C, 4(£2) such that
for any (p, q) form w, 9 closed in €2 and in L" (2, dm) there is a (p, ¢ — 1) form
ue Lr(Q, dm) such that du = w and ||M||Lr(9) < C”a)”L)(Q)

We shall say that Q2 is weakly r regular if for any compact set K € Q2
there are 3 open sets 21, 22, Q3 such that K @ Q3 C Q2 C Q) C Qp := Q2 and 3
constants C1, C», C3 such that:

Vj=0,1,2, ¥p,q € {0, ....n}, ¢ = 1, Yo € L, (Qj,dm), d» =0,

Ju € Lrp’q_l(QH_l,dm), ou=uw

and lullr(@;,,) = Cjttllollir@))-

L.e., we have a 3 steps chain of resolution.

Of course the r regularity implies the weak r regularity, just taking Q2 = Q =
Q3 = Q.

Examples of 2 regular domains are the bounded pseudo-convex domains by
Hormander [10].

Examples of r regular domains in C" are the bounded strictly pseudo-convex
(s.p.c.) domains with smooth boundary by Ovrelid [14]; the polydiscs in C" by
Charpentier [7], finite transverse intersections of strictly pseudo-convex bounded
domains in C" by Menini [13]. A generalisation of the results by Menini was
done in the nice work of Ma and Vassiliadou [12]: they treated also the case of
intersection of g-convex sets.

Examples of r regular domains in a Stein manifold are the strictly pseudo-
convex domains with smooth boundary [3]. (See the previous work for (0, 1) forms
by N. Kerzman [11] and for all (p, g) forms by J-P. Demailly and C. Laurent [8,
Remarque 4, page 596], but here the manifold has to be equipped with a metric with
null curvature. See also [4] for the case of intersection of g-convex sets in a Stein
manifold).

Let X be a Stein manifold and €2 a domain in X, i.e. an open connected set in
X. Let H,(2) be the set of all (p, 0) d closed forms in Q. If p = 0, Ho(Q) =
H(2) is the set of holomorphic functions in . If p > 0, we have, in a chart
(@, U), h € Hp(Q) = h(z) = X 1=, a1 (2)dz’, where dz’ :=dzj, A--- Adzj,
and the functions a;(z) are holomorphic in ¢(U) c C".

We shall denote L, (€2) the set of (p, ¢)-forms in L (€2) with compact sup-
port in 2.
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We also use the notation r’ for the conjugate exponent of r, i.e. % + % =1.
Our main theorem is:

Theorem 1.2. Let Q2 be a weakly r’ regular domain in a Stein manifold X. Then
there is a C > 0 such that for any (p, q) form w in L"°(2), r > 1 with:

e ifl <g<mn, dw =0;
e ifg=n, VYV CQ, SuppoCV, o L H,_,(V);

there is a (p,q — 1) form u in L"°(Q) such that du = w as distributions and
lullpr @) < Cllollr (-

The notion of r regularity gives a good control of the support: if the support of
the data w is contained in Q\C where € is a weakly r’ regular domain and C is a
weakly r regular domain, then the support of the solution u is contained in Q\C’,
where C’ is any relatively compact domain in C, provided that ¢ > 2. One may
observe that Q\C is not Stein in general even if €2 is.

There is also a result of this kind for ¢ = 1, see Section 3.3.

In particular the support of the solution u is contained in the intersection of all
the weakly 7’ regular domains containing the support of w.

The idea is to solve du = w in a space L (2) with a “big weight n outside” of
the support of w; this way we shall have a “small solution u outside” of the support
of w. Then, using a sequence of such weights going to infinity “outside” of the
support of w, we shall have a u zero “outside of the support” of w.

Comparing to my previous work [2] the results here are improved and the
proofs are much simpler by a systematic use of the Hodge * operator.

ACKNOWLEDGEMENTS. [ am indebted to G. Tomassini who started my interest
in this subject on precisely this kind of questions and also to S. Mongodi for a lot
of discussions during the preparation of our joint paper [5].
I want to thank C. Laurent for many instructive discussions on this subject.
Finally T also thank the referee for his/her careful reading of the manuscript
and the incisive questions he/she asked.

2. Duality

We shall study a duality between currents inspired by the Serre duality [15].

Let X be a complex manifold of dimension n. We proceed now exactly as in
Hormander [10, page 119], by introducing a hermitian metric on differential forms
locally equivalent to the usual one on any analytic coordinates system.

We define the “Lebesgue measure” still as in Hormander’s book [10, Section
5.2]: associated to this metric there is a volume measure dm and we take it for
the Lebesgue measure on X. Moreover, because X is a complex manifold, it is
canonically oriented.
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2.1. Weighted L" spaces

Let 2 be a domain in X. We denote also dm the volume form on X. We shall take
the following notation from the book by C. Voisin [17].

To a (p, g)-form o on 2 we associate its Hodge x (n — p, n — g)-form xc.
This gives us a pointwise scalar product and a pointwise modulus:

(a, Bdm :=a AxB; |a>dm :=a A Fa, (2.1)

because @ A *f is a (n, n)-form hence is a function time the volume form dm.
We are also given a scalar product (o, 8) on (p,q)-forms such that f ola 12dm <
oo and the link between these notions is given by [17, Lemme 5.8, page 119]:

(@, B) :/ a A *B. (2.2)
Q

We shall define now L;’ q(Q) to be the set of (p, g)—forms « defined on €2 such
that

laly, @) = fQ @@ dm(z) < oo,
where |« is defined by (2.1).
Lemma 2.1. Letn > 0 be a weight. Ifu is a (p, q)-current defined on (n — p, n —
q)-forms o in L’/(Q, n) and such that
Vo€ Ly, ,, (@, [, )] < Cllal, g,

then ||u||L,I~)‘q(Q’ ) < C.

nlfr

Proof. We use the classical trick: set & := n'/" «a; i := %u then we have
n

(u, *t) =/ uAa=/ A= (i, @)
Q Q
and ”&”L’",(Q) = ”a”{:r’(g’n)- 3 o ~
We notice that ||oc||L,/(Q) = ||>|<oc||L,/(Q) because we have (xa, *@)dm = *a A
sxa but * x @ = (—1)(1’+4)(2”_1’_‘1>&, by [17, Lemma 5.5], hence, because
(@, *&) is positive, (x&, *&) = |&|* .

By use of the duality L;’q(Q) - Lz/_p’n_q(Q), done in Lemma A.3, we get
lil: =  sup o, )
L () = TR
" well) (). a0 Il )

But

~nr N ro—5 _ r 1—r _ r
s, o .—/Q|u| n r/dm—/9|u| ' dm = lully, i
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So we get
ul Lo sup |(u, *a)|
Ly, Q=) — ’
- waerr! @, az0 1902 @)

The proof is complete. ]

It may seem strange that we have such an estimate when the dual of L" /(Q, n)
is L" (€2, ), but the reason is, of course, that in the duality current-form there is no
weights. The point here is that when 7 is small, n' " is big for r > 1.

3. Solution of the 3 equation with compact support

3.1. r regular domains

As we have seen, examples of  regular domains in Stein manifolds are the relatively
compact s.p.c. domains with smooth boundary. To prove that a Stein manifold €2 is
weakly r regular we shall need the following lemma.

Lemma 3.1. Let Q be a Stein manifold. Then it contains an exhaustive sequence
of open relatively compact strictly pseudo-convexs sets { Dy }xen with C*° smooth
boundary.

Proof. For the case of Q2 pseudo-convex in C", the proof was already done ex-
plicitely in the proof of [9, Theorem 2.8.1, page 86].

By Theorem 5.1.6 of Hormander [10] there exists a C* strictly plurisubhar-
monic (s.p.s.h.) exhausting function ¢ for 2. Take K € €2 such that dg # 0 on K.
Because ¢ is s.p.s.h. then K # (). Then we use the [9, Lemma 2.12.2, page 93], to
get: Ve > 0, Jpe s.p.s.h. C®-function on Q such that:

(i) ¢ — pe together with its first and second derivatives is less than € on 2.
(i1) The set Crit(pc¢) := {z € Q :: dp(z) = 0} is discrete in 2. (In a formula, the
notation :: means “such that”.)
(iii) pe =¢@pon K.

As stated in Lemma 2.12.2 if ¢ € C? then p. € C2, but in fact the proof of this
Lemma 2.12.2 gives pc = ¢ + Y xj, Where ) x; is C* (see [9, page 93]). Hence
pe has the same C* regularity than .

Fix € > 0, then the function p := p is also a s.p.s.h. exhausting function for
2, because, from —e < ¢ — pe < €, we get that, for any o € R,

{zeQup)<a} Cl{ze ek <e+a}

and, because ¢ is an exhausting function, this set is relatively compact in 2.
Because the set of critical points of p is discrete in €2, the same way as in the
proof of [9, Theorem 2.8.1, page 86], we can find a sequence ¢, € R, ¢y — 00,
such that Dy := {z € Q :: p(z) < cx} make an exhaustive sequence of open
relatively compact sets in €2, dp 7# 0 on d Dy, hence Dy is strictly pseudo-convex
with C*° smooth boundary, and finally Dy ' Q. The proof is complete. O
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Proposition 3.2. A Stein manifold 2 is weakly r regular.

Proof. By Lemma 3.1 there is an exhaustive sequence of open relatively compact
s.p.c. sets in Q, {Dy}ren With C*° smooth boundary. Let w € L;’q(Q), dw =0,

by [3], we can solve du = w in Dy withu € L;’q_l (Dy) and

lullzrpyy < Cillwlrrpy < Crllollzr @)

Hence if I" is a compact set in €2, there is a Dy such that I' € Dy and we can take
Q1 = Qp = Q3 = Dg. This proves the weak r regularity of 2. O

3.2. The main result

Let X be a Stein manifold and 2 a domain in X. In order to simplify notation, we set
the pairing for @ a (p, g)-formand g a (n—p, n—q)-form: K «,  >:= fQ o A B.
With this notation we also have (o, 8) =< a, %8 > .

Let Q be a weakly r’ regular domain in X. We set K := Suppw € 2 and, by
the definition of the r’ weak regularity, we get 3 open sets such that K € Q3 C
Q C R CQR=Qwith:Vj=0,1,2, Vp,q € {0, ...,n}, g > 1,

Va € L), (R)), 0a =0, Ip e L’ (1), dg =a.

Set the weight n = n. :=1q, (z) + €lg\q, (z) for a fixed € > 0.

Let » € L% (S2). Suppose moreover that w is such that do = 0if 1 < g <n
and for any open V € Q, Suppw € V wehave w L H,_,(V) = Vh €
Hip(V), Kw,h »>=0if g =n.

We shall use the following lemma, with the previous notation:

Lemma 3.3. Let £ be the setof (n—p,n—q + 1) forms o € L" (22, 1), 3 closed
in Q. Let us define L, on € as follows:

Lo(@) = (1) <o, 0>,

where ¢ € L’,(Ql) is such that 5(p = « in Q4. Then the form L, is well defined
and linear.

Proof. Because € > 0 we have o € L’/_(Q, N = o € L’/(Q) and the weak r’
regularity of Q givesa ¢ € L’,(Ql) with dp = o in Q.
Let us see that £, is well defined.

e Suppose first that ¢ < n.
In order for L, to be well defined we need

Yo U € Ly p (@), dp =Y =0 < 9,0 >=<K Y, 0> .
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This is meaningful because w € L"“(2), r > 1, Suppw € 2. Then we have
d(p — ) = 0 in Q, hence, because Q2 is weakly r’ regular, we can solve 9 in

L ()

Ay € Liy_p g1 () 0y = (@ — V).
So K o — ¥, >=<K 5y,a)_ >= (—1)PT1 « y, 9w >= 0 because w is
compactly supported in €2, and 9 closed. Hence £, is well defined in that case.

e Suppose now that g = n.

For ¢, ¥ (n — p, 0) forms in €21, such that d¢ = 0y = a, we need to have
L @, 0 >=L Y, v > .Butthen d(¢p —¢) = 0, whichmeans thath := ¢ — v isa
d closed (n — p, 0) form, hence h € H,,_,(21). Taking V = Q in the hypothesis
o L H,—p(V), weget < h, w >»=0, and L,, is also well defined in that case.

It remains to see that £, is linear.

e Suppose first that g < n.
Leta = a) + o, witha; € L (Q,7), da; =0, j = 1,2; we have & =

5(,0, o] = E_)(pl and ap = 6_)902, with ¢, @1, ¢ in Lr/(Q]) S0, because é(go — Q1 —
@) = 0, we have

o=@ +@2+ay, with ¥ in L™ (),
SO
Lo@) =DM T < p 0= D" <o+ + 0y, 0 >=
= Loa1) + Lolon) + (—DPT <5y, 0>,

but again < 3V, w >= 0, hence L, (a) = Lo (1) + Lo (2).
The same for o = Aa;.

e Suppose now that ¢ = n. We have
Lo@) = D" <p,0>,

where ¢ € L"' (1) is such that d¢ = o in Q. Let &« = a + a2, with a; €
L’/(Q, n), éaj = 0, j=1,2; we have o = Z_)go, o] = 5901 and op = 5<p2, with
@, @1, ¢2in L" () so, because d(¢ — @1 — ¢2) =0, we have ¢ — 91 — @ is a
(n — p, 0) d-closed form, hence:

p=91+@2+h, with h € H,_,(Q1).
So
Lo@) =DM T« p o>=DM" <o+ +h o>
= Lo + Lo(e) + (DI < h o>

Taking V = € in the hypothesis o L Hn_p(V), we get < h, w >= 0, hence
Ly(@) = Ly,(ay) + L, (o). The same for « = Aa. The proof is complete. O
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Remark 34. If Q is Stein, we can take the domain Q) to be s.p.c. with C*
smooth boundary, hence also Stein. So because K := Suppw C Q1 C 2, the
A(£21) convex hull of K, 1391 is still in €1, and any holomorphic function in €2
can be uniformly approximated on K @, by holomorphic functions in £2.

Then for g = n instead of asking w L H,,—,(21) we need justw L H,,—,(2).

Theorem 3.5. Ler Q be a weakly r' regular domain and w be a (p, q) form in
L"¢(Q2), r > 1. Suppose that o is such that:

e ifl <g<mn, 5a)=0;
e ifg=n,VV CQ, SuppoCV, o L H, p(V).

Then there is a C > 0 and a (p,q — 1) form u in L"°() such that du = w as
distributions and |u| ;- (@) < Cllollrr(@)-

Proof. Because 2 is weakly r’ regular there is a Q1 C ©, €1 D Supp w such that
Va € L" (Q), da =0, dp € L™ () = dp =, ”g‘)”Lr Q) = CIH(X”Lr Q)"

There is a €2, such that Suppw € 2, C 21 C 2 with the same properties as 2.
Let us consider the weight n = n. :=1gq, (z) + €lg\g, (z) for a fixed € > 0 and the
form L, defined in Lemma 3.3. By Lemma 3.3 we have that £,, is a linear form on
(n—p,n—q+ 1)-formsa € L’/(Q, 1), 9 closed in .

Ifaisa(n— p,n—q+ 1)-formin L (2, n), then « is in L" () because
€ > 0.

The weak 7’ regularity of €2 gives that there is a ¢ € L (Q) :: d¢ = a which
can be used to define L, ().

We have also that o € Lr/(Q]), da = 0 in 1, hence, still with the weak r’
regularity of 2, we have

I e L (@) =0y = o, Wl q, < Callell,r g,

eForg < n, wehave 3(p—y) = a—a = 0 on £, and, by the weak r’ regularlty of

Q, there is a 23 C €27, such that Suppw C Q3 C Qp,anday € L’ (23), 8)/ =
— ¥ in 3. So we get

L9—V,03>=<K Iy, 0>= (D" <y do>=0,
this is meaningful because Supp w C Q3. Hence L, (@) =< ¢, 0 >=<K ¥, w > .
e Forg = n, westill have d(¢ — ) =a —a =0 on Qp, hence ¢ — ¥ € Hp(2);
this time we choose V = €2, and the assumption gives < ¢ — ¥, w >= 0 hence

again L, (o) =<K ¢, 0 >=<L ¥, 0 > .
In any cases, by Holder inequalities done in Lemma A.1,

Lo@)] < lollr@p ¥l o, < ol @ ¥, q,)-
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But, by the weak r’ regularity of €2, there is a constant C; such that
||¢’||Lr’(92) = CZH(x”Lr’(Ql)-

Of course we have
”O[ ||LV/(QI) < ”a”L’/(Q, )
because n = 1 on 1, hence

ILo(@)] = Collollzr @ llell e . -

So we have that the norm of £, is bounded on the subspace of 3 closed forms in
L"(Q, n) by Cllwl| 1 (@) wWhich is independent of €.

We apply the Hahn-Banach theorem to extend L, with the same norm to all
(n—p,n—q+1) forms in L’/(Q, 1n). As in the Serre Duality Theorem [15, page
20], this is one of the major ingredients in the proof.

This means, by the definition of currents, that there is a (p, ¢ — 1) current u
which represents the extended form L,: L, (a¢) =< a,u > . So if a := d¢ with
@ € C(Q), we get

L) =<a,u>=<dp,u>= (D" <p o>
hence du = w as distributions because ¢ is compactly supported. And we have:

sup <Ko, u>| <Clolg-
ael” (2,n), llal=1

By Lemma 2.1 with the weight n, this implies
Il (gi—ry < Clloll
because | «, u >|=|{«, *u)| and, as already seen,

||u ”Lr(g’nl—r) = ||*M||Lr(9,nl—r) = ”ﬁ”Lr(Q,nl*’)'

In particular |[ull;r(q) < Cllollir(q) because with € < 1 and r > 1, we have
nl—r > 1.

Now for € > 0 with n(2) :=1gq,(2) + ela\@, (2), letu € L (L2, ni_r) be the
previous solution, then

Il oo = | el 0~ dim < € ol
Replacing 7 by its value we get

[ tweram e [ ey e ram < ol
Qi Q\24

= lue|” €' "dm < Cllolr
o\Q
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hence
-1
/ el dm < C" ol o).
Q\Q

Because C and the norm of w are independent of €, we have that |luell;r(q) is
uniformly bounded and r > 1 implies that L;’ -1 (€2) is a dual by Lemma A.3,
hence there is a sub-sequence {u¢, }xen of {uc} which converges weakly, when ¢, —
0,toa(p,g—1)formuin L;’q_l (€2), still with ||u||L:W_1(Q) < Clla)lle'q(Q). Let
us Write uy := g, .

To see that this form u is 0 a.e. on 2\€2| let us write the weak convergence:

Vo e L (). {ug. @) =/

Up N *a — (u,a):/ U A *a.
Q

Q

As usual take o := |u—|ﬂE where E := {|u| > 0} N (2\€21) then we get
u

— . _ . Uy N\ kU
UN*o = lu|dm = lim ug A xa = lim .
Q E k=00 Jo k—oco JE  |ul

Now we have, by Holder inequalities:

/ kN ‘ = ”M ”l E ”]JE”
kilLr r’ .
|u| (E) L" (E)
But

lurllyr gy < /Q\Q lug|” dm < (&) 'Clllpr @ — 0, k — o0
1

and gl ) = (m(E))Y/"" . Hence

. Up N\ *u
fluldm = lim
E k—oo JE  |ul

< lim C"(m(EN'" (&) ol g = 0.
k—o00

SO fE |u| dm = 0 which implies m(E) = 0 because on E, |u| > 0.
Hence we get that the form u is 0 a.e. on Q\ Q.
So we proved

Vo € Dy pu—q(Q), (=P <o, 0 >=< ¢, ue >—><K dp, u >
=< g u>= DT <p 0>

hence du = w in the sense of distributions. The proof is complete. O
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Remark 3.6. As in remark 3.4 if Q is Stein for ¢ = n instead of asking w L
H,(22) we need just w L H ().

Remark 3.7. The condition of orthogonality to (V) in the case g = n is neces-
sary: suppose there is a (p, n — 1) current u such that du = w and u with compact
support in an open set V C 2, thenif & € H,(V), we have

heHp(V), Ko h>=<L0u,h >=(-1)""" Ku,0h >=0,
because, u being compactly supported, there is no boundary term and
L ou, h>= (=" Lu,dh> .

This kind of condition was already seen for extension of CR functions, see [1] and
the references therein.

3.3. Finer control of the support
Here we shall get a better control on the support of a solution.

Theorem 3.8. Let Q be a weakly r' regular domain in a Stein manifold X.
Suppose the (p, q) form w is in L"°(,dm), dw = 0, ifq < n, and o L
H, (V) for any V such that Suppw C V, if ¢ = n, with Suppw C Q\C, where C
is a weakly r regular domain.
_ For any open relatively compact set U in C, there isau € L"(S2, dm) such
that du = w and with support in Q\U, provided that g > 2.

Proof. Let w be a (p, gq) form with compact support in Q\C then there is a v €
L;,q,l(Q), dv = w, with compact support in 2, by theorem 3.5 or, if Q is a
polydisc in C" and if w € Wg (2), by the theorem in [5].

Because w has compact support outside C we have w = 0 in C; this means
that 9v = 0 in C. Because C is weakly r regular and g > 2, we have

3C'CC, C'DU, Fhel), H(C') st. dh=vinC".

Let x be a smooth function such that x = 1 in U and x = O near 9C’; then set
u = v—é(xh).Wehavethatu_: v—xdh—3dx Ah = v—X_v—E_)X Ah hence u is
in L"(£2); moreover u = 0 in U because y = 1 in U hence dx = O there. Finally
ou = 8v—82(xh) = w and we are done. ]

If Q and C are, for instance, pseudo-convex in C” then Q\C is no longer
pseudo-convex in general, so this theorem improves actually the control of the sup-
port.

Remark 3.9. The correcting function 4 is given by kernels in the case of Stein
domains, hence it is linear; if the primitive solution v is also linear in w, then the
solution u is linear too. This is the case in C" with the solution given in [5].
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This theorem cannot be true for ¢ = 1 as shown by the following example: take
a holomorphic function ¢ in the open unit ball B(0, 1) in C" such that it extends to

no open ball of center O and radius > 1. For instance ¢(z) := exp (—gﬂ ). Take

R < 1, then ¢ is C>*(B(0, R)) hence by a theorem of Whitney ¢ extends C* to C";
call g this extension. Let x € CZ°(B(0, 2)) such that x = 1 in the ball B(0, 3/2)
and consider the (0, 1) form @ := E_J(XgoR). Then Suppw C B(0,2)\B(0, R), w
is 0 closed and is C* hence in LS’ 1(B(0, 2)). Moreover B(0, R) is strictly pseudo-

convex hence r’ regular, but there is no function u such that du = w and u zero
near the origin because any solution u# will be C.R. on dB(0, R) and by Hartog’s
phenomenon will extends holomorphically to B(0, R), hence cannot be identically
null near 0.

Nevertheless in the case ¢ = 1, we have:

Theorem 3.10. Let Q2 be a weakly r' regular domain in a Stein manifold X. Then
for any (p, 1) form w in L"°(2), dw = 0, with support in Q\C where Q is a
weak r’ regular domain in Q and C is a domain such that C C Q and C\Q| # 0;
there is au € L"°(Q) such that du = w and with support in Q\C.

Proof. There is u € L;’O(Q 1) such that du =  with compact support in Qp, by

theorem 3.5. Then du = 0 in C hence u is locally holomorphic in C. Because
C\Q21 # {0, there is an open set in C\2; C ©2\2; where u is 0 and holomorphic,
hence u is identically O in C, C being connected. O

Remark 3.11. If thereisau € L;’CO(QI) which is 0 in C, we have

VheLy . (C):Suppdh C C, 0 =<K u,dh >=<L 0. h>,
hence the necessary condition:

Vhel! (C) 2 Suppdh C C, K o, h >»>=0.

n—p,n—
We proved in [5]:

Theorem 3.12. Let f € O(D") be a holomorphic function in a neighborhood of
the closed unit polydisc in C" and set Z := f ~1(0). Then for any (0, q) form w in
L"(DM\Z) N W, (), dw = 0, with compact support in D"\Z, for any k € N, we
can find a (0,q — 1)-form B € L"¢(D") such that 3(f*B) = w. Equivalently we
canfinda (0, q —1)-formn = KB such that n € L™(D"), nis0on Z up to order
k and 0n = w.

And by Remark 6.3 of this paper, the solutions are given by a bounded linear oper-
ator.

The following corollary will generalise strongly this result but at the price that
we have not the linearity, nor even the constructivity of the solution.
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Corollary 3.13. Let Q2 be a Stein manifold. Let f be a holomorphic function in
Q and set Z := f~1(0). Then for any (p, q) form w in L"¢(Q\Z), dw = 0, if
l<qg<n,andw L H,(Q\Z)ifq=n, thereisa (p,q — 1) formu € L' (Q\Z)
such that du = w and u has its support still in Q\Z.

Proof. We first show that Q\ Z is Stein. Because f # 0 in 2\ Z we have that ¢ :=

‘# is plurisubharmonic in \Z and C*®°(Q2\Z). Because 2 is Stein we have, by

Theorem 5.1.6 of Hormander [10], a strictly plurisubharmonic exhausting function
p in C*°(£2). Now the function y := ¢ + p is still strictly plurisubharmonic and C*
in 2\ Z. Now we shall prove:

Va e R, Ky :={z € Q\Z :: y(2) < a} isrelatively compact in Q\Z.

We have p(z) < o — ¢(z) < « on K, because ¢(z) > 0, hence, because p is
exhaustive in €2, we have that K, is contained in a compact set F in 2. So on F,
hence on K, we have that p(z) > A > —o0 because p is continuous.

We also have ¢(z) < o — p(z) on K i.e. |f(z)|2 > a%p(z). So, on the set

Ky, 0 > p(z) > A > —o00, hence |f(2)| > " > 0 on K,, so K, is far away
o —

from Z, hence K, is relatively compact in 2\ Z.
So we can apply [10, Theorem 5.2.10, p. 127] to get that Q\Z is a Stein
manifold.

Now we are in position to apply Theorem 3.5. Let w be a (p, g) form in
L"¢(Q\2), dw =0,if 1 < g <n,and w L H,(Q\Z) if g = n, Theorem 3.5
gives a (p,q — 1) form u € L"(Q\Z) such that du = » and u has its compact
support in 2\ Z. The proof is complete. O

Remark 3.14. This leaves open the question to have a linear (or a constructive)
solution to this problem even in the case of the polydisc.

A. Appendix

Here we shall prove certainly known results on the duality L” — L" ' for (p, q)-forms
in a complex manifold X. Because I was unable to find precise references for them,
I prove them here.
Recall we have a pointwise scalar product and a pointwise modulus for (p, g)-
forms in X:
(o, B)dm = o A xf; |oz|2dm = A X,

By the Cauchy-Schwarz inequality for scalar products we get:

Vx € X, [(a, B)0)] = ()] [B(x)] .

This gives Holder inequalities for (p, g)-forms:
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Lemma A.1. (Holder inequalities) Let o« € L;’q(Q) and B € L;/’q(Q). We have
o, B < Nl Lr @) 1Bl 1 -
Proof. We start with («, 8) = fQ (a0, B)(x)dm(x) hence

ImﬁHSAKmmmmeLWQMMMMMM.

By the usual Holder inequalities for functions we get

1/r ) 1/r
/ la () 1B(x)dm(x) < </ lor ()" dm> </ 1B dm) :
Q Q Q

which ends the proof of the lemma.
Lemma A.2. Leta € L;,’q (2). Then
lellzr @) = sup W-
peLy ). p0 1Pl @)
Proof. We choose 8 := « la|" =2, then:
BI" = lal” "0 = lal” = 181}, g = Il -

Hence

_ =2\ _ -2 _
mm—@ﬂmr)iémmmrdm—wmw.
On the other hand we have

181, gy = ey = el

SO
lerll iy X 1B ) = ol gy = fat, B).
Hence
(e, B)I
lallpr@) = -
”ﬂ ”L’/(Q)
A fortiori for any choice of 8:
e, B
leellr @) < sup

ﬂELr () ||’3||L’ ()
To prove the other direction, we use the Holder inequalities, Lemma A.1:

/ |, B)
Vel (), ———— <l -

”ﬂnLr’(Q)

The proof is complete.
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Now we are in a position to state:

Lemma A.3. The dual space of the Banach space L’p’q () is LZ,_p’n_q (Q).
Proof. Suppose first that u € Lz/_ poi—q (£2). Then consider:

Yo € L’p’q(Q), L) = / o Au = {a,*u).
Q

This is a linear form on L;’ q (£2) and its norm, by definition, is

|{at, )|
1Ll = sup ———.
acr (@) lellr @)

By use of Lemma A.2 we get

LN = 1=ull oy = Mully o)

n_p’n_q(Q) with the same norm.

Conversely take a continuous linear form £ on L;,’ q(Q). We have, again by
definition, that:

* !
So we have (L;’q(9)> DL

|L(e)]
1Ll = sup ———.
aer (@) el (@)

Because D), 4(2) C L;’q(Q), L is a continuous linear form on D), ,(2), hence,
by definition, £ can be represented by a (n — p, n — g)-current u. So we have:

Ya € D) (), L(a) := / o Au = {a,*u).
Q

Moreover we have, by Lemma A .2,

121 = o )]

= [l*ully
weD, @) lallLr (@) L

* /
because D), 4 (L) is dense in L', /(). So we proved (L;,,q(Q)> C Ly pnyq()

with the same norm. The proof is complete. O
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