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Uniqueness for unbounded solutions to stationary viscous
Hamilton-Jacobi equations

GUY BARLES AND ALESSIO PORRETTA

Abstract. We consider a class of stationary viscous Hamilton-Jacobi equations
as {

λ u − div(A(x)∇u) = H(x, ∇u) in �,

u = 0 on ∂�

where λ ≥ 0, A(x) is a bounded and uniformly elliptic matrix and H(x, ξ) is
convex in ξ and grows at most like |ξ |q + f (x), with 1 < q < 2 and f ∈
L N/q ′

(�). Under such growth conditions solutions are in general unbounded,
and there is not uniqueness of usual weak solutions. We prove that uniqueness
holds in the restricted class of solutions satisfying a suitable energy-type estimate,
i.e. (1 + |u|)q̄−1 u ∈ H1

0 (�), for a certain (optimal) exponent q̄. This completes
the recent results in [15], where the existence of at least one solution in this class
has been proved.

Mathematics Subject Classification (2000): 35J60 (primary); 35R05, 35Dxx
(secondary).

1. Introduction

In this paper we consider a class of elliptic equations in a bounded domain � ⊂ R
N ,

N > 2 {
λu − div(A(x)∇u) = H(x, ∇u) in �,

u = 0 on ∂�
(1.1)

where the function H(x, ξ) is convex and superlinear with respect to ξ .
Equations of this type are sometimes referred to as stationary viscous Hamilton-

Jacobi equations and appear in connection to stochastic optimal control problems.
In that context, the convexity of H is a natural assumption. The model example
which we are going to treat is the following{

λu − div(A(x)∇u) = γ |∇u|q + f (x) in �,

u = 0 on ∂�
(1.2)
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where q > 1, λ ≥ 0 and A(x) = (ai, j (x)) is a matrix of L∞(�) functions ai, j (x)

satisfying uniform ellipticity and boundedness conditions

α|ξ |2 ≤ A(x)ξ · ξ ≤ β|ξ |2 ∀ξ ∈ RN , a.e. x ∈ � . (1.3)

Without loss of generality, we can take γ > 0. We draw our attention to the “sub-
critical” case, namely q < 2, and, more precisely, to the question of uniqueness of
unbounded solutions.

Let us first recall that some regularity condition is needed on f in order that
problem (1.2) admits a solution. In the class of Lebesgue spaces, this condition
amounts to ask that

f ∈ L
N
q′ (�), (1.4)

where q ′ is the conjugate exponent of q, i.e. q ′ = q

q − 1
. When q < 2, (1.4) implies

that f ∈ Lm(�) with m < N
2 , hence solutions are expected to be unbounded.

Moreover since, by Sobolev embedding theorem, one has

L
N
q′ (�) ⊂ H−1(�) ⇐⇒ q ≥ 1 + 2

N
, (1.5)

the value q = 1 + 2
N is a critical one. Indeed, the solutions belong to H1

0 (�) only if
q ≥ 1 + 2

N , when q is below this value solutions are not only unbounded but have
not even finite energy and should be defined in a suitable generalized sense.

The fact that (1.4) is a necessary condition for having solutions can be easily
justified by a heuristic argument: if A(x) = I , i.e. in case of the Laplace operator,
the Calderon-Zygmund regularity implies that

−�u ∈ Lm(�) �⇒ u ∈ W 2,m(�) �⇒ |∇u| ∈ Lm∗
(�) ,

where m∗ is associated to m through the Sobolev embedding, i.e., for N > m,

m∗ = Nm

N − m
. In order to be consistent with (1.2), this means that f ∈ Lm(�) and

|∇u| ∈ Lqm(�) so that it should be qm = m∗, i.e. m = N
q ′ . We refer the reader

to [1, 16] for rigorous and sharper necessary conditions on f in order to have weak
solutions. It is important to recall that if λ = 0 the data f , γ , α must also satisfy a
size condition in order that a solution exists.

Pioneering results for such kind of equations were given by P.L. Lions ([17,
18]), mainly in case of Lipschitz solutions and including q > 2. Existence results
for the case q = 2 can be found in several works, among which we recall the series
of papers by L. Boccardo, F. Murat, J.P. Puel (see e.g. [8, 9]) and more recently,

assuming f in L
N
2 (�), in [13, 10].
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Under assumption (1.4) with 1 < q < 2, the existence of a solution for prob-
lems as (1.2) has been recently proved in [15] (see also [14]) if either λ > 0 or
λ = 0 and a size condition is satisfied:

γ
1

q−1 ‖ f ‖
L

N
q′

(�)

< αq ′
C∗ , (1.6)

where C∗ only depends on q and N .
In this paper we deal with the problem of uniqueness of solutions. Up to now,

uniqueness results for problems like (1.2) have been proved in the Lipschitz case
([17]) and in [2, 3] if either solutions are bounded or q = 2. Note that these two
cases share a common feature, which is that f is required to be in Lm(�), m ≥ N

2 :
for less summable f as we consider, the approach of these previous papers seems
not to work. Some results when q ≤ 1 + 2

N can be found in [4, 5].
When dealing with the question of uniqueness, one has to consider the follow-

ing well-known counterexample (see also [17, 1]) for q > N
N−1

u(x) = Cα (|x |α − 1)


α = −2 − q

q − 1
, Cα = (N + α − 2)

1
q−1

|α|


 solves

{
−�u = |∇u|q in D′(B1(0)),

u ∈ W 1,q
0 (B1(0)) .

(1.7)

This shows that uniqueness does not hold in the class of weak solutions u in
W 1,q

0 (�), and, if q > 1 + 2
N , not even in H1

0 (�) (one can check that u ∈ H1
0 (�)

in this case). It is then natural to look for a suitable class of solutions in which
problem (1.2) is well-posed. A linearization argument would suggest that there is
uniqueness in the class

u sol. of (1.2): |∇u| ∈ L N (q−1)(�). (1.8)

On the other hand, if q > 1 + 2
N (which gives N (q − 1) > 2), the existence of such

kind of solutions can not be obtained unless the Calderon-Zygmund regularity the-
orem applies; thus, in order to deal with general (bounded measurable) coefficients
ai, j , this approach is not reasonable.

Our main purpose here is to prove the uniqueness of solutions of (1.2) in a
regularity class which is consistent with the existence results available from [15].
In this latter paper it has been proved that a natural class of solutions for which both
a priori estimates and existence hold is given through the extra energy condition

u sol. of (1.2): (1 + |u|)q̄−1 u ∈ H1
0 (�), with q̄ = (N−2)(q−1)

2(2−q)
. (1.9)

We are going to prove that this regularity is precisely what is needed to select a
unique solution, so that problem (1.2) is actually well-posed in this class.

Our main result concerns the case q ≥ 1 + 2
N , which corresponds to H1

0 (�)

solutions (see (1.5)).
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Theorem 1.1. Let 1 + 2
N ≤ q < 2. Assume (1.3), (1.4) and that

(i) either λ > 0
(ii) or λ = 0 and (1.6) is satisfied.

Then problem (1.2) has at most one (distributional) solution u such that (1 +
|u|)q̄−1u ∈ H1

0 (�), with q̄ = (N−2)(q−1)
2(2−q)

.

Note that the function u in the counterexample (1.7) satisfies (1 + |u|)r−1 u ∈
H1

0 (�) for any r < q̄ but not for r = q̄, which proves the optimality of our result.
Observe also that q̄ tends to infinity as q → 2, which is consistent with the case

f ∈ L
N
2 (�), for which existence and uniqueness have been proved (see [13, 3]

respectively) in the class of solutions u such that exp(µ u) − 1 ∈ H1
0 (�) for a

suitable constant µ.
We leave to Section 2 the proof of Theorem 1.1, actually in a generalized ver-

sion which includes problem (1.1) where H is convex and satisfies similar growth
conditions. Some extensions to Neumann boundary conditions as well as to the
case of unbounded domains is also discussed.

In Section 3 we deal with the case N
N−1 < q < 1 + 2

N , which corresponds

to f ∈ Lm(�) with 1 < m < 2N
N+2 . A similar result as Theorem 1.1 is proved,

but since, in this case, solutions do not belong to H1
0 (�), we use a slightly stronger

formulation than the distributional one, namely uniqueness is proved for so-called
renormalized solutions (still in the class (1.9)). This notion (see Definition 3.1), first
introduced in [12] for transport equations, is now currently used in several different
contexts when dealing with solutions of infinite energy.

Still in Section 3, we prove in fact a more general uniqueness result when q
is below the critical value 1 + 2

N . Indeed, we will see that if q ≤ 1 + 2
N then the

regularity (1.9) implies (1.8). This fact allows to prove uniqueness through a sim-
pler linearization principle, which does not need any convexity argument and which
can be applied to more general situations like, for instance, nonlinear operators (see
Theorem 3.4). Note that the limiting value q = 1 + 2

N is also admitted here; actu-
ally, (1.9) and (1.8) coincide in that case with u ∈ H1

0 (�). On the other hand, as
mentioned before, this argument was not possible for q > 1 + 2

N since (1.8) will no
more be true in general.

Finally, some further remarks will be discussed at the end of Section 3, includ-
ing the case q < N

N−1 , where uniqueness holds simply in W 1,q
0 (�).

2. The case q ≥ 1 + 2
N : finite energy solutions

We consider a natural generalization of (1.2), namely the following equation{
λu − div(A(x)∇u) = H(x, ∇u) in �,

u = 0 on ∂� .
(2.1)
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We still assume that λ ≥ 0, that A(x) satisfies (1.3) and that H(x, ξ) is a
Carathéodory function satisfying, for a.e. x ∈ � and for every ξ ∈ R

N ,

ξ �→ H(x, ξ) is convex, for a.e. x ∈ �, (2.2)

and the growth condition

∃ q ∈
(

N
N−1 , 2

)
: |H(x, ξ)| ≤ γ |ξ |q + f (x) , γ > 0 , f (x) ∈ L

N
q′ (�). (2.3)

Note that this assumptions include the possibility that the equation contains trans-
port terms; indeed, a possible choice for H is

H(x, ∇u) = b(x) · ∇u + γ (x)|∇u|p + f (x)

where b ∈ [
L N (�)

]N
, γ ∈ Lr (�) and f ∈ L

Nr(p−1)
pr−N (�), with r ∈ (N , +∞] and

N (r−1)
r(N−1)

< p < 2 − N
r .

In virtue of (2.3) and (1.5), assuming q ≥ 1 + 2
N corresponds to having data in

H−1(�), so that we can reasonably talk of H1
0 (�) weak solutions.

Definition 2.1. We say that u ∈ H1
0 (�) is a weak subsolution of (2.1) if H(x,∇u)∈

L1(�) and

λ

∫
�

u ξ dx +
∫

�

A(x)∇u∇ξ dx ≤
∫

�

H(x, ∇u)ξ dx

∀ξ ∈ H1
0 (�) ∩ L∞(�) , ξ ≥ 0 .

(2.4)

A supersolution of (2.1) is defined if the opposite inequality holds. A function u
being both a subsolution and a supersolution is said to be a weak solution of (2.1).

Our proof of the comparison principle for sub and supersolutions of (2.1) relies
on two basic ideas: the first one is that if{

−div(A(x)∇w) ≤ C |∇w|q
(w+)q̄ ∈ H1

0 (�) ,
(2.5)

then w ≤ 0; in other words, the homogeneous problem has only the trivial solution
in this regularity class. Secondly, we aim at applying inequality (2.5) to (a small
perturbation of) the difference of two solutions u − v. In order to do that, we use a
convexity argument, which gives account of assumption (2.2).
A further technical tool will be required in order to justify some regularity claimed
on u − v: here we apply a truncation argument. To this purpose, we introduce the
following truncation function

Tn(s) =
∫ s

0
θn(ξ)dξ , θn(ξ) =




1 if |ξ | < n
2n − |ξ |

n
if n < |ξ | < 2n

0 if |ξ | > 2n

(2.6)

and we start by giving a sort of renormalization principle for the “truncated” equa-
tion.
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Lemma 2.2. Let u ∈ H1
0 (�) be a weak subsolution of (2.1). Then u satisfies, for

any nonnegative ξ ∈ H1
0 (�) ∩ L∞(�) and for every n

λ

∫
�

Tn(u)ξ dx +
∫

�

A(x)∇Tn(u)∇ξ dx ≤
∫

�

H(x, ∇Tn(u))ξ dx + 〈I u
n , ξ〉 , (2.7)

where I u
n ∈ L1(�) and is defined as follows:

〈I u
n , ξ〉 = 1

n

∫
{n<u<2n}

A(x)∇u∇u ξ dx − 1

n

∫
{−2n<u<−n}

A(x)∇u∇u ξ dx

+ λ

∫
�

(Tn(u) − uθn(u))ξ dx (2.8)

+
∫

�

(H(x, ∇u)θn(u) − H(x, ∇Tn(u)))ξ dx .

If moreover |u|q̄−1u ∈ H1
0 (�), where q̄ = (N−2)(q−1)

2(2−q)
, we have

lim
n→+∞ n2q̄−1 ‖I u

n ‖L1(�) = 0 . (2.9)

Proof. Let ξ ∈ H1
0 (�) ∩ L∞(�), ξ ≥ 0, and let n > 0. Choosing in (2.4) the test

function θn(u)ξ we obtain

λ

∫
�

u θn(u)ξ dx +
∫

�

A(x)∇u∇ξθn(u) dx ≤
∫

�

H(x, ∇u)θn(u)ξ dx

+1

n

∫
{n<u<2n}

A(x)∇u∇u ξ dx − 1

n

∫
{−2n<u<−n}

A(x)∇u∇u ξ dx .
(2.10)

Recalling that θn(u) = T ′
n(u) and defining I u

n as in (2.8) we have obtained (2.7).
Now let u be such that |u|q̄−1u ∈ H1

0 (�), where q̄ = (N−2)(q−1)
2(2−q)

. We have, by
definition of I u

n

n2q̄−1‖I u
n ‖L1(�)

≤ n2q̄−1


1

n

∫
{n<u<2n}

A(x)∇u∇u dx + 1

n

∫
{−2n<u<−n}

A(x)∇u∇u dx


 (2.11)

+λn2q̄−1
∫

�

|Tn(u)−uθn(u)|dx+n2q̄−1
∫

�

|H(x,∇u)θn(u)−H(x,∇Tn(u))|dx
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Observe that

n2q̄−1 1

n

∫
{n<u<2n}

A(x)∇u∇u dx ≤
∫

{n<u<2n}
A(x)∇u∇u |u|2q̄−2dx

≤ β

q̄2

∫
{n<u<2n}

|∇|u|q̄ |2 dx
n→+∞→ 0 ,

(2.12)

and similarly

n2q̄−2
∫

{−2n<u<−n}
A(x)∇u∇u dx

n→+∞→ 0 . (2.13)

We also have, using Young’s inequality, and by definition of q̄,

|∇u|q |u|2q̄−1 ≤ q

2
|∇u|2|u|2(q̄−1) + 2 − q

2
|u|2q̄+ 2(q−1)

2−q

= q

2q̄2
|∇(|u|q̄−1u)|2 + 2 − q

2
(|u|q̄)2∗

.

Since |u|q̄−1u ∈ H1
0 (�), using Sobolev embedding, we conclude that

|∇u|q |u|2q̄−1 ∈ L1(�) . (2.14)

Similarly, since (2q̄ − 1)( N
q ′ )′ = 2∗ q̄ we have that |u|2q̄−1 ∈ L

( N
q′ )′(�); since

f ∈ L
N
q′ (�) we deduce that

f |u|2q̄−1 ∈ L1(�) . (2.15)

Now we have, by definition of θn and Tn ,

|H(x, ∇u)θn(u) − H(x, ∇Tn(u))| ≤ [|H(x, ∇u)| + |H(x, ∇Tn(u))|]χ{|u|>n} ,

hence, using the growth assumption (2.3),

n2q̄−1|H(x, ∇u)θn(u) − H(x, ∇Tn(u))| ≤ 2(γ |∇u|q + f (x))|u|2q̄−1χ{|u|>n} .

Thanks to (2.14)-(2.15) we conclude

n2q̄−1
∫

�

|H(x, ∇u)θn(u) − H(x, ∇Tn(u))| dx
n→+∞−→ 0 . (2.16)

Finally, since u ∈ L2∗q̄(�),

n2q̄−1
∫

�

|Tn(u) − uθn(u)| dx ≤ 2
∫

�

|u|2q̄χ{|u|>n} dx
n→+∞−→ 0. (2.17)

From (2.11), (2.12), (2.13), (2.16), (2.17) we get (2.9).
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Remark 2.3. If u ∈ H1
0 (�) is a supersolution of (2.1) then (2.7) holds with the

opposite sign, and (2.9) still holds true. In particular, if u is a weak solution of
(2.1), then

λ

∫
�

Tn(u) ξ dx +
∫

�

A(x)∇Tn(u)∇ξ dx =
∫

�

H(x, ∇Tn(u))ξ dx + 〈I u
n , ξ〉 ,

with n2q̄−1‖I u
n ‖L1(�) → 0 provided |u|q̄−1u ∈ H1

0 (�).

We come to the main comparison result.

Theorem 2.4. Assume (1.3), (2.2), (2.3) with q ≥ 1 + 2
N . Let λ > 0. If u and v are

respectively a subsolution and a supersolution of (2.1) such that (1 + |u|)q̄−1u ∈
H1

0 (�) and (1 + |v|)q̄−1v ∈ H1
0 (�), then we have u ≤ v in �.

In particular, problem (2.1) has at most one weak solution u such that (1 +
|u|)q̄−1u ∈ H1

0 (�).

Proof. From Lemma 2.2 we obtain that

λ

∫
�

Tn(u) ξ dx +
∫

�

A(x)∇Tn(u)∇ξ dx ≤
∫

�

H(x, ∇Tn(u))ξ dx + 〈I u
n , ξ〉 , (2.18)

and

λ

∫
�

Tn(v) ξ dx +
∫

�

A(x)∇Tn(v)∇ξ dx ≥
∫

�

H(x, ∇Tn(v))ξ dx + 〈I v
n , ξ〉 , (2.19)

for every ξ ∈ H1
0 (�) ∩ L∞(�), ξ ≥ 0.

Let now ε ∈ (0, 1) be fixed. Subtracting (2.18) and (2.19), we obtain

λ

∫
�

[Tn(u) − (1 − ε)Tn(v)] ξ dx +
∫

�

A(x)∇(Tn(u) − (1 − ε)Tn(v))∇ξ dx

≤
∫

�

[H(x, ∇Tn(u)) − (1 − ε)H(x, ∇Tn(v))]ξ dx + 〈I u
n , ξ〉 − (1 − ε)〈I v

n , ξ〉 .

Now we use the convexity assumption on H , which gives

H(x, p) ≤ (1 − ε)H(x, η) + εH

(
x,

p − (1 − ε)η

ε

)
, ∀p , η ∈ RN .

With p = ∇Tn(u), η = ∇Tn(v) we obtain

H(x, ∇Tn(u)) − (1 − ε)H(x, ∇Tn(v)) ≤ εH

(
x,

∇Tn(u) − (1 − ε)∇Tn(v)

ε

)
,

hence we have

λ

∫
�

[Tn(u) − (1−ε)Tn(v)] ξ dx +
∫

�

A(x)∇[Tn(u) − (1 − ε)Tn(v)]∇ξ dx

≤ε

∫
�

H

(
x,

∇[Tn(u) − (1 − ε)Tn(v)]

ε

)
ξ dx + 〈I u

n , ξ〉 − (1 − ε)〈I v
n , ξ〉 .

(2.20)
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We define now

wn = Tn(u) − (1 − ε)Tn(v) − εϕ , (2.21)

where ϕ is a positive function that belongs to H1
0 (�) and will be chosen later. From

(2.20) we obtain

λ

∫
�

wn ξ dx +
∫

�

A(x)∇wn∇ξ dx ≤ ε

∫
�

H

(
x,

∇wn

ε
+ ∇ϕ

)
ξ dx

−ε

[∫
�

λϕ ξ + A(x)∇ϕ∇ξ dx

]
+ 〈I u

n , ξ〉 − (1 − ε)〈I v
n , ξ〉 .

(2.22)

Using assumption (2.3) we have

H

(
x,

∇wn

ε
+ ∇ϕ

)
≤ γ

∣∣∣∣∇wn

ε
+ ∇ϕ

∣∣∣∣
q

+ f (x)

≤ (γ + δ) |∇ϕ|q + Cδ

∣∣∣∣∇wn

ε

∣∣∣∣
q

+ f (x) ,

(2.23)

where δ is any positive constant.
Using (2.23) in (2.22) we obtain

λ

∫
�

wn ξ dx +
∫

�

A(x)∇wn∇ξ dx ≤ Cδ

εq−1

∫
�

|∇wn|q ξ dx

−ε

[∫
�

{
λϕ ξ + A(x)∇ϕ∇ξ − (γ + δ)|∇ϕ|qξ − f (x)ξ

}
dx

]
(2.24)

+〈I u
n , ξ〉 − (1 − ε)〈I v

n , ξ〉 .

We choose now ϕ as a solution of{
λ ϕ − div(A(x)∇ϕ) = (γ + δ)|∇ϕ|q + f (x) in �,

(1 + |ϕ|)q̄−1ϕ ∈ H1
0 (�).

(2.25)

The existence of such a function ϕ is proved in [14]. Moreover, we have that ϕ ≥ 0
(since f ≥ 0 from (2.3)). Thanks to (2.25) we obtain from (2.24)

λ

∫
�

wn ξ dx +
∫

�

A(x)∇wn∇ξ dx ≤ Cδ

εq−1

∫
�

|∇wn|q ξ dx

+〈I u
n , ξ〉 − (1 − ε)〈I v

n , ξ〉 .
(2.26)

For l > 0, we choose in (2.26) ξ = ξn defined as

ξn = [(wn − l)+]2q̄−1 .
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Note that ξn is a positive function, and it belongs to H1
0 (�) ∩ L∞(�). Moreover,

by the definition of wn in (2.21), we have

‖ξn‖L∞(�) ≤ (2n)2q̄−1,

so that we can apply Lemma 2.2 for u and v and get

|〈I u
n , ξn〉| ≤ (2n)2q̄−1‖I u

n ‖L1(�)

n→+∞−→ 0

|〈I v
n , ξn〉| ≤ (2n)2q̄−1‖I v

n ‖L1(�)

n→+∞−→ 0.

Thus (2.26) implies

λ

∫
�

wn [(wn − l)+]2q̄−1 dx + (2q̄ − 1)

∫
�

A(x)∇wn∇wn [(wn − l)+]2q̄−2 dx

≤ Cδ

εq−1

∫
�

|∇wn|q [(wn − l)+]2q̄−1 dx + o(1)n ,

where o(1)n goes to zero as n tends to infinity. Neglecting the zero order term which
is positive, and using that A(x) ≥ α I , we have

α(2q̄ − 1)

∫
�

|∇wn|2[(wn − l)+]2q̄−2 dx

≤ Cδ

εq−1

∫
�

|∇wn|q [(wn − l)+]2q̄−1 dx + o(1)n .

(2.27)

Young’s inequality implies

Cδ

εq−1

∫
�

|∇wn|q [(wn − l)+]2q̄−1 dx ≤ α

2
(2q̄ − 1)

∫
�

|∇wn|2[(wn − l)+]2q̄−2dx

+ Cε,δ

∫
�

[(wn − l)+]2q̄+ 2(q−1)
2−q dx,

hence, using that 2q̄ + 2(q−1)
2−q = q̄ 2∗ we get

α

2
(2q̄ − 1)

∫
�

|∇wn|2[(wn − l)+]2q̄−2 dx ≤ Cε,δ

∫
�

[(wn − l)+]q̄ 2∗
dx + o(1)n .

Using Sobolev inequality in the left hand side we obtain

C

(∫
�

[(wn − l)+]q̄2∗
dx

)1− 2
N ≤ Cε,δ

∫
�

[(wn − l)+]q̄2∗
dx + o(1)n .

We let now n tend to infinity; since u, v and ϕ all belong to Lq̄2∗
(�), we have that

wn → w := u − (1 − ε)v − εϕ strongly in Lq̄2∗
(�) as n tends to infinity,
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hence we get

C

(∫
�

[(w − l)+]q̄2∗
dx

)1− 2
N ≤ Cε,δ

∫
�

[(w − l)+]q̄2∗
dx .

Since 1 − 2
N < 1, last inequality implies that w ≤ 0; indeed, if sup w > 0 (even

possibly infinite), one gets a contradiction by letting l converge to sup w and using
that [(w − l)+]q̄2∗

would tend to zero in L1(�).
The conclusion is that w ≤ 0, i.e.

u ≤ (1 − ε)v + εϕ ,

and, letting ε → 0, u ≤ v in �.

Let us now deal with the case λ = 0. Then, the same proof can be applied
provided there exists a solution of{

−div(A(x)∇ϕ) = (γ + δ)|∇ϕ|q + f (x) in �,

ϕ = 0 on ∂�,
(2.28)

for some δ > 0. This requires a further assumption, which is a sort of size condition
on the data.

Indeed, it is known from [14] that there exists a constant C∗, only depending
on q and N , such that if

b
1

q−1 ‖ f ‖
L

N
q′

(�)

< αq ′
C∗ (2.29)

then the problem {
−div(A(x)∇z) = b|∇z|q + f (x) in �,

z = 0 on ∂�
(2.30)

admits a solution z such that (1 + |z|)q̄−1z ∈ H1
0 (�). In particular, if we fix α (the

coercivity constant of A(x)) and f , the set

B f : = {
b > 0 : problem (2.30) has a solution z : (1 + |z|)q̄−1z ∈ H1

0 (�)
}

is non empty. Indeed, it is not difficult to see that B f is even an interval. In order to
assure that (2.28) has a solution for a certain δ > 0, we are then led to assume that
(2.3) holds with γ < sup B f .

Theorem 2.5. Let λ = 0. Assume (1.3), (2.2) and (2.3) with q ≥ 1 + 2
N and

γ < sup B f , which is defined above. If u and v are respectively a subsolution and a
supersolution of (2.1) such that (1+|u|)q̄−1u ∈ H1

0 (�) and (1+|v|)q̄−1v ∈ H1
0 (�),

then we have u ≤ v in �.
In particular problem (2.1) has at most one solution u such that (1+|u|)q̄−1u ∈

H1
0 (�).
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The result of Theorem 2.5 may also be rephrased more explicitly in terms of a
size condition on the norm of f . Indeed, let C∗ be the maximal possible choice in
(2.29), i.e.

C∗ = sup{C > 0 : if α−q ′
b

1
q−1 ‖ f ‖

L
N
q′

(�)

< C then problem (2.30)

has a solution z : (1 + |z|)q̄−1z ∈ H1
0 (�)} .

Then we have:

Corollary 2.6. Let λ = 0. Assume (1.3), (2.2) and (2.3) with q ≥ 1 + 2
N and

α−q ′
γ

1
q−1 ‖ f ‖

L
N
q′

(�)

< C∗ . (2.31)

Then problem (2.1) has at most one solution u such that (1 + |u|)q̄−1u ∈ H1
0 (�).

Remark 2.7. Applying Theorem 2.4 and Corollary 2.6 to the model problem{
λu − div(A(x)∇u) = γ |∇u|q + f (x) in �,

u = 0 on ∂�
(2.32)

we obtain the results stated in Theorem 1.1. Observe that if γ > 0 and f ∈ L
N
q′ (�),

one can easily prove that any weak solution satisfies (u−)q̄ ∈ H1
0 (�); in particular,

in that case uniqueness holds in the class of solutions u ∈ H1
0 (�) such that (u+)q̄ ∈

H1
0 (�). Clearly, when γ is negative we should apply the result to the equation

satisfied by −u.

Remark 2.8. When considering the case λ = 0, a more careful look at the proof
of Theorem 2.4 shows that in the inequality (2.23) one could replace f with f̃ =
sup
ξ

(H(x, ξ)−γ |ξ |q)+. The size condition of Theorem 2.5 and Corollary 2.6 would

then concern f̃ instead of f . If one looks at the model problem (2.32), this simply
means that if λ = 0 and γ > 0, the required size condition only concerns f +, as it
is expected.

Remark 2.9. When q → 2, the exponent q̄ → +∞. In fact, if q = 2 uniqueness
for problems like (2.32) holds in the class of solutions u ∈ H1

0 (�) such that eµu −
1 ∈ H1

0 (�) for some suitable µ > 0. This result is proved (in a more general
framework) in [3]: the idea is to use the change of unknown function v = eγ u − 1,
so that the standard choice is to take µ = γ and to prove uniqueness when v ∈
H1

0 (�). Otherwise one could take µ = nγ for some n > 1; in that case one proves
uniqueness for solutions such that |v|n−1v ∈ H1

0 (�). However, we point out that
this latter choice requires to apply to the equation of v a similar truncation argument
as in Lemma 2.2.
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2.1. Comments and extensions

1. Data in W −1,r

The results of this section still hold if the right hand side in (2.1) is replaced by
H(x, ∇u) + div(g(x)) with g(x) ∈ L N (q−1)(�).

2. Neumann boundary conditions
Our method easily extends to prove a comparison principle for the homogeneous
Neumann problem which can be written in a strong form as{

λu − div(A(x)∇u) = H(x, ∇u) in �,

A(x)∇u · ν(x) = 0 on ∂�,
(2.33)

where ν(x) is the outward, unit normal vector to ∂� at x . Of course, we use
the classical weak formulation which says that u ∈ H1(�) is a weak solution of
(2.33) if

λ

∫
�

uϕ dx +
∫

�

A(x)∇u∇ϕ dx =
∫

�

H(x, ∇u)ϕ dx ∀ϕ ∈ H1(�)∩L∞(�).

Then one has:

Theorem 2.10. Assume (1.3), (2.2), (2.3) and that λ > 0. Let q ≥ 1 + 2
N . If

u and v are respectively a subsolution and a supersolution of (2.33) such that
(1 + |u|)q̄−1u ∈ H1(�) and (1 + |v|)q̄−1v ∈ H1(�), then we have u ≤ v in �.
In particular, problem (2.33) has at most one weak solution u such that (1 +
|u|)q̄−1u ∈ H1(�).

Proof. The proof follows the same steps as for Theorem 2.4. Note that Lemma
2.2 is still true without any modification. Then one defines ϕ as a solution of{

λ ϕ − div(A(x)∇ϕ) = (γ + δ)|∇ϕ|q + f (x) in �,

A(x)∇ϕ · ν(x) = 0 on ∂�,

and, setting wn = Tn(u) − (1 − ε)Tn(v) − εϕ, one obtains

λ

∫
�

wn[(wn − l)+]2q̄−1dx + α

2
(2q̄ − 1)

∫
�

|∇wn|2[(wn − l)+]2q̄−2 dx

≤ Cε,δ

∫
�

[(wn − l)+]q̄2∗
dx + o(1)n .

Since λ > 0 one deduces

‖[(wn − l)+]q̄‖H1(�) ≤ C̃ε,δ

∫
�

[(wn − l)+]q̄2∗
dx + o(1)n .

Using now Sobolev inequality one concludes as in the Dirichlet case. We only
need to require here that � has enough regularity so that the Sobolev inequality
holds.
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3. Unbounded domains
A slight refinement of our proof gives a similar result in case of unbounded do-
mains. To be more precise, let � be a general domain, not necessarily bounded.
Let still q ≥ 1 + 2

N and set q̄ = (N−2)(q−1)
2(2−q)

. We denote by D1,2
0 (�) the space

obtained by completion of functions ϕ ∈ C∞
c (�) with respect to the norm

‖∇ϕ‖L2(�). It is well known that D1,2
0 (�) is a Banach space which, due to

Sobolev inequality, is continuously embedded into L2∗
(�), namely

‖v‖L2∗
(�) ≤ SN ‖∇v‖L2(�) = SN ‖v‖D1,2

0 (�)
∀v ∈ D1,2

0 (�) ,

where SN , the Sobolev constant, does not depend on �, but only on the dimen-
sion N .
By a solution of (2.1) we mean a function u such that

u ψ ∈ H1
0 (�) ∀ψ ∈ C∞

c (RN ) , |u|q̄−1u ∈ D1,2
0 (�) (2.34)

and

λ

∫
�

uξ dx +
∫

�

A(x)∇u∇ξ dx =
∫

�

H(x, ∇u)ξ dx ∀ξ ∈ C∞
c (�) . (2.35)

Note that condition (2.34) gives a meaning to the Dirichlet condition on ∂�;
roughly speaking, one has (in a weak sense) u = 0 on ∂� ∩ BR for any ball BR .
Under assumptions (1.3), (2.2)-(2.3), the existence of a solution of (2.1) in the
sense of (2.34)-(2.35) has been proved in [15]. It was also pointed out that, due
to the regularity of |u|q̄−1u, one can use in (2.35) any test function ξ of the
form S(u), where S(0) = 0 and |S′(t)| ≤ |t |2q̄−2. This is achieved by choosing
ξ = S(u) ζ(

|x |
n ), where ζ ∈ C∞

c (B2), ζ ≡ 1 on B1, and letting n go to infinity,
which is allowed thanks to (2.34) and (2.2)-(2.3).

Theorem 2.11. Assume (1.3), (2.2), (2.3) with q ≥ 1 + 2
N , and that

(i) either λ > 0
(ii) or λ = 0 and (2.31) holds true.
Then there exists at most one solution u of (2.1) in the sense of (2.34)-(2.35).

Proof. Note that Lemma 2.2 still holds true, i.e. (2.7) holds for any ξ ∈C∞
c (RN ),

and estimate (2.9) is still valid, since it only depends on the fact that |u|q̄−1u ∈
D1,2

0 (�). We proceed then as in Theorem 2.4: let ϕ be a solution (whose exis-
tence is proved in [15]) of the auxiliary problem{

λ ϕ − div(A(x)∇ϕ) = (γ + δ)|∇ϕ|q + f (x) in �,

|ϕ|q̄−1ϕ ∈ D1,2
0 (�) , ϕψ ∈ H1

0 (�) for any ψ ∈ C∞
c (RN ).

Defining wn = Tn(u) − (1 − ε)Tn(v) − εϕ we obtain

λ

∫
�

wn ξ dx +
∫

�

A(x)∇wn∇ξ dx ≤ Cδ

εq−1

∫
�

|∇wn|q ξ dx

+ 〈I u
n , ξ〉 − (1 − ε)〈I v

n , ξ〉 ,
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for any ξ ∈ C∞
c (�). By density, one can allow ξ = z ψ for any ψ ∈ C∞

c (RN )

and for any z ∈ L∞(�) such that zψ ∈ H1
0 (�).

Now choose ξ = [(wn − l)+]2q̄−1ψ2
j , where ψ j = ψ

( |x |
j

)
, ψ ∈ C∞

c (B2),

ψ ≡ 1 on B1. We get

λ

∫
�

wn [(wn − l)+]2q̄−1ψ2
j dx + α(2q̄ − 1)

∫
�

|∇wn|2[(wn − l)+]2q̄−2ψ2
j dx

≤ Cδ

εq−1

∫
�

|∇wn|q [(wn − l)+]2q̄−1ψ2
j dx

− 2
∫

�

A(x)∇wn∇ψ j [(wn − l)+]2q̄−1ψ j dx

+ 〈I u
n , [(wn − l)+]2q̄−1ψ2

j 〉 − (1 − ε)〈I v
n , [(wn − l)+]2q̄−1ψ2

j 〉 ,

Since ψ j ≤ 1, and due to estimate (2.9) we have

〈I u
n , [(wn − l)+]2q̄−1ψ2

j 〉 − (1 − ε)〈I v
n , [(wn − l)+]2q̄−1ψ2

j 〉
≤ C n2q̄−1[‖I u

n ‖L1(�) + ‖I v
n ‖L1(�)] = o(1)n .

Using Young’s inequality we get

λ

∫
�

wn [(wn − l)+]2q̄−1ψ2
j dx

+α(2q̄ − 1)

2

∫
�

|∇wn|2[(wn − l)+]2q̄−2ψ2
j dx

≤ Cδ,ε

∫
�

[(wn − l)+]2∗q̄ψ2
j dx

+C
∫
�

|∇ψ j |2 [(wn − l)+]2q̄ dx + o(1)n .

(2.36)

Observe that wn belongs to L2∗q̄(�), since it is so for u, v and ϕ. Moreover

|∇ψ j |2 weakly converges to zero in L
N
2 (�), so that

lim
j→+∞

∫
�

|∇ψ j |2 [(wn − l)+]2q̄ dx = 0 .

Since (2.36) implies

‖∇([(wn − l)+]q̄ψ j )‖2
L2(�)

≤ Cδ,ε

∫
�

[(wn − l)+]2∗q̄ψ2
j dx

+ C
∫

�

|∇ψ j |2 [(wn − l)+]2q̄ dx + o(1)n ,

then passing to the limit as j goes to infinity we find that [(wn−l)+]q̄ ∈ D1,2
0 (�)

and

‖[(wn − l)+]q̄‖2
D1,2

0 (�)
≤ Cδ,ε

∫
�

[(wn − l)+]2∗q̄ dx + o(1)n .
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Using Sobolev inequality and that

wn → u − (1 − ε)v − εϕ strongly in Lq̄2∗
(�) as n tends to infinity,

letting n go to infinity the conclusion follows as in Theorem 2.4.
Note that when λ > 0 one has that |u|q̄−1

u belongs to H1
0 (�) and not only to

D1,2
0 (�).

Finally, when λ > 0 a similar result can be given in case of Neumann boundary
conditions proceeding as in Theorem 2.10.

3. The case q ≤ 1 + 2

N

We start by extending Theorem 2.4 to the case q < 1+ 2
N . However, in view of (2.3)

and (1.5), in this case solutions do not belong in general to H1
0 (�), so that one needs

first to define a suitable concept of solution. It seems useful to adopt the notion of
renormalized solutions; this notion, introduced first in [12] for transport equations,
has been adapted to second order elliptic equations in [6, 19], and recently used
in several other contexts when dealing with unbounded solutions having infinite
energy.
Let us recall that the auxiliary functions Tn(s) are defined in (2.6).

Definition 3.1. A renormalized solution of problem (2.1) is a function u ∈ L1(�)

such that Tn(u) ∈ H1
0 (�) for any n > 0, H(x, ∇u) ∈ L1(�) and which satisfies

λ

∫
�

u S(u)ξ dx +
∫

�

A(x)∇u∇(S(u)ξ) dx =
∫

�

H(x, ∇u)S(u)ξ dx (3.1)

for any Lipschitz function S having compact support and for any ξ ∈ H1(�) ∩
L∞(�) such that S(u)ξ ∈ H1

0 (�).
Renormalized subsolutions or supersolutions are defined in the same way by

replacing the equality in (3.1) with the suitable inequality.

Clearly, if u ∈ H1
0 (�) is a weak solution then it is also a renormalized solution:

indeed, one can choose S(u)ξ ∈ H1
0 (�) ∩ L∞(�) as test function in (2.4) and

obtain (3.1). Thus, for H1
0 (�) solutions, the weak and renormalized formulations

are equivalent. However, as in the previous section, we will deal here with solutions
u such that (1 + |u|)q̄−1u ∈ H1

0 (�), where q̄ = (N−2)(q−1)
2(2−q)

: if q < 1 + 2
N then

q̄ < 1, so that solutions do not have finite energy (i.e. they are not in H1
0 (�)). In this

case, the renormalized formulation is meant to allow test functions depending on
u itself, which can not be ensured by using the simpler distributional formulation.
Another possible formulation based on a duality argument is mentioned later (see
(3.26)).
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The existence of a renormalized solution u such that (1 + |u|)q̄−1u ∈ H1
0 (�)

has been proved in [15]. The method of proof given in Section 2 can be easily
adapted to provide uniqueness of such solutions.

Theorem 3.2. Assume (1.3), (2.2), (2.3) with q < 1 + 2
N . Let λ > 0. If u and

v are respectively renormalized subsolution and supersolution of (2.1) such that
(1 + |u|)q̄−1u ∈ H1

0 (�) and (1 + |v|)q̄−1v ∈ H1
0 (�), then we have u ≤ v in �.

In particular, problem (2.1) has at most one renormalized solution u such that
(1 + |u|)q̄−1u ∈ H1

0 (�).

Proof. First we observe that Lemma 2.2 still holds for renormalized solutions: in-
deed, choosing in (3.1) S = θn (see (2.6)) yields the same as (2.10), so that we
have

λ

∫
�

Tn(u)ξ dx +
∫

�

A(x)∇Tn(u)∇ξ dx ≤
∫

�

H(x, ∇Tn(u))ξ dx + 〈I u
n , ξ〉 , (3.2)

where I u
n is defined as in (2.8). Moreover, proceeding exactly as in Lemma 2.2 (to

be precise, we use that
[|∇u|q |u|2q̄−1 + f |u|2q̄−1

]
χ{|u|>1} ∈ L1(�) rather than

(2.14) and (2.15)) we obtain the estimate

lim
n→+∞ n2q̄−1 ‖I u

n ‖L1(�) = 0 . (3.3)

The same can be proved as regards v. Then, using the convexity of H , we follow
the proof of Theorem 2.4, in order to obtain that

λ

∫
�

[Tn(u) − (1 − ε)Tn(v) − εϕ] ξ dx

+
∫

�

A(x)∇[Tn(u) − (1 − ε)Tn(v) − εϕ]∇ξ dx

≤ Cδ

εq−1

∫
�

|∇[Tn(u) − (1 − ε)Tn(v) − εϕ]|q ξ dx

−ε

[∫
�

λϕ ξ + A(x)∇ϕ∇ξ dx − (γ + δ)|∇ϕ|qξ − f (x)ξ

]

+〈I u
n , ξ〉 − (1 − ε)〈I v

n , ξ〉 ,

(3.4)

for any ϕ, ξ ∈ H1
0 (�) ∩ L∞(�), ξ ≥ 0. We define here ϕn to be a solution of{

λ ϕn − div(A(x)∇ϕn) = (γ + δ)|∇ϕn|q + Tn( f (x)) in �,

ϕn = 0 on ∂�.
(3.5)

Note that ϕn is nonnegative and belongs to H1
0 (�) ∩ L∞(�). It is proved in [15]

that (1 + ϕn)
q̄−1ϕn is bounded in H1

0 (�) and

ϕn → ϕ strongly in Lq̄ 2∗
(�), (3.6)
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where ϕ is a renormalized solution of (3.5) corresponding to f , and satisfying (1 +
ϕ)q̄−1ϕ ∈ H1

0 (�).
Setting

wn = Tn(u) − (1 − ε)Tn(v) − εϕn

and using the equation satisfied by ϕn we obtain from (3.4)

λ

∫
�

wn ξ dx +
∫

�

A(x)∇wn∇ξ dx ≤ Cδ

εq−1

∫
�

|∇wn|q ξ dx

−ε

∫
�

(Tn( f ) − f )ξ dx + 〈I u
n , ξ〉 − (1 − ε)〈I v

n , ξ〉 .
(3.7)

Note that since N
N−1 < q < 1 + 2

N then the exponent q̄ ∈ ( 1
2 , 1), hence 2q̄ − 1 ∈

(0, 1); for this reason we choose now ξ = ξn,σ with

ξn,σ = [σ + (wn − l)+]2q̄−1 − σ 2q̄−1,

where l, σ > 0. We have, using (1.3), that

lim inf
σ→0

∫
�

A(x)∇wn∇ξn,σ dx ≥ (2q̄ − 1)α

q̄2

∫
�

|∇[(wn − l)+]q̄ |2 dx .

Note that ξn,σ ≤ [(wn − l)+]2q̄−1, and clearly ξn,σ → [(wn − l)+]2q̄−1 as σ → 0.
From (3.7) we obtain, as σ → 0,

λ

∫
�

wn [(wn − l)+]2q̄−1 dx + (2q̄ − 1)α

q̄2

∫
�

|∇[(wn − l)+]q̄ |2 dx

≤ Cδ

εq−1

∫
�

|∇wn|q [(wn − l)+]2q̄−1 dx

− ε

∫
�

(Tn( f ) − f )[(wn − l)+]2q̄−1 dx

+ 〈I u
n , [(wn − l)+]2q̄−1〉 − (1 − ε)〈I v

n , [(wn − l)+]2q̄−1〉 .

Since (wn −l)+ ≤ 2n, using (3.3) we obtain that last two terms go to zero as n tends
to infinity. Moreover, since u and v belong to Lq̄ 2∗

(�) and using (3.6), we have

that [(wn − l)+]2q̄−1 converges strongly in L
q̄ 2∗

2q̄−1 (�); but we have q̄ 2∗
2q̄−1 = ( N

q ′ )′,
and since Tn( f ) − f strongly converges to zero in L N/q ′

(�), we conclude that

λ

∫
�

wn [(wn − l)+]2q̄−1 dx + (2q̄ − 1)α

q̄2

∫
�

|∇[(wn − l)+]q̄ |2 dx

≤ Cδ

εq−1

∫
�

|∇wn|q [(wn − l)+]2q̄−1 dx + o(1)n ,

where o(1)n goes to zero as n tends to infinity. This inequality is the same as (2.27),
and the conclusion of the proof is exactly as in Theorem 2.4.
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A similar result holds in case λ = 0 if the data satisfy a suitable size condition,
following the same principle as in Theorem 2.5. We leave the details to the reader.

We are going now to see a different approach to uniqueness, which is based
on a simpler linearization principle. This approach, which was not consistent in the
situation of Section 2 since it requires too regularity on the solutions. However, it is
allowed if q ≤ 1 + 2

N (note that the limiting value q = 1 + 2
N is included too), and

provides uniqueness in a more general context. Namely, we consider the problem{
λu − div(a(x, ∇u)) = H(x, ∇u) in �,

u = 0 on ∂�
(3.8)

where a(x, ξ) : � × RN → RN is a Carathéodory function such that, for a.e.
x ∈ � and for every ξ , η ∈ RN :

[a(x, ξ) − a(x, η)] · (ξ − η) ≥ α|ξ − η|2 , α > 0 , and a(x, 0) = 0 (3.9)

|a(x, ξ)| ≤ β(k(x) + |ξ |) , β > 0 , k(x) ∈ L2(�) . (3.10)

We assume that H(x, ξ) : �×RN → R is a Carathéodory function which satisfies,
for a.e. x ∈ � and for every ξ , η ∈ RN ,

|H(x, ξ) − H(x, η)| ≤ γ (b(x) + |ξ |q−1 + |η|q−1) |ξ − η| ,

b(x) ∈ L N (�) , γ > 0,

(3.11)

and

H(x, 0) ∈ L
N
q′ (�). (3.12)

Note that assumptions (3.11) and (3.12) imply that H(x, ξ) satisfies the growth
condition (2.3). On the other hand, no convexity is now assumed on H(x, ·).

As in Definition 3.1, we say that a function u ∈ L1(�) is a renormalized
subsolution (supersolution) of problem (3.8) if Tn(u) ∈ H1

0 (�) for any n > 0,
H(x, ∇u) ∈ L1(�) and

λ

∫
�

u S(u)ξ dx +
∫

�

a(x, ∇u)∇(S(u)ξ) dx ≤ (≥)

∫
�

H(x, ∇u)S(u)ξ dx (3.13)

for any Lipschitz function S having compact support and for any ξ ∈ H1(�) ∩
L∞(�) such that S(u)ξ ∈ H1

0 (�), with S(u)ξ ≥ 0.
We start with two important properties of solutions in the class (1.9). We will

need a slight modification of the truncation functions Tn(s). Namely, we set

Tn(t) =
∫ t

0
T ′

n (s)ds , T ′
n (s) =




1 if |s| < n
n + 1 − |s| if n < |s| < n + 1
0 if |s| > n + 1
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Lemma 3.3. Assume (3.9)-(3.12) with N
N−1 < q ≤ 1 + 2

N . Let λ ≥ 0. Let u

be a renormalized subsolution of (3.8) such that (1 + |u|)q̄−1u ∈ H1
0 (�), with

q̄ = (N−2)(q−1)
2(2−q)

. Then we have

(i)

u ∈ W 1,N (q−1)

0 (�). (3.14)

(ii)

lim
n→+∞ n2q̄−1

∫
{h<u<n+1}

a(x, ∇u)∇u dx = 0 . (3.15)

(iii) for every nonnegative ξ ∈ H1
0 (�) ∩ L∞(�) and for every n

λ

∫
�

Tn(u)ξ dx+
∫

�

a(x, ∇u)T ′
n (u)∇ξ dx ≤

∫
�

H(x, ∇Tn(u))ξ dx+〈I u
n , ξ〉, (3.16)

with

lim
n→+∞ n2q̄−1 ‖I u

n ‖L1(�) = 0 . (3.17)

Proof. The regularity (3.14) follows directly from the fact that (1 + |u|)q̄−1u ∈
H1

0 (�). This was first observed, in a different context, in [7]; for the reader’s
convenience, we sketch the simple argument. Indeed, due to Sobolev and Hölder ’s
inequalities, we have(∫

�

(|u|)(N (q−1))∗ dx

)2−q

≤
∫

�

|∇u|N (q−1)dx

≤
(∫

�

|∇u|2
(1 + |u|)2−2q̄

) N (q−1)
2 (∫

�

(1 + |u|) 2N (q−1)(1−q̄)
2−N (q−1) dx

)1− N (q−1)
2

.

Since, by definition of q̄, we have 2N (q−1)(1−q̄)
2−N (q−1)

= (N (q − 1))∗ and since 2 − q >

1 − N (q−1)
2 , we conclude that

‖u‖
W 1,N (q−1)

0 (�)
≤ c(1 + ‖(1 + |u|)q̄−1u‖

1
q̄

H1
0 (�)

) .

To prove (ii), take in (3.13) ξ = 1 and S(t) = θn(t)
∫ t

0 |s|2q̄−1χ{n−1<s<n}ds, where
θn is defined in (2.6). Since S(t) ≤ c |t |2q̄−1χ{n−1<|t |} we have∫
{n−1<u<n}

a(x, ∇u)∇u|u|2q̄−1 dx ≤ c
∫

{n−1<|u|}
|H(x, ∇u)| |u|2q̄−1 dx

+ c

n

∫
{n<|u|<2n}

a(x, ∇u)∇u |u|2q̄−1 dx .

(3.18)
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Observe that, by (3.10),

1

n

∫
{n<|u|<2n}

a(x, ∇u)∇u |u|2q̄−1dx ≤ c
∫

{n<|u|<2n}
[k(x) + |∇u|]|∇u| |u|2q̄−2dx

which yields, since q̄ ≤ 1,

1

n

∫
{n<|u|<2n}

a(x, ∇u)∇u |u|2q̄−1dx ≤ c
∫

{n<|u|<2n}
[k(x)2 + |∇(|u|q̄−1u)|2]dx .

Thus

lim
n→+∞

1

n

∫
{n<|u|<2n}

a(x, ∇u)∇u |u|2q̄−1 dx = 0

Moreover, since H still satisfies (2.3), we have, as in the proof of Lemma 2.2,∫
{n−1<|u|}

|H(x, ∇u)| |u|2q̄−1 dx ≤ c
∫

{n−1<|u|}
[|∇(|u|q̄−1u)|2 + (|u|q̄)2∗

] dx
n→+∞−→ 0

so that we conclude from (3.18)∫
{n−1<u<n}

a(x, ∇u)∇u |u|2q̄−1dx
n→+∞−→ 0

hence (3.15).
The proof of (iii) follows the outlines of Lemma 2.2. Choose S = T ′

n (t) in
(3.13), so that

λ

∫
�

Tn(u)ξ dx +
∫

�

a(x, ∇u)T ′
n (u)∇ξ dx ≤

∫
�

H(x, ∇Tn(u))ξ dx + 〈I u
n , ξ〉

where I u
n is defined as

〈I u
n , ξ〉 =

∫
{n<u<n+1}

a(x, ∇u)∇u ξ dx

+ λ

∫
�

(Tn(u) − uT ′
n (u))ξ dx

+
∫

�

(H(x, ∇u)T ′
n (u) − H(x, ∇Tn(u)))ξ dx .

(3.19)
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As in Lemma 2.2, using the growth condition on H we obtain (2.16), and similarly
(2.17); moreover, for the first term of (3.19) we use (3.15). Finally, we can conclude
that (3.17) holds.

Note that the borderline value q = 1 + 2
N is included in the previous lemma as

well as in the following comparison result. However, some statements would read
simpler for this case: in fact, if q = 1 + 2

N then q̄ = 1, hence (1 + |u|)q̄−1u =
u, which belongs to H1

0 (�) (and (3.14) says the same); in particular, in this case
renormalized solutions are also standard H1

0 (�) weak solutions.

Theorem 3.4. Assume (3.9)-(3.12) with N
N−1 < q ≤ 1 + 2

N . Let λ ≥ 0. If u and
v are respectively a renormalized subsolution and supersolution of (3.8) such that
(1 + |u|)q̄−1u ∈ H1

0 (�) and (1 + |v|)q̄−1v ∈ H1
0 (�), then we have u ≤ v in �.

In particular, problem (3.8) has at most one renormalized solution u such that
(1 + |u|)q̄−1u ∈ H1

0 (�).

Proof. From Lemma 3.3 we have that

λ

∫
�

Tn(u) ξdx +
∫

�

a(x, ∇Tn(u))∇ξdx ≤
∫

�

H(x, ∇Tn(u))ξdx

+
∫

�

[a(x, ∇Tn(u)) − a(x, ∇u)T ′
n (u)]∇ξ dx + 〈I u

n , ξ〉 ,

(3.20)

for any ξ ∈ H1
0 (�) ∩ L∞(�), ξ ≥ 0, where I u

n (defined in (3.19)) satisfies (3.17).
Similarly we deal with the equation satisfied by v, so that

λ

∫
�

Tn(v) ξdx +
∫

�

a(x, ∇Tn(v))∇ξdx ≥
∫

�

H(x, ∇Tn(v))ξdx

+
∫

�

[a(x, ∇Tn(v)) − a(x, ∇v)T ′
n (v)]∇ξ dx + 〈I v

n , ξ〉
(3.21)

where

n2q̄−1‖I v
n ‖L1(�)

n→+∞→ 0. (3.22)

For k > 0, let us set Gk(s) = (s −k)+: subtracting (3.21) from (3.20) and choosing

ξ = [Gk(Tn(u) − Tn(v)) + σ ]2q̄−1 − σ 2q̄−1 , σ > 0
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we get

λ

∫
�

(Tn(u) − Tn(v))
(

[Gk(Tn(u) − Tn(v)) + σ ]2q̄−1 − σ 2q̄−1
)

dx

+
∫

�

[a(x, ∇Tn(u)) − a(x, ∇Tn(v))]∇[Gk(Tn(u) − Tn(v)) + σ ]2q̄−1dx

≤
∫

�

[H(x,∇Tn(u))−H(x,∇Tn(v))]
(
[Gk(Tn(u)−Tn(v))+σ ]2q̄−1 − σ 2q̄−1

)
dx

(3.23)

+
∫

�

[a(x, ∇Tn(u)) − a(x, ∇u)T ′
n (u)]∇[Gk(Tn(u) − Tn(v)) + σ ]2q̄−1 dx

+
∫

�

[a(x, ∇Tn(v)) − a(x, ∇v)T ′
n (v)]∇[Gk(Tn(u) − Tn(v)) + σ ]2q̄−1 dx

+〈|I u
n |, [Gk(Tn(u) − Tn(v)) + σ ]2q̄−1〉 + 〈|I v

n |, [Gk(Tn(u) − Tn(v)) + σ ]2q̄−1〉.

Since [Gk(Tn(u) − Tn(v))]2q̄−1 ≤ c n2q̄−1 last two terms go to zero as n tends to
infinity thanks to (3.17) and (3.22). Moreover we have from (3.10)

|a(x, ∇Tn(u)) − a(x, ∇u)T ′
n (u)| ≤ [|a(x, ∇Tn(u))| + |a(x, ∇u)|]χ{n<|u|<n+1}

≤ c[|∇u|χ{n<|u|<n+1} + k(x)χ{n<|u|<n+1}] .

Using (3.9) and Young’s inequality, we have

λ

∫
�

(Tn(u) − Tn(v))
(

[Gk(Tn(u) − Tn(v)) + σ ]2q̄−1 − σ 2q̄−1
)

dx

+α

2
(2q̄ − 1)

∫
�

|∇Gk(Tn(u) − Tn(v))|2[Gk(Tn(u) − Tn(v)) + σ ]2q̄−2dx

≤c
∫

�

[H(x,∇Tn(u))−H(x,∇Tn(v))] × (3.24)

×
(
[Gk(Tn(u)−Tn(v))+σ ]2q̄−1−σ 2q̄−1

)
dx

+c
∫

�

[|∇u|χ{n<|u|<n+1} + k(x)χ{n<|u|<n+1}]2[Gk(Tn(u) − Tn(v)) + σ ]2q̄−2dx

+c
∫

�

[|∇v|χ{n<|v|<n+1}+k(x)χ{n<|v|<n+1}]2[Gk(Tn(u)−Tn(v))+σ ]2q̄−2dx+o(1)n.
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Thanks to (3.15) in Lemma 3.3, and since 0 < 2q̄ − 1 ≤ 1, last two terms go to
zero as n tends to infinity (for fixed σ > 0). Thus, using also that λ ≥ 0 and (3.11)
we have∫

�

|∇Gk(Tn(u) − Tn(v))|2[Gk(Tn(u) − Tn(v)) + σ ]2q̄−2dx

≤ c
∫
En

[b(x) + |∇Tn(u)|q−1 + |∇Tn(v)|q−1]|∇(Tn(u) − Tn(v))| ×

× [Gk(Tn(u) − Tn(v)) + σ ]2q̄−1dx + o(1)n ,

where
En = {x : Tn(u) − Tn(v) > k , |∇(Tn(u) − Tn(v))| > 0} .

Using Young’s inequality we get∫
�

|∇Gk(Tn(u) − Tn(v))|2[Gk(Tn(u) − Tn(v)) + σ ]2q̄−2dx

≤ c
∫
En

[b(x) + |∇Tn(u)|q−1 + |∇Tn(v)|q−1]2 ×

× [Gk(Tn(u) − Tn(v)) + σ ]2q̄ dx + o(1)n .

Using Sobolev inequality and that u, v ∈ W 1,N (q−1)

0 (�), we deduce

(∫
�

(
[Gk(Tn(u) − Tn(v)) + σ ]q̄ − σ q̄

)2∗
dx

) 2
2∗

≤ c


∫

En

[b(x) + |∇u|q−1 + |∇v|q−1]N dx




2
N

×
(∫

�

[Gk(Tn(u) − Tn(v)) + σ ]q̄ 2∗
dx

) 2
2∗

+ o(1)n .

Letting n tend to infinity we obtain(∫
�

(
[Gk(u − v) + σ ]q̄ − σ q̄

)2∗
dx

) 2
2∗

≤

≤ c


 ∫

{u−v>k , |∇(u−v)|>0}
[b(x) + |∇u|q−1 + |∇v|q−1]N dx




2
N

×
(∫

�

[Gk(u − v) + σ ]q̄ 2∗
dx

) 2
2∗

,
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and then, as σ → 0,

(∫
�

(
[Gk(u − v)]q̄

)2∗
dx

) 2
2∗

≤ C


 ∫

{u−v>k , |∇(u−v)|>0}
[b(x) + |∇u|q−1 + |∇v|q−1]N dx




2
N

×
(∫

�

[Gk(u − v)]q̄ 2∗
dx

) 2
2∗

.

(3.25)

From this inequality one can deduce that u ≤ v in �. Indeed, we argue by contra-
diction. Set M = sup(u − v); then, should M be positive, even possibly infinite,
we have

lim
k→M

meas{x : u − v > k , |∇(u − v)| > 0} = 0 ,

since either M = +∞ or |∇(u − v) = 0| a.e. on (u − v) = M . Therefore, using
that u, v ∈ W 1,N (q−1)

0 (�), there exists k0 < M such that


 ∫

{u−v>k0 , |∇(u−v)|>0}
[b(x) + |∇u|q−1 + |∇v|q−1]N dx




2
N

<
1

C

and then (3.25) implies that (u−v) ≤ k0 almost everywhere, getting a contradiction
with the fact that k0 < sup(u − v). We conclude that u ≤ v.

We point out that the previous theorem extends the uniqueness result which
is proved in [5] assuming H(x, 0) ∈ H−1(�) and for solutions in H1

0 (�). Let us
recall that the existence of H1

0 (�) solutions can not be proved, nor it is expected to
hold, under assumption (3.12) with q < 1 + 2

N , so that, to be consistent with the
existence results (see [15]) one actually needs to work with solutions in the class
(1.9).

3.1. Comments and remarks

1. The formulation by duality in the linear case

Consider problem (2.1), where the second-order operator is linear. In order to
deal with solutions with possibly infinite energy, instead of using the notion of
renormalized solution, a different formulation can be given by using the linear
character of the operator.
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Definition 3.5 (see [20]). A function u ∈ L1(�) is a solution of (2.1) if
H(x, ∇u) ∈ L1(�) and

λ

∫
�

u ϕ dx −
∫

�

u div(A∗(x)∇ϕ) dx =
∫

�

H(x, ∇u)ϕ dx ,

for every ϕ ∈ H1
0 (�): div(A∗(x)∇ϕ) ∈ L∞(�),

(3.26)

where A∗(x) denotes the adjoint matrix of A(x).

Note that in Definition 3.5 only a minimal regularity is asked on u, by using the
advantage of linearity to integrate twice by parts. It is well known (see e.g. [11])
that, since H(x, ∇u) ∈ L1(�), any solution in the sense of Definition 3.5 also
satisfies the renormalized formulation (3.1). We deduce then the following

Theorem 3.6. Assume (1.3), (3.11), (3.12) with N
N−1 < q ≤ 1 + 2

N . Let λ ≥ 0.
Then there exists at most one function u which is solution of (2.1) in the sense of
Definition 3.5 and such that (1 + |u|)q̄−1u ∈ H1

0 (�), with q̄ = (N−2)(q−1)
2(2−q)

.

A similar result can be given in the convex case (i.e. assuming (2.2) and (2.3))
for the whole range of q such that N

N−1 < q < 2, since the results of Theorem
2.4 and Theorem 3.2 apply to solutions in the sense (3.26) which belong to the
class (1.9).

2. The case q ≤ N
N−1 and measure data

The question of finding an appropriate class of solutions where uniqueness holds
is not relevant if q < N

N−1 (note that the counterexample given in (1.7) holds

only for q > N
N−1 ). Indeed, asking only H(x, ∇u) ∈ L1(�), the solutions of

(2.1) are expected to belong to W 1,r
0 (�) for any r < N

N−1 , in particular they

already satisfy (1.8). In fact, uniqueness results when q < N
N−1 have already

been proved, see e.g. [4] for a result in a general context including nonlinear
operators.
When q < N

N−1 and in case of linear operators, one can even prove uniqueness
if data are bounded measures, using the formulation (3.26) and a simple duality
argument. This was done in [1] for the Laplace operator, for completeness we
sketch the result for the general case.
Let H(x, ξ) satisfy

|H(x, ξ) − H(x, η)| ≤ γ (b(x) + |ξ |q−1 + |η|q−1) |ξ − η| ,

with q <
N

N − 1
, b(x) ∈ Lr (�) for some r > N , γ > 0

(3.27)

and

H(x, 0) ∈ L1(�). (3.28)
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Let µ be a bounded Radon measure in �. We say that u is a solution of

{
λu − div(A(x)∇u) = H(x, ∇u) + µ in �,

u = 0 on ∂�,
(3.29)

if u ∈ L1(�), H(x, ∇u) ∈ L1(�) and

λ

∫
�

u ϕ dx −
∫

�

u div(A∗(x)∇ϕ) dx =
∫

�

H(x, ∇u)ϕ dx +
∫

�

ϕ dµ ,

for every ϕ ∈ H1
0 (�): div(A∗(x)∇ϕ) ∈ L∞(�).

(3.30)

Note that such test functions ϕ are Hölder continuous by means of De Giorgi-
Nash’s results, hence they can be tested against measures. Then we have:

Theorem 3.7. Assume (1.3), (3.27) and (3.28), and let λ ≥ 0. Let µ be a
bounded Radon measure in �. Then there exists at most one solution u of (3.29).

Proof. Let ui , i = 1, 2, be two solutions of (3.29) in the sense of (3.30). It
is known that ui ∈ W 1,r

0 (�) for any r < N
N−1 . Moreover, if Hn(x, ξ) is a

sequence of bounded functions such that Hn(x, ∇ui ) converges to H(x, ∇ui )

in L1(�), and if µn is a sequence of smooth functions converging to µ in the
weak-∗ topology of measures, then the solutions of

{
λui,n − div(A(x)∇ui,n) = Hn(x, ∇ui ) + µn in �,

ui,n = 0 on ∂�
(3.31)

converge to ui in W 1,r
0 (�) for any r < N

N−1 . Furthermore, one can choose Hn

to be C1 and still satisfying (3.27), and converging to H(x, ξ) locally uniformly.
Now, since ui,n belong to H1

0 (�) ∩ L∞(�), we have

∫
�

(u1,n − u2,n)[λϕ − div(A∗∇ϕ)] dx

=
∫

�

ϕ

[∫ 1

0

∂ Hn

∂ξ
(x, t∇u1,n + (1 − t)∇u2,n)dt

]
∇(u1,n − u2,n) dx

+
∫

�

[Hn(x, ∇u1) − Hn(x, ∇u1,n)]ϕ dx

−
∫

�

[Hn(x, ∇u2) − Hn(x, ∇u2,n)]ϕ dx .

(3.32)
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Set

pn(x) =
∫ 1

0

∂ Hn

∂ξ
(x, t∇u1,n + (1 − t)∇u2,n)dt

and take ϕ = ϕn the solution of

{
λϕn − div(A∗(x)∇ϕn) = −div(pn(x) ϕn) + T1(u1 − u2) in �,

ϕn = 0 on ∂�.

Since Hn satisfies (3.27)-(3.28), and using that ∇ui,n strongly converge in
W 1,r

0 (�) for every r < N
N−1 , we have that Hn(x, ∇ui,n) strongly converges

to H(x, ∇ui ) in L1(�), and there exists δ > 0 such that pn is bounded in
L N+δ(�)N . By standard regularity results this implies that ϕn is uniformly
bounded in L∞(�), hence last two terms in (3.32) converge to zero. Passing
to the limit we get ∫

�

(u1 − u2)T1(u1 − u2) dx = 0

so that u1 = u2.

Remark 3.8. Note that the case N = 2 also enters in the previous situation;
indeed, when N = 2 the values N

N−1 and 1 + 2
N coincide and N

N−1 = 1 + 2
N =

2. Thus, in the subcritical case q < 2 the main uniqueness result reads as in
Theorem 3.7, at least for linear operators. For nonlinear operators and with data
in L1(�), this case is included in the results in [4].

Remark 3.9. Finally, the case q = N
N−1 is a critical one; adapting the coun-

terexample (1.7) it is still possible to construct a non trivial solution u of the
homogeneous equation

−�u = |∇u| N
N−1 , u ∈ W

1, N
N−1

0 (�) ,

so that looking for a smaller class where uniqueness holds is still necessary.
The radial case suggests that uniqueness holds here for solutions u such that

|∇u| ∈ L
N

N−1 (log L)N−1. Indeed, in order to extend Theorem 3.4 to q = N
N−1

one should work in the context of Orlicz spaces, and assumptions (3.11)-(3.12)
should be suitably modified as well, e.g. by asking b(x) ∈ L N (log L)N−1 in
(3.11) and H(x, 0) ∈ L1(log L)N−1.
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unpublished paper.



136 GUY BARLES AND ALESSIO PORRETTA

[20] G. STAMPACCHIA, Le problème de Dirichlet pour les équations elliptiques du second ordre
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