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An equivalence principle between polynomial and simultaneous
Diophantine approximation

JOHANNES SCHLEISCHITZ

Abstract. Mahler partitioned the real numbers into S, 7 and U-numbers subject
to the growth of the sequence of Diophantine exponents (w;({)),>1 associated
to a real number ¢. Koksma introduced a similar classification that turned out
to be equivalent. We add two more equivalent definitions in terms of classical
exponents of Diophantine approximation. One concerns certain natural assump-
tions on the decay of the sequence (An(¢));>1 related to simultaneous rational

approximation to (¢, £2, ..., ¢"). Thereby we obtain a much clearer picture on
simultaneous approximation to successive powers of a real number in general.
The other variant of Mahler’s classification deals with uniform approximation by
algebraic numbers. We further provide various other applications of our underly-
ing method to exponents of Diophantine approximation and metric theory.

Mathematics Subject Classification (2010): 11J13 (primary); 11J82, 11J83 (sec-
ondary).

1. Classical exponents of Diophantine approximation

In 1932, Mahler [19] introduced his famous partition of transcendental real numbers
into S, T and U-numbers. His classification relies on the growth of the sequence of
Diophantine exponents (w,(¢)),>1 for a given real number ¢. Hereby the exponent
wy(¢) is defined for n > 1 as the supremum of real numbers w such that the
inequality

0<|P@I=<HP), (1.1)

has infinitely many solutions P € Z[T] of degree at most n. Here H(P) denotes
the naive height of P, i.e., the maximum modulus of the coefficients of P. For fixed
¢, these exponents obviously form a non-decreasing sequence

wi(@) =w(f) =---, (1.2)
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In case of ¢ a real algebraic number of degree d > 2, it is known that w,(¢) =
min{d — 1, n}, in particular the sequence is bounded, see [8]. Otherwise, for tran-
scendental real ¢ Dirichlet’s Theorem implies

wp(§) = n, n>1l. (1.3)

Now according to Mahler a transcendental real number ¢ is a U-number if w,(¢) =
oo for some n > 1. If m is the smallest index with this property then ¢ is called
a Up,-number, thus the set of U-numbers is the disjoint union of the sets of U,,-
numbers over m > 1. Further, a number ¢ is called a 7-number if w,({) < oo
for all n > 1, but limsup,,_, ., w,(¢)/n = oo holds. Finally, the remaining real
numbers for which limsup,,_, ., w,(¢)/n < oo are called S-numbers. A famous
result of SprindZuk [37] states that almost all real numbers in the sense of Lebesgue
measure satisfy w,(¢) = n for all n > 1, in particular almost all numbers are
S-numbers in Mahler’s classification. Refinements by of Baker, Schmidt [5] and
Bernik [7] imply that the sets of U-numbers and 7-numbers both have Hausdorff
dimension 0. However, they are well-known to be non-empty, see LeVeque [18]
and Schmidt [32]. To determine exponents w,(¢) for a given ¢ is a typically quite
challenging, and conversely to find a number ¢ with any suitable given sequence of
exponents (w,(¢)),>1 remains a very difficult open problem. In this context, we
recall the partial assertion of the Main problem in [8, Section 3.4, page 61] on the
Jjoint spectrum of (W, (£))n>1-

Problem 1.1. Let (w,),>1 be a non-decreasing sequence of real numbers with
wy > n. Does there exist ¢ such that w, (¢) = w, simultaneously for all n > 1?

Although a positive answer is strongly expected, only special cases have been
verified, see [2,3,5,8,9]. Koksma [16] introduced a similar classification of tran-
scendental real numbers into U*, T* and S*-numbers, based on approximation to
real numbers by algebraic numbers of degree at most n. Let w} () be the supremum
of numbers w* such that

0<lt—al<H@ ™!

has infinitely many solutions in algebraic numbers « of degree at most n, where
H(x) = H(Py) denotes the height of the irreducible minimum polynomial P, of
o over Z[T]. The exponents w;(¢) and w,(¢) are closely connected. It turned out
later that indeed Mahler’s and Koksma’s partitions are identical, that is the sets of
U, T and S-numbers equal the respective sets of U*, T* and S*-numbers. This is
an immediate consequence of the estimates

w,(§) S wp(@) < wy(§) +n—1, nz=l, 14

see [8, Lemma A8]. However, we should point out that there are some remarkable
differences between the respective exponents. It remains a very open problem for-
mulated by Wirsing [39] to decide whether w(¢) > n holds for any #n > 1 and any
transcendental real number ¢, motivated by the analogous fundamental property
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(1.3) for the exponents wj, (¢). We refer to [8] for more results on the classifications
of Mahler and Koksma.

In this paper we establish two further equivalent formulations of Mahler’s and
Koksma’s classifications of real numbers in terms of other well-studied exponents
of Diophantine approximation. First we consider the exponents of simultaneous
rational approximation introduced by Bugeaud and Laurent [10]. They are denoted
An(¢) and defined as the supremum of real numbers A such that the inequality

max |¢'x — yi| <x7*
1<i<n
has infinitely many solutions in integer vectors (x, yi, ..., yn). For fixed irrational
real ¢, they form a non-increasing sequence
M@ =r@) =, (1.5)
and Dirichlet’s Theorem yields
1
An(0) = —, n=l (1.6)
n

Again for ¢ an algebraic numbers of degree d > 2 the sequence is ultimately con-
stant, more precisely 1, (¢) = max{1/(d — 1), 1/n}. Our first equivalence principle
reads as follows.

Theorem 1.2 (Equivalence principle I). Let ¢ be a transcendental real number.
Then ¢ is a U-number if and only if

Tim 2 (¢) > 0. (1.7)

More precisely, if ¢ is a Uy, -number, then A,({) = ﬁ for all sufficiently large
n > no(¢). Moreover, ¢ is a T-number if and only if

lim A,(¢) =0, lim sup ni,(¢) = oo.
n—oo

n—oo

Finally ¢ is an S-number if and only if

limsup ni,(¢) < oo.
n—oo

The theorem shows that Mahler’s classification can be equivalently obtained by
natural assumptions on the decay of the sequence (A,(¢)),>1. We believe that any
no(¢) > m — 1 can appear as minimum value in the claim for U,,-numbers, which
would in particular follow from a positive answer to Problem 1.1. For m = 2 this is
true, see Theorem 4.5 below. The method in [2] and [26, Corollary 1.9] imply that
there is no upper bound uniform in ¢ for the value no(¢). Conversely, for any m > 2
and the U,,,-numbers ¢ constructed in [3] with the property w,,,—1({) < 2m—2 (see
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also [33]) it follows from Corollary 3.2 below that we may take no(¢) = 4m — 5 as
a suitable value. We remark that Khintchine’s famous transference principle [15]

wy () wp(§) —n+1
= Dwy() + 7 = M(f) = -, (1.8)

would only admit the conclusion lim;,_, 5 A,(¢) = 0 upon lim inf,,_, oo w,(¢)/n =
1, a reasonably stronger assumption than ¢ not being a U-number as in Theo-
rem 1.2. See also Remark 3.4 below for implications from previously known re-
sults. As a first corollary we determine all limits of the sequences (A, ({))n>1.

Corollary 1.3. The set S of all values lim,_, 5 1, (£) as ¢ attains any transcen-
dental real number is precisely the countable set S = {0, oo} U {1, %, %, b

Proof. For any S-number and 7-number the limit is 0 by Theorem 1.2. For a Up,-
number the limit is 1/(m — 1) again by Theorem 1.2. The claim follows. O

Remark 1.4. Previous results from [9, 26] could have settled {0, 1,00} € S C
[0, 11U {oc}. Indeed, the inclusion {0, 1, co} € S follows from Sprindzuk [37] and
Bugeaud [9, Theorem 4, Corollary 2], whereas [26, Corollary 1.9] implies (1, oo) N
S=40.

In our second main result, we connect Mahler’s classification with exponents
of uniform approximation to a real number by algebraic numbers of degree bounded
by n. We need to define the uniform versions of the previously introduced exponents
wk(¢). As in [10], let w}(¢) be the supremum of real numbers w* such that the
system

H(a) < X, 0<|¢—a|<H@ 'x " (1.9)

has a real algebraic solution « of degree at most n, for all large X. Davenport and
Schmidt [14] showed that for any transcendental real ¢ the exponent is effectively
bounded by

WHE) <2n—1. (1.10)

For n = 2, the smaller bound (3 + \/5)/ 2 established in [14] was later shown to
be optimal [21] and for n > 2 recently slight improvements of (1.10) were made
in [12] and [30]. Furthermore we want to state the inequalities

w,(¢) = (1.11)

1
(8

THOE 1

T hn(£)”
that link approximation by algebraic numbers with simultaneous approximation es-
tablished in [14] and [25]. We show that Mahler’s and Koksma’s classifications
are obtained as well by imposing natural assumptions on the sequence of uniform
exponents W) (¢).
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Theorem 1.5 (Equivalence principle II). Let ¢ be a transcendental real number.
Then ¢ is a U-number if and only if

lim @%(Z) < oc. (1.12)

n—oo

More precisely, if ¢ is a Uy,-number, then w;(¢) € [m — 1, m] for all sufficiently
large n. Moreover, ¢ is a T-number if and only if

=
lim B5(¢) = o0,  liminf 218 —
n—00 n—00 n

0. (1.13)

Finally ¢ is an S-number if and only if liminf, o w}(¢)/n > 0.

Remark 1.6. Several variants of equivalence principle II can be derived similarly.
For example one can fix the degree of the algebraic numbers in (1.9) equal to n, or
restrict to algebraic integers or algebraic units within the definition of the exponent
w}(¢). See for example [13,14], or [29]. The previously known results

wy,(¢) w:({) > w,(¢) (1.14)

wrg) > ———,
n8) = wp(¢) —n+1 W, (g) —n+1

from [11] would imply lim,_,~ W} (¢) = oo only upon the considerably stronger

condition liminf,,_, oo w,(¢)/n = 1. Similarly, from (1.14) a uniform lower bound

for the quantities w;(¢)/n would require a uniform upper bound on w,({) — n

instead of for w,(¢)/n.

ACKNOWLEDGEMENTS. The author warmly thanks the referee for the careful read-
ing and suggestions to improve the exposition.

2. Effective versions of the equivalence principles

We can provide effective relations between the sequences (w,(¢))>1 and (A,(£))>1-
We recall the notion of the order t(¢) of a T-number [8], defined as

7(¢) = lim sup M.

n—o00 ogn

We have 7(¢) € [1, oo] for any T-number ¢ by (1.3). All T-numbers that have been
constructed so far have order t(¢) > 3, and R. Baker [6] conversely constructed
T -numbers of the given degree 7(¢) € [3, oo]. See also [8, Theorem 7.2], however
there seems to be a problem in the proof as in (7.28) a stronger estimate than the
assumption (7.24) is used. A positive answer to Problem 1.1 would clearly imply
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the existence of 7-numbers of any order 7(¢) € [1, co]. We propose a somehow
dual order o (¢), defined as

log A
n—o00 logn

It follows from (1.5) and (1.6) that o (¢) € [0, 1] for any ¢ which is not a Liouville
number (i.e., a Uj-number). Further define

w(¢) := limsup ,,(()’ A(¢) = limsup ni,(¢), 2.1
and
w(¢) := liminf w"n({), A(§) = liminfni, (¢). (2.2)

The set of S-numbers equals the set of numbers with w(¢) < oo. For S-numbers
and T-numbers of order t(¢) = 1, the quantities w(¢), w(¢) provide a refined
measure. Similarly A(¢), A(¢) refine o(¢). We obtain connections between the
quantities as follows.

Theorem 2.1. For any real transcendental { we have

@O+ 0w (@) + 1)?
) SHOSP@OFL ST MO Sw@) 42 23)
and moreover |
24
o) = (() (2.4)

In the theorem and generally in the sequel we always agree on 1/co0 = 0 and
1/0 = +o00. There is no reason to believe that the bounds in (2.3) are optimal. It is
tempting to conjecture that w(¢) = A(¢) and w(¢) = A(¢) hold for any transcen-
dental real ¢.

Now we provide effective versions of the second equivalence principle. Define
the quantities

w*(¢) = hm 1nf (g“) w*(¢) = limsup —2—~ (C)
wr) = lln_l)})%f (() W (¢) = limsup (C)
and further let .
log wy; (¢)

6(¢) = liminf
n—00 logn

By (1.10) we have 0 < w*(¢) < il (¢) <2and 6(¢) € [0, 1]. An effective version
of the second equivalence principle reads as follows.
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Theorem 2.2. Let ¢ be any transcendental real number. We have

4
m <w*(?) <m1n!w({), _({)} (2.5)
and A
m <w (;) < min {w({) @) } . (2.6)
Moreover ]
. 2.7
0() = e =0() (2.7)

It turns out that for large values of w(¢) and w(¢), the respective lower and upper
bound differ roughly by the same factor 4 as in Theorem 2.1, which is surprising
as the proofs are unrelated. Note that Wirsing’s [39] estimate w(¢) > (w,(¢) +
1)/2 > (n+ 1)/2 and (1.4) imply

1 w(t) ) _

= < max w(g) =1 <w*(¢) <w(),

2 2

and the analogous relation holds between w(¢), w(¢)*. Thus 7(¢) equals the order
7*(¢) obtained by replacing w, ({) by w(¢). Thereby we obtain a variant of (2.7)
in terms of quantities derived from w(¢) and w}(¢) only. Similar to Corollary 1.3,
we can ask for the set % of limits of the sequences (W} (£)),>1 as ¢ attains every
real number. We conjecture that # = {oo} U {1, 2, 3, ...}. However, Theorem 1.5

only admits the inclusion # 2 {1, oo}, and conversely we cannot even exclude
W =1, o].

2.1. Comments on related exponents

We recapitulate that we derived four equivalent definitions of the Mahler classifica-
tion in terms of the sequences (W, ({nz1, (on (C a1, (W) nz1 and (@7 (£))nz 1
respectwely Two additional classical exponents of D10phant1ne approximation
w,(¢) and A, (¢) are have been studied. The uniform exponent w,(¢) will play
a crucial role in the proofs below. It is defined by Bugeaud and Laurent [10] as the
supremum of w € R such that the system

H(P) = X, 0<[P@OI=X"", (2.8)

has a solution P € Z[T] of degree at most n for all large X. In [10] they further
define the exponent A, () as the supremum of A € R such that the system

l<x<X,  max|[{'x—y|<X* (2.9)
1<i<n
has a solution (x, y{, y2, ..., ¥,) € 7"+ for all large values of X. In contrast, for

the ordinary exponent w,(¢) and A, (¢) we require (2.8) and (2.9) respectively to
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have solutions for certain arbitrarily large X only. For any transcendental real ¢ and
n > 1, similarly to (1.2) we see from these definitions that

wi(¢) <wa(f) <---, (2.10)
and by Dirichlet’s Theorem the estimate (1.3) can be refined to
Wy ($) = Wy (¢) = n, n>1. (2.11)

Analogous claims corresponding to (1.5) and (1.6) hold for the exponents /):n ©).
Besides, analogous estimates to (1.4) hold for the uniform exponents w, (¢), W (¢)
as well, and together with (1.10) we may comprise

WE(E) < We(2) <min{2n — 1, W) +n — 1}, (2.12)

It is natural to ask if the sequences (W, (¢)),>1 and @n (£))n>1 can be somehow
included in the picture. However, almost all S-numbers satisfy w,(¢) = n and
A (&) = 1/n for all n > 1 by a famous result of Sprindzuk [37], and any Liouville
number (i.e., a Uj-number) shares the same property by [26, Corollary 5.2]. The
(equivalent) relations w, () > n and A,,(¢) > 1/n appear to be too restrictive to fit
into the scheme of an equivalence principle. In fact no example of such a number
for any n > 2 has yet been found.

3. Preliminary results

Theorem 1.2 will be an immediate consequence of Theorem 3.1, Theorem 3.3 and
Theorem 3.5 formulated below in this section.
3.1. Upper bounds for A,

The upper bounds in Theorem 1.2 and Theorem 2.1 are a consequence of the fol-
lowing very general Theorem 3.1. We agree on wy(¢) = 0.

Theorem 3.1. Letn > 1 be an integer and ¢ a transcendental real number. Assume
wy(Z) < co. Then we have

1 1
Wn(¢) WN—nt1(¢) — wn ()

AN(E) SmaX{ } N = [w,(5)]+n—1. 3.1)

Moreover, in the case of w,({) < 2n + 1 we have

1

Wi (L) WN—nt1(5) — wn-24(8)

AN(C)SmaX{ }, lwp (&) +n <N <3n. (3.2)
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We see that in case of w,(¢) < 2n + 1, for N < 3n the bound (3.2) is possibly
stronger than (3.1) because of the smaller index in the right expression. The case
wp(¢) <n+1land N = 2n in (3.2) will play a crucial role for improving the upper
bounds for the exponents X,,(¢) in Section 4.1. The estimate (3.1) with a suitable
choice of N yields the desired implications for the equivalence principle.

Corollary 3.2. Let n > 1 be an integer and ¢ a transcendental real number and
assume w, (¢) < oo. Then

AN = -, N = [wy ()] +2n — 1. (3.3)

S |-

Thus, if ¢ is not a U-number then limy, . oo Ay (§) = 0, and if ¢ is an S-number then
A(¢) = limsup,,_, . 1A, () < 00, and more precisely

re) <w©) +2, MO <w(o) +2. (3.4)

Proof. In view of (2.11), as soon as N > w,(¢) + 2n — 1 the right hand side in
(3.1) can be estimated above by

max{A] , — ! }fmax{l, : }:l
Wp () WN—p+1(5) — wu(Q) n N—n+1—-wy() n

Hence (3.3) follows. The claim (3.4) follows by reversing the argument. Let € > 0
and N be large. Letn = [N/(w(¢)+2+¢€)]andn’ = [N/(w(¢) +2+¢€)]. Notice
that both n, n” attain all large integers as N runs through the integers > Ny. The
condition in (3.3) is satisfied for arbitrarily large N and the induced n, as well as
for all large N and its induced n’. We obtain Ay (¢) < 1/n = (w(¢) +2)/N + &y
and Ay(¢) < 1/n' = (w(¢) + 2)/N + &y, for the respective integers N, where
en K €. It suffices to let € tend to O. O

The bound 1/x in (3.3) in general cannot be improved for any N, as follows
from Theorem 1.2 by taking ¢ a U, |-number.
3.2. Lower bounds for A,

This section deals with the lower bounds in Theorem 1.2. For this we need that
large values of some w,,(¢) imply large values of certain A,(¢). The first result
treats the extremal case wy, (¢) = oo.

Theorem 3.3. Let m > 2 be an integer and ¢ be a U,,-number. Then

A () = ) n>1. 3.5

m—1
Remark 3.4. Any U,,-number ¢ satisfies w; () < m forall n > 1, see [12, Corol-
lary 2.5]. Combining this with (1.11) would yield A, (¢) > 1/m for any U,,-number
¢ and n > 1, a weaker conclusion than (3.5).
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If we agree on 1/0 = oo then (3.5) is true for n = 1 as well, which has already
been observed in [9]. For n < m, the estimate (3.5) follows from Khintchine’s
inequality (1.8) and (1.5), however for n > m the result is new. A similar method
as in the proof of Theorem 3.3 will lead to the next partial claim of Theorem 1.2.

Theorem 3.5. For any transcendental real { the quantities defined in (2.1), (2.2)

satisfy

@@ +1D> - @) +1)7°
T@) < 1), W < A(0). (3.6)
In particular, any T -number { satisfies
limsupni,(¢) = oo. 3.7

n—o0

We notice that analogous estimates can be obtained in the same manner for simi-
larly defined uniform exponents w(¢), w(¢) and 3:(; ),Z({). These quantities are

effectively bounded by 1 < @W(¢) < W(¢) <2and 1 < A(Z) < A(¢) < 2 as stems
from [14], see also [12,27]. However, it is very doubtful that any such uniform
quantity can exceed 1. The sparse present results on the exponents Wy, A,, allow
no conclusion. Our method further yields the following estimates relating different
exponents of approximation.

Theorem 3.6. For m > 0,n > 1 integers and any real transcendental number ¢

we have
Wy (f) —m

Am—t—n(() = (n — l)wn(é')—f—m—i—n (38)

and .
wp(§) —m

P 2 TN G @) fm

(3.9

In fact Badziahin and Bugeaud [4] were the first to explicitly state (3.8), with a
different proof. The author then discovered that this result and the uniform variant
(3.9) directly follow from the method above as well.

Notice that the special choice m = 0 in (3.8) leads to the left transference
inequality in (1.8). Currently there is no case of m > 1, n, { known where (3.9) is
non-trivial.

4. Other applications to Diophantine exponents

The equivalence principles and their proofs provide much more information on ex-
ponents of Diophantine approximation. To keep the length of this section under
control, we only give a brief summary of the most striking applications and refer
to the arXiv online resource [31] for a more comprehensive exposition, including
detailed proofs.
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4.1. Upper bounds for ,,(¢)

Recall the uniform exponents M (¢) from Section 2.1. The problem on determining
upper bounds for 4, (¢), although not using this notation, dates back to Davenport
and Schmidt [14]. In [14] the upper bound A3, 4+1(¢) < )\2,1 (¢) < - was provided.
These estimates have been refined by Laurent [17] for odd 1ndlces his claim can
be stated A2, (¢) < Ap—1(¢) < % A significantly shorter proof of this bound
using Mahler’s duality, and in fact a slight refinement of the bound for /):2,1 (¢), was
recently given by the author [27, Theorem 2.3]. In this section we further improve
the bound in even dimension. The new key ingredient for the improvement relies
on (3.2).

Theorem 4.1. Let n > 1 be an integer and ¢ a transcendental real number. Then
we have )»2,, (&) < Oy, with ©,, the solution of the polynomial equation

Pu(x) =n”" ™ —(n4+1Dx+1=0

in the interval ( ). In the case of A2,(¢) > ,ll, the stronger estimate ’):2,1 ) <

H_‘H holds.

rEn A

When n = 1 we obtain the shaeroundxz(g“) <O =00+ \/3)/2 = 0.6180...
(see [21]), forn = 2 we obtam ra(g) < ®2 = 0.3706. ... This may be compared

with Roy’s [23] bound for k3 (¢) <0.4245.... Itcanbe shown that ®, = =+ — — +
O (n=3), for B € (0.796, 0.797) the unique positive real root of the power series

i 2)k+1 ) 42+23 4 4+4 5_ 4.1
=— X— x4+ -x"——x L (4
l(k—{—l)‘ 3 3 15 45

In particular ’)\\2,1 (¢) < 1/n. Theorem 4.1 is the only result in Section 4 we prove
here.

Proof. The estimate in [27, Theorem 2.1] with m = n + 1 yields
Tan(@) < {—] L }
2 < max e .
" wn(2) Wpt1(0)

In the case of w,(¢) > n + 1, by (2.11) we infer ’):2,,({) < (n+ 1)~!, which is
smaller than ®,,. In case of w,(¢) < n + 1,if we let N = 2n, we may apply (3.2)
and as a consequence we obtain

I —

1
)\Zn(é‘) = = (é_) =

A conjecture by Schmidt and Summerer [36] proved by Marnat and Moshchevitin
[20] shows that the exponent Ay, (¢) is maximized among all { with a given value

4.2)



1074 JOHANNES SCHLEISCHITZ

of A2,(¢) in a special case called the regular graph. Using the implicit equation es-
tablished in [28, (30)] that relates A2,, A2,(¢) in case of the regular graph, together
with our estimate A2, (¢) < n~! from (4.2), we derive exactly the bound ®, in the
theorem. Reversing the proof we see that A,,(¢) > % implies w,(¢) > n + 1, and

as above we infer the bound /):2,, @) <@m+n7L O

/ 2
Remark 4.2. A weaker upper bound of the form (n + ﬁ) — % —n+ ﬁ can

be derived using Schmidt and Summerer [35, (1.21)] instead of [28, (30)].

There is a well-known link between uniform approximation to successive pow-
ers of ¢ and approximation to ¢ by algebraic numbers/integers, already observed by
Davenport and Schmidt [14, Lemma 1]. Concretely, from Theorem 4.1 we imme-
diately derive

Corollary 4.3. Let n > 1 be an integer and ¢ a transcendental real number. Then,
for any ¢ > 0, there are infinitely many algebraic integers o of degree at most 2n+1
(and algebraic numbers o of degree at most 2n) with the property

¢ —a| < H(e) Y/ On—1He, (4.3)

Since 1/0, = n+ B + % + O(n~2) with B = 0.796... the root of (4.1) as
above, the exponent in (4.3) is of order —n — 1 — 4+ o(1) as n — 0.

We should point out that concerning approximation by algebraic numbers slightly
better lower estimates are known, the estimate w’;n ) = n+3 —o(l) due to
Tsishchanka [38] beats our bound n+ 8+ o0(1). However our new bound concerning
algebraic integers of odd degree in Corollary 4.3 is currently best known, and again
sharp for n = 1 by [22].

4.2. Metric theory

Now we investigate the metric problem of determining the Hausdorff dimensions
ht = dim(H}"), H) :={¢ e R:2,(¢) > A}

posed in [9, Problem 2]. For n € {1, 2} the problem is solved. It was further shown
in [26, Corollary 1.8] that

hﬁz#, n>1, A>1. (44)
(14+Mn

However, for n > 3 and parameters A € [1/n, 1] the problem of determining hﬁ is

open. We only highltight a special consequence of our equivalence principle, see

the online resource [31] for precise estimates, their proofs and further references of

other known results on the metric problem of rational approximation to Veronese

curves.
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Theorem 4.4. Let . > 0. There exist positive constants c1()), ca(A) such that

c1(A) (M)
<hh< :
n n

n>1.

The lower bound with c;(A) = 2/(1 + 1), in agreement with (4 .4), is easily implied
by an estimate in [9], the upper bound is the new substance.

4.3. On U;-numbers

For any Us-number ¢, we can determine the sequence (1,(¢)),>1 depending on

r(2).

Theorem 4.5. Let ¢ be a Uy-number with wi(¢) = w € [1, 00). Then

w+1—n w+ 1

M) = ———, l<n<——r 4.5)
n 2
on(2) =1, nzwgl. (4.6)

In particular if w = 1 then A,,({) = 1 for all n > 1. The sequences of the form

wa El

w—1 w=2 w1 — [ 2]
5 RRRTTTeY

,LLLH>, w>1, (4.7

coincide precisely with the sequences (7, (¢))n>1 induced by the set of Uy-numbers
¢. In particular they all belong to the joint spectrum of (Ay)p>1. Conversely, the
sequences in (4.7) with w € [1, oo] are precisely those sequences in the joint spec-
trum of (Ap)n>1 With 1, (&) > %for alln > 1.

The claims vastly generalize [9, Theorem 4 and Theorem 5]. They are obtained
by a combination of the equivalence principle and results from [26], incorporating
also the existence of Up-numbers with any prescribed value w1 (¢) as as carried out
in [8] (see also [8]). See [31] for previous results and further references.

4.4. An estimate involving various exponents

With the aid of our equivalence principle we can infer a relation between the expo-
nents W, (¢), w(¢) and the exponent wy,4+1(¢).

Theorem 4.6. Let ¢ be a transcendental real number and assume
w, (&) > n, for some n > 2. (4.8)

Then we have N N
D0 — W)
(Wi (¢) —n)?

Wy1(¢) <
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Now assume ¢ satisfies wr(¢) > 2. Then we have

02(¢)% — Wa(¢)? + 3w (¢) — 4 - d
(W2(8) —2)? T (@(¢) —2)%

w3(¢) <

where we may choose d = 14.9444.

Notice that (4.8) is (potentially) a slightly stronger assumption than w,({) > n
(for some n). Upon some mild additional assumption we may infer the first claim
with w(¢) altered to w,(¢) consisitenly. Again we refer to [31] for details and
all proofs. See also Adamczewski, Bugeaud [1] and the recent paper by Roy [24]
for upper bounds on the sequence of exponents wy,(¢) for ¢ as in Theorem 4.6
and numbers with similar properties. Our bound for m = n + 1 in Theorem 4.6 is
stronger, however the method does not extend to larger m. Again Theorem 3.1 can
be readily applied to infer bounds on the exponents A, (¢) in these instances, we
refer the reader to [31, Section 4.3] for details.

5. Proofs

5.1. Deduction of the equivalence principles

First we deduce Theorem 1.2 from the partial results in Section 3.

Proof of Theorem 1.2. Theorem 3.3 shows that any U,,-number satisfies

lim A,(¢) > : > 0.

n— 00 m—1

On the other hand in Corollary 3.2 we noticed that otherwise if ¢ is not a U-number,
then lim;,— oo A, (¢) = 0. Moreover, when ¢ is a U,,-number, then w,,—1({) < o0
and again Corollary 3.2 yields that we actually have A, (¢) < ﬁ for large n, so
by the above observation there must be equality. In Theorem 3.5 we proved that for
T -numbers we have limsup,,_, ., 1), (¢) = 00, and lim,,—, o A, (¢) = 0 was shown
above. Finally the claim for S-numbers was noticed in Corollary 3.2 as well. [

We now settle the second equivalence principle Theorem 1.5 and Theorem 2.2.
Lower bounds for ﬁ*(g) are based on Theorem 1.2 and the relations (1.11). For up-
per bounds we employ a recent result from [12]. It was shown in [12, Theorem 2.4]
that for m, n positive integers

wi(0)
wm(é‘) ’

W,(§) <m+(n—1) (.1

upon the condition w, () > m +n — 1.
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Proof of Theorem 1.5. By (1.11) and Theorem 1.2, for (1.12) to hold, { must be a
U-number. The refined result on U,,-numbers in Theorem 1.2 moreover implies
that for ¢ a Uy, -number we have w}({) > m — 1 for large n. On the other hand, it
was shown in [12, Corollary 2.5] that for any U,,-number we have @: (¢) < m for
all n > 1. The above implies the left property of (1.13) for S and 7-numbers. We
next prove the right claim in (1.13) for 7T-numbers. For a T-number ¢ and every
integer N we have w,,(¢) > N 2m for some m. If we choose n = Nm, then the
condition wy,(¢) > m +n — 1 of (5.1) is satisfied when N > 2. From (2.12) and
(5.1) we infer

2 2
(mN) <3m
N2m
Hence indeed w;;(¢)/n = w} y(¢)/(mN) < 3/N which tends to 0 as N — 0.

Finally, for S-numbers we derive w}({) > A,(¢ )y~ > ¢n for fixed ¢ > 0 from
(1.11) and Theorem 1.2, the converse follows from the above considerations. [

Wy (&) <m+

We remark that we can obtain the variants of Theorem 1.5 mentioned in Re-
mark 1.6 by considering the corresponding variants of (1.11). Again relation (1.11)
and a refined treatment of the argument for 7-numbers leads to a proof of Theo-
rem 2.2.

Proof of Theorem 2.2. The respective left inequalities in (2.5) and (2.6) and 6(¢) >
()~ = o(¢) follow immediately from Theorem 2.1 and (1.11). Concerning
the respective right inequalities in (2.5) and (2.6), the estimates ol @) <wk) <
w(¢) and w*(¢) < wW(¢) < w(¢) are an easy consequence of (2.11) and (2.12).
For the remaining bounds, we refine the argument for 7-numbers in the proof of
Theorem 1.5. We may assume w(¢) > 2 and w(¢) > 2 respectively, otherwise the
left bounds are smaller and the claim is obvious. So assume o > 2 is a fixed real
number and m is a large integer such that w,({)/m > «. If n is another integer and
we define B = n/m, then in the case of B < « — 1 the condition w,,({) > m+n—1
of (5.1) is satisfied. Its application and rearrangements yield

RO«

n T (@=-pp

Letn = |[ma/2]. Then 8 = n/m = a/2 + O(1/m). Since for ¢ > 2 we have
a/2 < a — 1, the above condition 8 < o — 1 is satisfied for large m. By inserting
we obtain the upper bound 4/« + O(1/m) for w}(¢)/n. By definition we may
choose « arbitrarily close to w(¢) for certain arbitrarily large m, and (2.6) follows.
Similarly, any given large n can be written n = |ma/2] + s with integers m and
0 <s < Ja/2], where we may choose « = w(¢) — € for n > ng(e). Since s
is fixed the final estimate in (2.5) follows very similarly as well. Finally we show
0(¢) < t(¢)~ " tosettle (2.7). Let € > 0 and assume w,, (¢) > m? for some y > 1.
Letn = [m”~¢] and observe that again the condition w, ({) > m+n—1 is satisfied
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for large m. Thus by (5.1), again for large enough m > mq(e), we infer

y+1
DEC) < m <2m < 2V,
" ~TmrT ¥ 1

Hence taking logarithms to base n gives 68(¢) < 7(¢)~" as € can be chosen arbi-
trarily small, y is arbitrarily close to t(¢) for certain arbitrarily large m, and the
induced n obviously tend to infinity. O

We place the proof of Theorem 2.1 to the end of the paper as it requires some
partial results of the proof of Theorem 3.5.

5.2. Proofs of the upper bounds

Next we show Theorem 3.1. The proof is similar to [27, Theorem 2.1]. We
need to define successive minima exponents that refine the classical exponents
Wy (¢), Wa(2) and 1, (2), }\(f) For1 < j <n+1,let A, ;j(¢) and 4, () be
the supremum of A for which (2.9) has j linearly independent integer vector solu-
tions for arbitrarily large X and all large X, respectively. Similarly, let w,_ ;(¢) and
Wy, j(¢) be the supremum of w for which (2.8) has j linearly independent poly-
nomial solutions for arbitrarily large and all large X, respectively. Obviously, for
Jj = 1 we recover the corresponding classical exponents, and the relations

M1 (€)= hn2(@) = = g1 0y An1(€) = Ag2(2) = -+ = Appr1 (0),
wn,l(é‘) = wn,2(§) = 2 wn,n+l(§)v {U\n,l(g) = {U\n,Z(g) =2 {U\n,n+l(;),

hold. As noticed in [25], Mahler’s Theorem on polar convex bodies implies

—~ 1
R j () = . (52)

wn,n+2—j(§)

An,j(8) =

Wy, 42— ](é')

Our proof for the upper bounds are based on a lower estimate for the uniform last
successive minimum exponent of the dual problem wy y41(¢), for suitable N,
which by (5.2) indeed tranlates into upper bounds for Ax(¢). For the proof we
further recall Gelfond’s Lemma, asserting that

H(P)H(Q) <n H(PQ) <, H(P)H(Q) (5.3)

holds for any polynomials P, Q each of degree at most n. Here and elsewhere the
notation a <. b and a >>_ b respectively mean that a < Cb and a > Cb for some
C that depends only on the subscript parameters.

Proof of Theorem 3.1. Let n, ¢ be as in the theorem and € > 0. By definition of
W, (¢), for any large X > X (¢) there exists an integer polynomial Px = Px(T) of
degree at most n such that

H(Px) <X,  |Px(¢)] < X 0n(OFe,
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Now choose an integer k& > w,(¢). The definition of wy(¢) similarly yields an
integer polynomial Qx = Qx(T) of degree at most k such that

H(Qx) <X,  |0x(¢)] < X W©Fe (5.4)

Write OQx = RxSx, where Ry = Ryx(T) consists of the factors dividing Px as
well, and Sy = Sx(T) is coprime to Px. Let € > 0. We claim that, unless Ry is of
small height H(Ryx) < 1, we have

IRx($)] = H(Ryx)™"n©7€ sy o X0 (O=€ (5.5)
if X was chosen sufficiently large. First notice that the corresponding estimate

|Ux(£)| > H(Uyx) W=, (5.6)

applies to any irreducible factor Uy = Ux(T) of Ry. Indeed, such Uy has degree
at most n as it also divides Py, and by definition of w,({) we obtain (5.6). From
(5.3) we see that this property is essentially (up to a factor depending on k only)
preserved when taking arbitrary products, which indeed yields (5.5). In case of
Rx of small height H(Rx) < 1, we can even estimate |Rx({)| >, 1 by the
finiteness and since ¢ is transcendental, which is stronger than (5.5) for X large
enough. From (5.4) and (5.5) we deduce

[Ox(5)] — W () Fwn () +2€
S — X k n .
|Sx ()] Ry )| <

Moreover, since Sy divides Qx, Gelfond’s estimate (5.3) implies H(Sx) <k
H(Qx) < X. Hence we have

max{H (Px), H(Sx)} <x X,  max{|Px(0)|, |Sx(¢)|} < X Ont2¢ (5.7)

with

Ok,n = min{w, (£), Wi (¢) — wa(Z)}.
Let dxy = d < n be the degree of Px and ex = e < k be the degree of Sx. Then,
since Px and Qx are coprime, the set of polynomials

Py ={Px,TPx, ..., Te_lpx, Sx,TSx, ..., Td_ISX}

is linearly independent and spans the space of polynomials of degree at most d +
e — 1 <k +n — 1. In case of strict inequalityd + e — 1 < k 4+ n — 1 for some X,
we consider

Rx = Px U{T4Sx, TSy, ..., TF""17¢54)

instead of Yy (see also the proof of Proposition 5.1 below). Clearly Z is linearly
independent as well, and spans the space of polynomial of degree at most N :=
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k +n — 1. In any case, in view of (5.7) and since X was arbitrary and we may
choose € arbitrarily small, this means

WN,N+1(8) = Okp = min{w, (£), Wn—p4+1(5) — wn(0)}.

Since 6 , > 0 by construction, Mahler’s relation (5.2) with j = 1 further implies
AN() < 1/6kn. We may choose any integer k > w,(¢), and the choice k =
[wp(¢)] yields N =n+k—1=[w,()] +n — 1. The claim (3.1) follows.

Now we prove (3.2). We now choose an integer k with strict inequality & >
wy (¢), and again obtain (5.4) for some Q x of degree at most k for any X > Xg(e€).
We proceed as above splitting Qx = RxSx. By a very similar argument as above,
from (5.3) we derive that Q x cannot split solely in irreducible polynomials of de-
gree at most n. Thus it must have an irreducible factor of degree at least n + 1,
which must divide Sx. Hence Ry = Qx/Sx has degree at most k — (n + 1). In
particular if w,(¢) < n+1,fork = n+ 1 we infer Sy = Qx and Ry = 1 for all
large X . From the definition of w;_,_1(¢), for sufficiently large H(Ry) we derive

|Rx(0)| = H(Ry) Wkn=10)7€ s o X~ Wkt (7€, (5.8)

In case of small heights of Ry we use the argument from the proof of (3.1) again.
We infer (5.7) very similarly as above with 6y , replaced by the new expression

Okn = min{, (), Wi (¢) — w—n—1(0)}.

Let N = k + n — 1 again, proceeding as above yields

DN N+1(2) = O = Min{@, (), Wy—nt1(¢) — w24 (L)}

We may start with any integer k& > w,(¢), or equivalently £k > |w,(¢)] + 1,
which leads to N > [w, ()] + n. The claim (3.2) follows from (5.2) again as
soon as 6, > 0, which we can guarantee for N < 3n by construction as then
WN—2,(¢) < wy(¢) whereas Wy_p41(8) = N —n+ 1= [w,(Q)] + 1 > w,(2).
The condition w,(¢) < 2n + 1 is only required for the set of values N in (3.2) to
be non-empty. U

5.3. Parametric geometry of numbers

The proofs of Section 3.2 can be derived in a convenient, and in fact surprisingly
easy way, utilizing the parametric geometry of numbers introduced by Schmidt and
Summerer [34]. We recall the fundamental concepts, in a slightly modified form
to fit our purposes. Let ¢ € R be given and Q > 1 a parameter. For n > 1 and
1 < j <n+1,define ¥, ;(Q) as the minimum of n € R such that

1 i -1
Xl Q" max [¢ix —y; < Q0
<n

=J
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has j linearly independent solution vectors (x, y1, ..., yn) € 7"+ The func-
tions v, ;(Q) can be equivalently defined via a lattice point problem, see [34]. As
pointed out in [34], they have the properties

1
—1 < 1/fn,l(Q) =< 1r/fn,2(Q) <---=< 1;ﬁrz,rz-‘rl(Q) =< ;, Q > 1. (59)
Let .
v, = 1iQrgigof1/fn,_,-(Q), VU= 1131 sup ¥, (Q). (5.10)

These values all belong to the interval [—1, 1/n] by (5.9). From Dirichlet’s Theo-
rem it follows that v, 1(Q) < 0 for all Q > 1 and hence w < 0. Similarly, for

1 < j < n+ 1 define the functions 1//* (Q) as the mlmmum of n such that the
system

H(P) < Qwt1, P < Q' (5.11)

has j linearly independent integer polynomial solutions P of degree at most 7.
Again put

¥, ; = liminfy; ;(Q). ¥, ;= limsupyr ;(Q). (5.12)
Q—00
‘We have

1
- = YUp1(Q) <Yy (Q) < -+ < ¥y, (@) < 1, 0>1
As pointed out in [34] Mahler’s relations (5.2) are essentially equivalent to

— — .
K"J =V 2> V= _ﬂz’ﬁz_j, I<j=<n+1.  (513)

Schmidt and Summerer [35, (1.11)] further established the inequalities

W L= 20, Yt 1=y, >

for 1 < j <n+ 1. The dual inequalities
JUE AL = DU 20, L= YL 20, (54

can be obtained very similarly. Moreover, by [34, Theorem 1.4] the quantities in
(5.10) and (5.12) are connected to the exponents A, ;, A, ;j and wy j, W, j defined
in Section 5.2 via the identities

~ _ +1
U OV A+Y, ) =42 O+, =", 1= j<n+1, (5.15)

and
+1
(@) (47 ) =00 (405, ) =" 1= j=ntl. (5.16)

In fact it was only observed for j = 1 in [34], but as remarked in [25] it is true as
well for 2 < j < n + 1 for the same reason.
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5.4. Proofs of the lower bounds

The following easy observation will play a crucial role in the proofs of lower
bounds.

Proposition 5.1. Let m, n be positive integers and ¢ be a real transcendental num-
ber. Then

wm+n,m+i(§) = wn,i(§)7 wm-i—n,m-i—i({) > wn,i(g), 1<i<n+1. (5.17)

Proof. By the definition of wj ;(¢), for certain arbitrarily large X there exist lin-
early independent integer polynomials Pi, ..., P; of degree at most n with the
properties

max H(Pj) < X, max |P;(¢)] = H(Pj)~wmi©te,
=j=t

1<j=i

Without loss of generality assume the degree of P is maximal among the P;. For
any m > 1 consider the set of polynomials

Puni=PmniX)={P1(T), TPL(T), T*P\(T), ..., T" Pi(T), P2(T), ..., P;(T)}

It is not hard to see that Py, , ; consists of m + i polynomials of degree at most
n 4+ m, which are linearly independent as well, and satisfies

max H(P) < X, max |P(¢)| < max{l, [¢|"}H (P) Wni®©)Fe,

Pepm,n,i Pepm.n.i

The left inequalities of (5.17) follow. The analogous right estimates are shown
similarly using the definition of w, ; (¢) and considering any large X. O

In fact we only need the case i = 1. First we deduce Theorem 3.3 from the
proposition.

Proof of Theorem 3.3. By (1.5) it suffices to prove (3.5) forn > m. Soletn = m+k
with £ > 0. From w,,({) = oo and Proposition 5.1 we derive w, x4+1() = oo.
Together with (5.16) we infer

* — e
ﬂn,kﬂ -

Hence (5.14) with j = k + 1 and (5.13) yield

k+1

_ k+1
= — * < * = -
Vot = 7Vt S G T ) Lkt = T e mym

(5.18)

Inserting in (5.15) yields A,,(¢) > 1/(m — 1) as asserted. ]
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Theorem 3.5 follows similarly as Theorem 3.3, with slightly more computation
involved.

Proof of Theorem 3.5. Let m, n be positive integers and C > 1 a real number to be
chosen later and assume we have w; (¢) > Cn. Proposition 5.1 yields

wm+n,m+l(§) >nC.
With (5.16) we obtain

v - m+n+1 I m+n1-0)
=mtnm+l = (m +n)(1+nC) m+n (m+n)(l+nC)

Hence (5.14) with j = m + 1, where n corresponds to the present m + n, and (5.13)
imply
m+1

£m+n,l - wm—}-n,m-ﬁ-n-‘rl = n —mtnm+l |
_m+1  m+n(l—-C) (5-19)
T n (m+n)1+nC)’
Application of (5.15) yields
m-+n—+1 1
)»m-‘rn(é-) = m+n . 1 n mtl mtn(1—C) 1
n (m+n)(1+nC) (5.20)
Cn—m

T mtn(l+Ch-1)

Let € > 0 and m = [Rn] with the optimal parameter R = (C — 1)/2. A short
computation shows

C+1\2 C+1)?
;) " es XD 5 521

(m+n)}\m+n(§)2( R+1+(n—l)C_ 4C

for n > no(C, €). We infer the left inequality in (3.6) as € is arbitrarily small and
as we may choose C arbitrarily close to w(¢) for certain arbitrarily large n. For
T-numbers we may choose arbitrarily large C for certain large n, and the claim
(3.7) follows. For the right inequality in (3.6), we have to be a bit more careful. Let
C = w() — ¢ for small ¢ > 0, so that w, (¢) > Cn for all large n. For given large
N,we may write N = m +n withm = Rn + s with R = (C — 1)/2 for an integer
n and some 0 < s < R, where n tends to infinity as N does (unless if R = 0 or
equivalently C = 1, but then the claim (5.21) is clear by (1.6) anyway). Since s <
(w(¢) — 1)/2 is effectively bounded by O (1) and we observed n — oo, estimate
(5.21) can still be deduced from (5.20) by choosing ¢ small enough compared to €.
The claim follows as N was arbitrary and we let € tend to 0. O

We can readily extract Theorem 3.6 from the proof above.
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Proof of Theorem 3.6. The inequality (3.8) follows from (5.20), upon identifying
wy (¢) with Cn, after a short calculation. With a very similar proof strategy, using
the uniform estimates from Proposition 5.1, interchanging overline and underline in
Y-quantities throughout, and again in view of (5.14), we can derive (3.9). We skip
the details. O

Finally we put the results together to prove Theorem 2.1.

Proof of Theorem 2.1. The inequalities in (2.3) have already been established in
Theorem 3.5 and Corollary 3.2. The inequality o (¢) < 1/7(¢) follows easily from
(3.3). The reverse inequality o (¢) > 1/7(¢) follows from (5.20) by taking m =
n™©)=% and letting § tend to 0, observing that log C/logn is arbitrarily close to
7(¢) — 1 for certain large n. ]
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