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Existence and concentration of nontrivial solutions for a fractional
magnetic Schrodinger-Poisson type equation

VINCENZO AMBROSIO

Abstract. We consider the following fractional Schrodinger-Poisson type equa-
tion with magnetic fields

€2 (=AY jeu + Ve (P fuPu = f(uPyu in R,

where ¢ > 0 is a parameter, s € (%, 1),t € (0,1), (—A)‘x is the fractional

magnetic Laplacian, A : R3 — R3 is a smooth magnetic potential, V : R3 —
R is a positive continuous electric potential and f : R — R is a continuous
function with subcritical growth. Using suitable variational methods, we show
the existence of a family of nontrivial solutions which concentrates around global
minima of the potential V (x) as ¢ — 0.

Mathematics Subject Classification (2010): 35A15 (primary); 35R11, 35S05
(secondary).

1. introduction

In this paper we are interested in the existence of nontrivial solutions u : R3 — C
for the following fractional nonlinear Schrodinger-Poisson type equation

e (=AY ot + VU + 72 (x P x fuPu = f(uPu  inR,(1LD)

where ¢ > 0 is a parameter, s € (%, 1),t € (0,1),A: R3 — R3 e ¢, with
o € (0, 1], is a magnetic potential, and (—A)SA is the so called fractional magnetic
Laplacian which can be defined by setting

(—A)u(x):=cy lim

dy, cgi=m2
r—0

x+y 342
/ u(x)_el(x—y)A(%)u(y) —ézzs r < 5 S)
Be(x) x — |32 ‘ —I'(—s)
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forany ueCZ® (R3,C); see [19,32] for more details. As showed in [47], when s — 1,

2
the previous operator reduces to the magnetic Laplacian —A 4 := (%V - A) (see
[35,37]) given by

2 1
—Apsu=—Au——-A(x)-Vu + |A(x)|2u — —udiv(A(x)),
l l

which appears in the study of the following Schrodinger equation with magnetic
fields
—Aqu+V@Xu = f(x,u®)u inRV. (12)

Equation (1.2) has been widely investigated by several authors in the last thirty
years; see for instance [1,9,13,15,23,34].

Along the paper, we assume that V : R3 — R is a continuous potential satis-
fying the following del Pino-Felmer type assumptions [20]:

(V1) Vo :=inf, g3 V(x) > 0;
(V») there exists a bounded domain A C R3 such that

Vo < rgl/i\nV and M:={xeA:Vx) =W #0. (1.3)

Without of loss of generality, we may assume that 0 € M. The nonlinearity f :
R — R is a continuous function fulfilling the following conditions:

t
(f1) f@) =0fort <0and lir%@ =0;
t—
(f2) there exist g € (4,2F), where 2¢ := 3%, such that
t
=00 (=

(f3) there exists 0 € (4, 2F) such that 0 < %F(t) < tf(¢) for any t > 0, where
F(@) := [y f(v)dr;

(fa) t — @ is increasing for ¢ > 0.
Let us state our main theorem:

Theorem 1.1. Assume that (V1)-(Va) and ( f1)-(fa) hold. Then there exists g9 > 0
such that, for any € € (0, &9), problem (1.1) has a nontrivial solution. Moreover, if
ug denotes one of these solutions and x. is a global maximum point of |u.|, then we
have

Iim V(x,) = Wy

e—0

and there exists a constant C > 0 (independent of €) such that

C 342s
¢ Vx € R3.

lue (x)] <
€ Ce3+2s 4 Ix — x£|3+2s
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The above result is motivated by some works appeared in the last years concerning
fractional Schrodinger equations with magnetic fields of the type

e¥(=AYu+V(Xu = fx, [uPHu inRY, (14)

For instance, in the unperturbed case (that is ¢ = 1), d’Avenia and Squassina [19]
studied via a constrained minimization argument the existence of solutions (1.4), V
is constant and f is a subcritical or critical nonlinearity. Fiscella et al. [27] obtained
a multiplicity result for a fractional magnetic problem with homogeneous boundary
conditions. When ¢ > 0 is small, Zhang et al. [53] focused on a fractional magnetic
Schrodinger equation involving critical frequency and critical growth. Recently, the
author and d’ Avenia [8] dealt with the existence and the multiplicity of solutions to
(1.4) for small ¢ > 0, when the potential V satisfies the global condition due to
Rabinowitz [44] and f has a subcritical growth.

In absence of a magnetic field (that is A = 0), the fractional magnetic Lapla-
cian (—A)% coincides with the fractional Laplacian (—A)* and equation (1.4) be-
comes the well-known fractional Schrodinger equation (see [36])

¥ (=AY u+VEu= f(x,u)inRY, (1.5)

for which the existence and concentration phenomena of positive solutions have
been considered by many mathematicians. For example, Davila et al. [18] used a
Lyapunov-Schmidt variational reduction to prove that (1.5) has a multi-peak solu-
tion when V e L®@RN) n CcH¥(RV) is a positive potential and f is a subcritical
nonlinearity; see also [17] in which a concentration result has been established for
a nonlocal problem with Dirichlet datum. Fall et al. [25] showed that the concen-
tration points of the solutions of (1.5) must be the critical points for V, as & goes to
zero. Alves and Miyagaki [2] (see also [4,5]) used the penalization method in [20]
to study the existence and concentration of positive solutions of (1.5) requiring that
f satisfies (f1)-(f1) and V fulfills (V7)-(V>).

On the other hand, in these last years, several authors investigated fractional
Schrodinger-Poisson systems of the type

! 3 (=AY u+V)pu = g(x,u) inR> (1.6)

X (=N =u? in R?,

which can be seen as the nonlocal counterpart of the well-known Schrodinger-
Poisson systems appearing in quantum mechanics models [11] and in semiconduc-
tor theory [39]. Such systems have been introduced in [10] to describe systems of
identical charged particles interacting each other in the case that effects of magnetic
field could be ignored and its solution represents, in particular, a standing wave
for such a system. We refer to [16,29,30,45,50,54] for some interesting exis-
tence and multiplicity results for classical perturbed and unperturbed Schrodinger-
Poisson systems.

Concerning (1.6), Giammetta [28] considered the local and global well-
posedness of a one dimensional fractional Schrodinger-Poisson system in which
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& = 1 and the fractional diffusion appears only in the Poisson equation. Zhang et
al. [52] dealt with the existence of positive solutions to (1.6) withe = 1, V(x) =
@ > 0 and g is a general nonlinearity having subcritical or critical growth. Murcia
and Siciliano [42] proved that, for suitably small ¢, the number of positive solutions
to a doubly singularly perturbed fractional Schrodinger-Poisson system is estimated
below by the Ljusternick-Schnirelmann category of the set of minima of the poten-
tial. Liu and Zhang [38] studied multiplicity and concentration of solutions to (1.6)
involving the critical exponent and under a global condition on the potential V.
In [6] the author improved the results in [38] by assuming (V1)-(V2) and consid-
ering continuous nonlinearities. Teng [49], inspired by [30], used the penalization
method due to Byeon and Wang [12] to analyze the concentration phenomenon for
(1.6) under conditions (V;)-(V») and g(u) is a C! subcritical nonlinearity.

Particularly motivated by [2,4-6,8,30,49,50], in this paper we investigate the
existence and concentration behavior of nontrivial solutions to (1.1) with A # 0
and under assumptions (V1)-(V;) and (f1)-(f4). We note that whens = ¢t = 1 in
(1.1), the multiplicity and concentration for a Schrodinger-Poisson type equation
with magnetic field and under a local condition on V', has been established in [55]
by using some ideas developed in [1]. Anyway, their arguments work for C ' -Nehari
manifolds and we can not apply them in our situation because we are assuming the
only continuity of f.

Since we do not have any information on the behavior of V at infinity, we adapt
the penalization argument developed by del Pino and Felmer in [20], which consists
in making an appropriate modification on f, solving a modified problem and then
check that, for & small enough, the solutions of the modified problem are indeed so-
lutions of the original one. We point out that the penalization argument developed
here is different from the one used in [49], in which the author does not assume
the suplinear-4 growth on f but has to require f € C! to apply the techniques de-
veloped in [12,30]. The existence of nontrivial solutions for the modified problem
is obtained by using the mountain pass theorem [3] to the functional J; associated
with the modified problem. We note that the main issue in the study of J, concerns
the verification of the Palais-Smale compactness condition. Indeed, the presence of
the fractional magnetic Laplacian and the convolution term (|x|* 3 % |u|?), make
our analysis more complicated and intriguing, and some suitable arguments will be
needed to achieve our purpose; see Lemma 3.2. The next step is to show that if u,
is a solution of the modified problem, then u, is also a solution of the original one
(1.1). In the case A = 0 (see [2,49]), this is proved taking into account some fun-
damental estimates established in [26] concerning the Bessel operator. In the case
A # 0, we do not have similar informations for the following fractional equation

(—A)YSu + Vou = h(lu/*)u in R®. (1.7)

For the above reason, we use an approximation argument which allows us to deduce
that if u. is a solution to the modified problem, then |u.| is a subsolution for an
autonomous fractional Schrodinger equation without magnetic field, and then we
apply a comparison argument to deduce informations on the behavior at infinity of
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|uc|; see Lemma 4.1. We point out that, in the case s = 1, a similar reasoning works
(see [14,34]) in view of the following distributional Kato’s inequality [33]

—Alfu| = R(signu)(—=Aau)).

Recently, in [31], a distributional Kato’s inequality has been established for some
magnetic relativistic Schrodinger operators which also include (—A)L/ 2. We sus-
pect that a fractional Kato’s inequality is available for the operator (—A)® with any
fractional power s € (0, 1) (indeed it is easily seen that a pointwise Kato’s inequal-
ity holds for smooth functions), but we are not able to prove it. Again, we can not
repeat the iteration done in [1] to obtain L°°-estimates on the modulus of solutions,
due to the nonlocal character of (—A)?% . Anyway, in the present paper, we develop
some appropriate arguments which we believe can be useful to face other problems
like (1.4). Now we give a sketch of our idea. Firstly, we show that the (translated)
sequence |u,| of solutions of the modified problem is bounded in L% (R3, R) uni-
formly in n € N, by applying an appropriate Moser iteration scheme [41]. After
that, we prove that |u,| verifies

(—=A) [un| + Volun| < g(ex, |un|*)|uy| in R?,

by using ;‘s—”go as test function in the modified problem, where us, = /|u,|? + 82

and ¢ is a real smooth nonnegative function with compact support in R*, and then
we take the limit as § — 0. In some sense, we are going to prove a fractional Kato’s
inequality for the solutions of the modified problem.. At this point, by comparison,
we can show that |u,(x)] — 0 as |[x| — oo uniformly with respect to n € N,
taking into account the power type decay of solutions of autonomous fractional
Schrodinger equations; see [26]. As far as we know, the results presented here are
new.

The paper is organized as follows. In Section 2 we give some results on frac-
tional magnetic Sobolev spaces and we recall some useful lemmas. In Section 3,
we introduce the modified problem and we show that the corresponding functional
satisfies the assumptions of the mountain pass theorem. In the last section we give
the proof of Theorem 1.1.

Remark 1.2. Arguing as in [7], we can replace the condition Vy < ming, V in
(V») by the more general condition infy V < mingy V; see proof of [7, Lemma
3.2]. In view of this observation, we deduce the existence of a family of solutions
which concentrates around a local minimum of V as ¢ — 0.

ACKNOWLEDGEMENTS. The author would like to express his sincere gratitude to
the referee for many insightful comments and valuable suggestions, which enabled
us to improve this version of the manuscript.
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2. Preliminaries and functional setting

Let us consider the fractional Sobolev space

H' R} R) = {u e L>(R*, R) : [u] < oo},

u(x) —u(y)|?
= //Rﬁ |x_ |3+2s dXdy’

endowed with the standard norm [|u| s g3 = [[u]? + Nl 12 (w3)-

It is well-known (see [21,40]) that the embedding H*(R?*,R) c L4(R3 R) is
continuous for all g € [2, 2}) and locally compact for all ¢ € [1, 2}

Let LZ(R3,C) be the space of complex-valued functions such that ng |u |2 dx <
oo endowed with the inner product (u, v);2 = R fR3 uv dx, where the bar denotes
complex conjugation.

Let us denote by

Y. A(EEY
W = & ) = e AP
AT 2 RS Ix — y|3+2s Y

and we define

where

DY(R3, C) = {u e LX®R3,C): [ula < oo}.
In order to study our problem, for any ¢ > 0 we introduce the Hilbert space
HS = {u e D5, (R*,C): / V(ex)|ul* dx < oo}
£ R3

endowed with the scalar product

(u,v)e ::%/ V(ex)uvdx
R3

+Cs N
>

/ () = * A () @ - Ay dxdy
RO

|x _y|3+25
and we set
luelle := v/ {u, u)e.

The space H; satisfies the following fundamental properties; see [8, 19] for more
details.

Lemma 2.1 ([8,19]). The space Hf is complete and CZ° (R3, C) is dense in H;.

Theorem 2.2 ([8,19]). The space H; is continuously embedded in L" (R3, C) for
allr € [2, 2¥], and compactly embedded in LI’OC(R3, C) forallr €[1,2}).
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Lemma 2.3 ([19]). Ifu € H(R3, C) then |u| € H*(R?, R) and we have

[lull = [u]a,.

Lemma 2.4 ([8]). IfucH*(R? R) and u has compact support, then w =e' 2@ ¥y e
H;.

We also recall the following vanishing lemma [26] which will be useful for our
study:

Lemma 2.5 ([26]). Let q € [2,27). If (u,) is a bounded sequence in H* (R3,R)
and if

lim sup/ luy|9dx =0
Br(y)

n»ooyd@
for some R > 0, then u, — 0in L" (R, R) for all r € (2,2%).

Now, let s, ¢ € (0, 1) be such that 4s + 2¢ > 3. Since H* (R, R) ¢ L?(R3, R) for
all g € [2,2F), we can deduce that

s 3 A2 3
H*(R? R) c L7 (R3 R). 2.1)

For any u € H}, we know that |u| € H*® (R3, R) in view of Lemma 2.3, and then
we consider the linear functional L, : D"?(R?, R) — R given by

Ly (v) = / u?vdx,
R3

where

_ 2
D@ = fue i@ [ MO <o),

|x _y|3+2z

Using the Holder inequality and (2.1) we can see that
3+2¢

+ 1
12 6 " 2F
e 2 g 2
|L)(v)] < (./]R3 |u|3+zfdx> (/RS [v] tdx) < Cllullps2 vl pra,

where
10l 5 = Iv(X)—v(y)Izd J
Ullpr2 == BT Y

and this shows that £, is well deﬁned and continuous. Applying the Lax-Milgram
Theorem, there exists a unique ¢|tu| e D"2(R3, R) such that

(—A)' ¢l = lul* inR>. (22)
Then we have the following 7-Riesz formula (see Chapter V' in [48])
ju(y)® 3 P NG
1 _ d eRY, c=g2272% 27 (23
o, (0 =] /R ey GeR). = o)

In the sequel, we will omit the constants ¢, /2 and ¢} in order to lighten the notation.
Finally, we prove some properties on the convolution term.
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Lemma 2.6. Let us assume that 4s + 2t > 3 and u € H. Then we have:

(1) ¢! H'([R3,R) — D"2(R3 R) is continuous and maps bounded sets into

|u
bounded sets;

(2) if un — win HY then ¢,  — ¢{,, in D"*(R, R);
) ¢, = r2¢|lu‘f0r allr € Rand |, ) (x) = ¢}, (x +);
4) @[, = 0forallu € H, and we have

t 2 2 t 2
gy llpre < Cllull® 1, < Cllul andf Pl lul*dx
L3+21 (R3) R3

4 4
=Cllull” 1 < Cllullg.
L3+2 (R3)

Proof. (1) Since ¢|, € D2 (R3, R) satisfies (2.2), that is

/(—A)%wul(—m%vdx:/ ul?v dx
R3 R3

for all ve D"2(R3, R), we can see that £, is such that || L o2y = ||¢|tu| | pr.2
for all u € H}. Hence, in order to prove the continuity of ¢|’u|, it is enough to
show that the map u — Ly, is continuous. Let u, — u in H;. Using Lemma 2.3

and Theorem 2.2 we deduce that |u,| — |u| in L%(H@). Hence, for all v €
D"2(R3, R) we have

[Lju, (V) = L (v)]

2 2
= ‘/S(Wnl — |ul?)vdx
R
342

2 218 o
< Nup|™ — [u|”|3+2 dx vl 6
R? L3-7 (R3)
342t

12 2 12 2 e
<C /Ilunl—lull3+2fdx fllun|+|ull3+2fdx vl pr.2
R3 R3

< Clllun| = lulll 12 3)IIvIIDr,z,

L3421 (R

which implies that ||¢! | — qbl’u‘”D,,z =1Ly — Liullloepr2. gy = 0as n — oo.

tn]
(2) If u, — u in Hf, then Lemma 2.3 and Theorem 2.2 yield |u,| — |u| in

Li’oc(]l@, R) for all ¢ € [1, 2¥). Hence, for all v € Céx’(]R3, R) we get

(Pluy) = Pl V) = /RS(W,ZF — |ul*vdx

2 % 2 %
< (/ un| — |ull dx) </ unl + full dx) vl oo 3)
supp(v) R3

< Clllun] = |l 2 (suppy 1Vl Loo w3y = O-
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(3) and (4) are easily obtained by applying the Hardy-Littlewood-Sobolev inequal-
ity (see Theorem 4.3 in [37]), Holder inequality and Sobolev embedding. O

3. The modified problem

Using the change of variable x — ex, we can see that the study of (1.1) is equivalent
to consider the following problem

(=AY + Ve@u + (X177 5 [ulPu = f(|ul*)u in R, (3.1)

where A (x) := A(ex) and V. (x) := V(ex).
Asin[2,20], we fix k > 992 and a > O such that f(a) = -2, and we introduce
the function

Fo) = ]‘jo(t) ift <a

P ift > a.

Then we define the penalized nonlinearity g : R3 x R — R by setting
gr, 1) = xa () f (1) + (1 = xa () F (),
where y, is the characteristic function on A, and we set G(x, t) = fot gx,t)dr.

From assumptions ( f1)-(fa) it is standard to check that g verifies the following
properties:

)t . .
(g1) lirr(l) g(xt ) = 0 uniformly in x € R?;
t—
(g2) lim; o gE{x = 0 uniformly in x € R?;

(g3) )0 < EG(x, t) <g(x,t)tforanyx € Aandt > 0,

)0 < G(x,t) < glx,)t < @t and 0 < g(x,1) < @ for any x € A€
andr > 0;

(ga) t — g( o is increasing forall x € A and ¢ > 0.

Then, we consider the following modified problem
(=AY, u+ Ve@u + ¢, u = ge(x, [u)u in R, (32)

where g.(x, ) = g(ex, t) and ¢"u| is given by (2.3).
Let us note that if u is a solution of (3.2) such that

lu(x)| < v/aforall x € AS, (3.3)

where A, := {x € R : ex € A}, then u is also a solution of the original prob-
lem (3.1).
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In order to find weak solutions to (3.2), we look for critical points of the Euler-
Lagrange functional J; : H) — R defined as

.umzlwﬁ+1/¢Mw%x—{/GALM%m.
2 4 Jps 2 Jps
We also consider the scalar limiting problem associated with (3.1), that is
(—A)u + Vou + ¢/, u = fu?uin R, (3.4)
and we denote by Iy : H*(R3, R) — R the corresponding energy functional

1 2 Vo 2 1 t 2 1 2
Io(u) = E[”] + Ellulle(Rg) + Z/R3 Py udx — E/H@F(” )dx

1 ) 1 t 2 1 2
== - -~ | F
2||u||0+ 4/R3¢>|uu dx 2/R3 (u”)dx

where |ullo := \/[u]2 + Vollul?, &) i a norm in H* (R3, R) equivalent to the
standard one.
In what follows, we show that J, verifies the assumptions of the mountain pass

theorem [3].
Lemma 3.1. The functional J, possesses a mountain pass geometry:

(1) J:(0) =0;
(ii) there exist o, p > 0 such that J;(u) > o for any u € HS such that ||ulls = p;
(iii) there exists e € H) with |le|ls > p such that Js(e) < 0.

Proof. The condition (i) is obvious. Using (g1), (g2), and Theorem 2.2, we can see
that for any § > O there exists Cs > 0 such that

1
kW)ZEWﬁ—SOWM—CNM@

Choosing 6 > O sufficiently small, we can see that (ii) holds. Regarding (iii), we
can note that in view of (g3), we have for any u € H} \ {0} with supp(u) C A, and
T>1

(T ) 1 20012
Je(Tu) < 7||M||8 + T o Py lul"dx — 3 N Ge(x, T7|ul") dx
T4
<= ||u||§+/ @l lul*dx —CT9/ lul® dx + C,
2 R3 Ae
which together with 8 > 4 implies that J.(Tu) — —ooas T — oo. ]

Lemma 3.2. Let ¢ € R. Then J; satisfies the Palais-Smale condition at the level c.
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Proof. Let (u,) C H{ be a (PS). sequence. Then (u,) is bounded in H. Indeed,
using (g3) we have

1
C(A + luplle) = Je(uy) — §<J5/(”n)a Up)

1o , (11 L
=\772 lunlls + 170 R3¢\un||un| dx

1 1
+—/ 9o (s Jtn P utn P dx — —/ Ge(r, lunl?) dix
0 R3 2 R3

1 1 1 2]
> (5 - 5) llunll? + 5 /Ag(geoc, |t ®) |tn)* — 5 Ge(x, |un|2)> dx

1 1 Ve (x)
+ —/ 8o (X, [un ) |un|* dx — —f £ lug|Pdx
A¢ RS K

0 2

1/6—-2 1 2
ZE 5 x lunll;,

and recalling that « > 90%2 we get the thesis. Now, we show that for any & > 0

there exists R = Rg > O such that A, C Bg/, and

x+y
. i (x) — un (y)e! 4TI
hmsup/ |:/R3 u |; Y NER dy| + Vg(x)lunlzdx <& (35
n—o0o B¢ -

Assume for the moment that the above claim holds, and we show how this informa-
tion can be used. Using u, — u in H, Theorem 2.2 and (g1)-(g2), it is easy to see
that

(tn, ¥)e — (u, ¥)e and N ( / ge (x, |un|2>un&dx)
RS (3.6)

-9 (/R3 ge(x, |u|2)ugﬁdx) for all ¥ € C2(R?, C).
Moreover, by (3.5) and Theorem 2.2 we can see that for all £ > 0 there exists
R = R¢ > 0 such that for any n large enough
lun — ullpqmsy = lun — ullLasgy + lun — ullacss)
< llup — ullLaBgr) + (lunllracsg) + lullLass))
<&+ C§,

where ¢ € [2, 27), which gives

up — uin LYR3,C) Vg €[2,25). (3.7)
Since [|uy| — [ul| < |up — u| and 533, € (2,2F), we have that |u,| — |u] in

12
L3775 (R3, R).
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Then, recalling that ¢y, : L% (R3,R) - D"2(R3, R) is continuous (see Lemma
2.6), we can deduce that

¢, = ¢y in D2(R,R). (3.8)
Putting together (3.7), (3.8), Holder’s inequality and Theorem 2.2 we obtain

fﬁ( /R Bl ttn — ¢(u|u>xﬁdx)

=N (/ Bl (U — W)Y +/ (B, — ¢|’u|)ut/7dx>

3.9)
< Wl 8y o =l WO
060 = Sl ey Il e I
= C”un - I/l” +_22 + C”¢|”n| ¢|tu|”D’s2 — 0.

Now, we show that
/ ¢|tu ||un|2dx _>/ ¢|tu||ll|2dx. (3.10)
R3 " R3

Let us start by proving that

ID(un) = D) < /D(lueal? = 122y Dl ? + [u]172),

where

D) = / I — ¥~ O ()P u(y) Pdxdy.
]R6

Indeed, taking into account |x]~3~29 is even and Theorem 9.8 in [37] (see Remark
after Theorem 9.8 and recall that —3 < —(3 — 2¢) < 0 ) we have

D) — D)
=‘ / 6|x—y|—(3—2’>|un<x)|2|un@>|2dxdy—/ 6|x—yr(””|u(x)|2|u(y>|2dxdy'
R R

:‘//RG|X—y|_(3—2[)|un(.)C)|2|un(y)|2dxdy+‘/:/l‘£6|x_y|—(3—21)|un(x)|2|u(y)|2dxdy
_//Rélx—y|—(3—2t)|u(x)|2|un(y)|2dxdy—/ RG|x_Y|_(3_2[)|M(x)|2|u(y)|2dxdy‘
= ‘ / fR =y O0 ) = @)D (e I + Iu(y)|2)dxdy‘

< /R6 v = 7T (O = 1) Pl it DI + ()P dxdly

< CYD a2 = WPV Dlunl? + 1172,
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Thus, using the Hardy-Littlewood-Sobolev inequality (see Theorem 4.3 in [37]),

Holder’s inequality, the boundedness of (|u,|) in H*(R?, R) and |u,| — |u| in
12

L77% (R3, R) we can see that

2 2 21/2,4 2 21/2,4
ID(un) — D@)* < Cllllunl® = 1alP1V20* 15 Wl + 2 17201*
L3+2 (R3 L3+21 (R3)

2
< Clllun| — lullI* 12 — 0.
L3421 (R3)

Therefore, by (J/(u,), ¥) = 0,(1) for all ¥ € CfO(R3, ©), (3.6), (3.9) and ex-
ploiting Lemma 2.1, we can check that J/(«) = 0. In particular,

[T +/ ol lulPdx = f ge(x, Jul®)|ul dx. (3.11)
R3 R3
Now, we know that (J/(up), u,) = 0,(1) is equivalent to
a2 + /R B, lunPdx = fR g, linPlunlPdx +on(D).  (G12)
By (g1)-(g2) and (3.5) we deduce that
/ 8e(x, [ [*) | |* dx — / ge(x, [ul?)|ul® dx. (3.13)
R3 R3
Then, taking into account (3.10), (3.11), (3.12) and (3.13) we can infer that
. 2 2
Tim (g 2 = lull2

It remains to prove that (3.5) holds. Let ng € C®(R3, R) be such that 0 < ng <1,
ng = 0in Bg, ng = 1in B and |Vng| < % for some C > 0 independent of R.

Since (u,ng) is bounded, we can see that (J/(u,), unng) = 0,(1), that is

(/L.

x+y hy —
(1t () = () AT O (u, () (x) = i (p) e (y)et 4205 7))
x dxdy

|x _ y|3+2s

+/ ¢>fu,l||un|2anx+f V8<x)nR|un|2dx=f 8e (X, |un|P)unl*ng dx + 0, (1).
R3 R3 R3
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From

(/L.

(@) = (e AT 0y () () =ty (IR (e AT 0)

b — yP dxdy
1A (% )(x y)
1A (). (umy) Un(X) —un (y)e YR —nR(Y)
ui’l(y)e |x _ y|3+2s y
|un(x) — U, (y)elAs ) (x— y)|2
+//R6 nRr(x) TEET dxdy,

and using (g3)-(ii) and Lemma 2.6-(4), it follows that

i (x) — 1 (y)e' A CF )= 2
// R (xX)— X dxdy + | Ve(x)nglun|® dx
RS |x — y[3+2s R3

< _9 <// i O)e A ) (3.14)
R6
() — n (y)e! A= CF G0 (i () — RO o
|x _ y|3+29 y

1
+—/ Ve (Onglinl? dx + on(1).
K JR3

Now, by the Holder inequality and the boundedness of (u,) in H} we get

N (// u—(y)e_lAg($)~(x_y) (un(x)_un(y)elAe(x;y)‘(x_y))(nR(.x)_T]R(y))dxdy>‘
R6

|x _y|3+2s

1
_ 1A () (x— )2 2
(ffR 6 Jun (x) “"(y)epw |dxdy) (3.15)
) 3
(/f PG )lsz(x) @ig” )
SN
<c (/f e (y )|2'”R(") ﬂﬁf” y) .
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In what follows, we show that

_ 2
limsuplimsup// it (y )|2|”R(x) MR gy =0, (3.16)

R0 N—00 |3+2s
Let us note that

R® = (R?\ Bag) x (R®\ Bag)) U (R®\ Bag) x Bag) U (Bag x R?)

= XLUX3UX3.

Accordingly,

78 () — R ()2
f/];@ — y lu n(x)|2dxdy

_ 2
://Xl Inr(x) — nr(y)| it (6) Pdxdy

|x _ y|3+2s

o ], P o -
], O oy
Since ng = 1in R? \ Bog, we can see that
//Xl Iun(x)||2)|Cnf(;)3+—2sme(y)|2dmy N .

Now, fix k > 4, and we observe that
X% = (R?\ Bag) x Bag C ((R*\ Brg) x Bag) U ((Bkg \ Bag) X Bag)

If (x,y) € (R®\ Bkr) x Bag, then

X
|X—)’|Z|x|—|y|2|x|—2R>%.

Therefore, using the above fact,0 < ng < 1,|Vng| < % and applying the Holder
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inequality we obtain

// |un<x)| |nR(x) - nR(y>|2dxdy
XZ

— y|3+2s

B 40 ()21 R () — 1R ()2
- 3+2s dxdy
RS\BkR By |)C - }’| §
2 _ 2
+/ /' |17 ()] |7IR(X)3 277R(y)| dxdy
Ber\Bar J Bag |x — y]Pt=s
|”n(x)|2
dxdy
/R3\BkR sz |x|3+2

Jun (x)|?
dxdy
/BkR\BzR '/I;ZR lx — |3+2(S D

2 (3.19)
< CR3/ MO g+ £ @y / Jun () 2dlx
R)\Bir |1XI s R Brr\B2r
2 3
3 2* % 1
<CR |uy (x)|“sdx —dx
R3\ Bir R3\ Bxr |_x|3275+3
Ck2(1—s)
D / lun () *dx
R Bir\Bar !
2
C « o \E , CRHY
=3 (/ Iun(X)|2~‘dx> + T/ lun (x)]*dx
k R3\Bxr R Brr\B2r
c  CKk*)
<=+ —2/ lutn () Pdx.
k R Bir\B2r
Take & € (0, 1), and we obtain
Iun(X)I InR(X) —nr(?
//}(3 EENERET dxdy
2 _ 2
5/ f Iun(X)I |77R(x)3 2me(y)l dxdy (3.20)
Byg\B:zg JR3 |x — y[ot=s

L |un () * IR (X) — nr(Y)|? dxd
BER R3 |x - y|3+2s Y

Since

2 2
- c
/ / |un(x)| |UR(X§+227R(J’)| dxdyf 2s/ |un(x)|2dx
Bar\Ber JR3N{y:|x—y|<R} lx — ¥l R JByp\Bek
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2
C
f / lin (x)]? |77R(x§+277R()’)| dxdy <~ / 1,y ().,
Bog\B:r JR3N{y:|x—y|>R} lx — y[>*= R JByg\Ber

we can see that

2 2
— C
/ / |uﬂ(~x)| |77R(.7C)3 2’7R(Y)| dxdy S 5 / |un(x)|2dx. (321)
Bog\Beg JR3 v — y[7 R JByx\Bex

On the other hand, from the definition of nz,& € (0, 1),and 0 < ng < 1 we obtain

|Mn(x)| |77R(x) —nr()?
312 dxdy
BgR R3 - y| §
|Mn(x)|2|77R(X) —nr(y)I?
= 312 dxdy
Bg’:R R3\BR |x - | $

2
<cC / / '”"(’2'” dxdy (3.22)
BER R3\BR |X - )’| $
1
< C/ 79 dx/ ——dr
Bex (1-gr I

- / lun 2,
[(1 _S)R]ZS Bg’:R

where we used the fact that if (x, y) € Bsg X (R3 \ Br) then |[x —y| > (1 —&)R.
Then (3.20), (3.21) and (3.22) yield

// |t (X) 2R (X) — nr(Y)|? dxdy
X

|x _ y|3+2s

(3.23)
< i/ |u (x)lzdx—k#/ |un (X)) |2 dx
TR g [(1—&R> Jg,, " ‘
In view of (3.17), (3.18), (3.19) and (3.23) we can infer
_ 2
// | () Ime(x)3 277R(y)| dxdy
RO [x — ot
k2(lfs) )
< +7/ | ()| *dx (3.24)
k3 R Brr\Bar "

C
R /BZR\BER R ST M
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Since (|u,|) is bounded in H*(R?, R), using the Sobolev embeddings in Theorem
2.2, we may assume that |u,| — |u| in LIOC(R3, R). Letting n — o0 in (3.24) we

find

2 _ 2
limsup/f lun ()7 nR(x) — R (Y] dxdy
RO

00 |x _ y|3+2s
C Ck2(1 s) )
RS / (o) Pdx

k3 R Brr\Bar

+ < / |u(x)|2dx+#/ lu(x)|dx
st BQR\BgR [(1 - %‘)R]Zé B:r
2

2
C T . \Z
< 5+CK (/ |u(x)|2sdx) +C / lu(x) > dx
k Brr\Bar Bar\Bgr

é 2s . %
el (o)

where in the last passage we used the Holder inequality. Since |u| € L% (R3,R),
k > 4and & € (0, 1), we can see that

lim sup/ lu(x)>dx = limsup/ lu(x)|>dx = 0.
Bir\Bar R—o00 JByp\Bzr

R— o0

Thus, taking & = %,we have

_ 2
Jim sup lim sup // Jun ()2 |UR(X|)3+2S77R()’)| dxdy
RS -

R—o00 n—>o0

k=0 R_ 00

< lim limsu £ 2 % i %
p +Ck lu(x)|“sdx) +C lu(x)|“sdx
k3 Brr\B2r BZR\B%

2
%
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which implies that (3.16) holds true. Putting together (3.14), (3.15) and (3.16) we
can deduce that

. it () = (y)e! A= 500 2
lim sup lim sup ) dy
B | JRr3 |x — y[7+=

R—0o0 n—>00

1
+ (1——) Ve (X)|up|?dx =0,
K

and this completes the proof of (3.5). O

In view of Lemma 3.1, we can define the mountain pass level by

ce ;= inf max J, t
e = nf max (v (1)),

where
e :={y € C([0,1], H)) : y(0) =0 and J:(y(1)) < 0}.

By applying the mountain pass theorem [3], we can see that there exists u, € H; \
{0} such that J, (us) = ¢, and J/(u,) = 0. In a similar fashion, one can prove that
also Ip has a mountain pass geometry, and we denote by dy the mountain pass value
of Iy.

Now, let us introduce the Nehari manifold associated with J,, that is

N, = {u € HE\ {0} : (JL(w), u) =0},

and we denote by M the Nehari manifold associated with Io.
It is standard to verify (see [51]) that ¢, can be also characterized as follows:

ce = inf supJ.(tu) = 1nf Jg(u)
ueHE\{0} 40

Next, we prove the existence of a ground state solution to (3.4).

Lemma 3.3. Let (u,) C My be a sequence satisfying Iy(u,) — do. Then, up to
subsequences, the following alternative holds:

(i) (up) strongly converges in H* (R3, R);
(ii) there exists a sequence (¥,) C R3 such that, up to a subsequence, v,(x) :=
un(x + ¥,) converges strongly in H* (R, R).

In particular, there exists a minimizer w € H*(R>, R) for Iy with Io(w) =

Proof. Since Iy has a mountain pass geometry, we can use a version of the mountain
pass theorem without (P.S) condition (see [51]), and we may suppose that (u,) is a
(PS)q, sequence for Iyp. Arguing as in Lemma 3.2, it is easy to check that (u,) is
bounded in H*(R3, R) and thus, up to a subsequence, we may assume that u,, — u
in H%(R3, R). The weak convergence is enough to deduce that 16 (u) = 0. Now,
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we suppose that u # 0. Since u € My, we can use (f3) and Fatou’s Lemma to see
that

1
do < Io(u) — Z(lé(u), u)
TR R Y (N PR N
=+ 5 [ 57— P x
< lilrgicgf |:10(Mn) - 4—1‘(160!)» u)] = dp,

which implies that Iy(u) = dp.

Let us consider the case u = 0. Since dy > 0 and [ is continuous, we can see
that ||u,|lo 7 0. Then, in view of Lemma 2.5 and ( f1)-(f2), it is standard to prove
that there are a sequence (y;) C R3 and constants R, 8 > 0 such that

n—oo

liminf/ lun|*dx > B > 0.
Bgr(yn)

Let us define v, := u, (- + y,), and we note that v,, has a nontrivial weak limit v
in HS(R3, R). It is also clear that (v,) is a (PS)q4, sequence for Iy, and arguing
as before we can deduce that Ip(v) = dp. In conclusion, problem (3.4) admits a
ground state solution.

Now, let u be a ground state for (3.4). Using ¢ = u~ := min{u, 0} as test
function in (Ié(u), ¢) = 0, it is easy to check that u > 0 in R3. In particular,
observing that ¢!, > 0 and f has a subcritical growth, we can argue as in Proposition
5.1.1 in [22] to see that u € L (R, R). In particular, we have

lu(y)|? lu(y)[?
¢l (x) =/ —————-dy +/ —————-dy
" ly—x|>1 lx — y|372t ly—x|<1 lx — y|372t

1
2 2
= ”u”LZ(RS) + I|u||LOO(R3)/ Wdy = C’

ly—x|<1 lx —
so that g(x) = f(u?)u — pu — ¢lu € L°(R3, R). By Proposition 2.9 in [46] and
s € (%, 1), we can deduce that u € C17(R3,R) for any y < 2s — 1. Using the

maximum principle (see Corollary 3.4 in [24]) we can see that u > 0 in R3. Since
u e CV(@R3, R)NLPR3,R) forall p € [2,00], we can deduce that u(x) — 0
as |[x|] — oo, so we can find R > 0 such that (—A)*u + %u < 0in |x| > R.
By Lemma 4.3 in [26] we know that there exists a positive continuous function w
such that for |x| > R (taking R larger if necessary) it holds (—A)Sw + %w =0
and w(x) < lxl‘%, for some Co > 0. In view of the continuity of # and w there
exists some constant C; > O such that z := u — C;w < 0 on |x| = R. Moreover,
we can see that (—A)z + %z > 01in |x| > R. Then, it follows by the maximum
principle that z < Oin |[x| > R, thatis 0 < u(x) < Ciw(x) < ‘}Cgﬁ for all |x| big
enough. O
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Now we prove the following interesting relation between ¢, and dp.
Lemma 3.4. The numbers c, and dy satisfy the following inequality

limsup ¢, < dp.
e—0

Proof. Let w € H*(R3,R) be a positive ground state to the autonomous prob-
lem (3.4) (see Lemma 3.3), so Ié(w) = 0 and Ip(w) = do. We recall that w €

Cl7(R3?, R) N L®(R3, R) and that satisfies the following decay estimate:

0<wkx) < for all x| > 1. (3.25)

|x |3+25

Letn e C° (R3, [0, 1]) be a cut-off function such that n = 1 in a neighborhood of

Zero B% and supp(n) C Bs C A for some § > 0.
Let us define w, (x) := 1, (x)w(x)e' 4@ with 5, (x) := n(ex) fore > 0, and
we observe that |w,| = n,w, and w, € H{ in virtue of Lemma 2.4. Now we prove
that

lim [lwe 7 = w5 € (0, 00). (3.26)
Since it is clear that [p3 Ve (x)|we|*dx — [gs Volw|*dx, we only need to show that
lim [we I3, = [w]’. (3.27)

£—>

By Lemma 5 in [43] we know that

[new] — [w]ase — 0. (3.28)
On the other hand,
[we]3,

e A (0w (x) — AT A0 () 2

= // dxdy
RS |x _ y|3+2s
2 2 A5 —AO)]-(x—y) _ 112

_ 2 Nz (Mw(y)le" 2 1]
= [new]” + /./RG g dxdy

_ _ = [A ()~ AO))-(x—y)
+2m/ MeDwx)—n:Pw)n:Yw(y)(1—e z )dxdy
]R6

|x _ y|3+2s
=: [new]® + X, + 2Y,.
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Then, in view of |Y;| < [n.w]v/ X, and (3.28), it is suffices to prove that X, — 0
as ¢ — 0 to deduce that (3.27) holds. Let us note that for0 < < a/(1 + o — ),

. / 2()d |e![4: (3 =4O (=) _ 1|2d
= w-y y/ X
S x—yl|zeF

x — yp3t2
+ / w’(y)dy / WA FOAONE) g (329
R lx—y|<e—F |x — y|3+2s
= X! + X2,

Using |e' — 1|2 <4 and w € H*(R3?, R), we get
o0
X! <c /3 wz(y)dy/ ; o 1"8dp < Ce?s > 0. (3.30)
R e~

Since |e'' —1|* < > forallt € R, A € CO%R3,R?) fora € (0, 1],and |x + y|? <
2(Ix — y|? + 4|y|?), we have

Ae () — A0)?
ng/ wz(y)dy/ 1A (F52) oF
R3 lx—y|<e=h

Ix _ y|3+23—2
lx 4 y|>*
< Csza/ wz(y)dy/ ——— —dx
R3 x—y|<e=P lx — y|3+2s—2
1 (3.31)
< Ce™ / w2 (y)d / dx
- ( R3 (y) Y lx—y|<e=h |x _y|3+2s_2_2a

1
+/ |y|2°‘w2(y)dy/ 76196)
R3 [x—y|<e=P lx — y|3+2‘€_2

=: Ce™(Xp' + X7).

Then

-B

&

X?’l — C/ w2(y)dy/ p1+20{—2sdp < CS_Zﬂ(l_Hx_S). (332)
R3 0

On the other hand, using (3.25), we infer that

-B
&
X < C/R3 Iylz‘)‘wz(y)dy/0 p'"dp

sl 1 (3.33)
< Ce U / wz(y)dy+/ — a5 dy
B, Be |y|2(3+25)*2a

< Ce~280-5)
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Taking into account (3.29), (3.30), (3.31), (3.32) and (3.33) we can conclude that
X¢ — 0. Therefore (3.26) holds. Moreover, since n,w strongly converges to w in
H*(R3 R), we can use Lemma 2.4-(5) in [38] to see that

lim / Py, |wePdx = / ¢, widx. (3.34)
e—0 JR3 € R3
Now, let z, > 0 be the unique number such that

Je(tewy) = max Jo (twyg).
t>0
Then ¢, satisfies

||w8||§+t82/%¢|tw$|ws|2dx = /%gs(x,t§|w8|2)|w8|2dx

R R (3.35)

= / F 2 wel®)wel*dx
R3

where we used supp(n) C Aand g = f on A.
Let us prove that . — 1 as & — 0. Since = 1 in B;s and that w is a continuous
2

positive function, we can see that ( f4) yields
(t205)
fsio |w|2d X,
t

2.2
£

1

2 t 2
_2||w8||g +/ ¢‘w£||w8| dx >
s R3 o) B%

where o := mint w > 0. Hence, if £, — oo as ¢ — 0, we can use (f3), (3.34)

2
and (3.26) to deduce that ng ¢|th |lw|2dx = oo, that is a contradiction. On the other
hand, if z, — 0 as ¢ — 0, we can use the growth assumptions on g, (3.34), (3.26)
to infer that ||w||% = 0 which gives an absurd. Therefore, t, — #y € (0, 00) as
& — 0. Now, taking the limit as ¢ — 0 in (3.35) and using (3.34), (3.26), we can
deduce that

f@glwP)

lw|*dx. (3.36)
R (13 w?)

1
—2||w||3+/ Bl lwlPdx =
tO R3

Then 1o = 1 as a consequence of w € My and (f4). Applying the Dominated
Convergence Theorem we obtain that

/F(|rgwg|2)dx»/ Fwl?) dx,
R3 R3

so we have limg_,0 Jo(t,w;) = Io(w) = dp. Since ¢, < max;>o J.(twe) =
Je (tewe), we can infer that lim sup,_, g ce < dp. ]
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Now, we prove the following useful compactness result:

Lemma 3.5. Let &, — 0 and (un) C H] be such that Je, (uy) =c, and Ja/,, (uy)=0.
Then there exists (y,) C R3 such that v,(x) = |un|(x + Yn) has a convergent
subsequence in H'(R3, R). Moreover, up to a subsequence, y, := €,5, — Yo for
some yg € A such that V(yp) = Vo (i.e., yo € M).

Proof. Since (J’ (un), un) =0, Jg, (uy) = cg, and using Lemma 3.4, we can see
that (u,) is bounded in H; . Then, there exists C > 0 (independent of n) such that
llunlle, < C foralln e N Moreover from Lemma 2.3, we also know that (|u,]) is
bounded in H* (R3, R).

Now, we prove that there exist a sequence (3,) C R? and constants R > 0 and
y > 0 such that
liminf/ lup|?dx =y > 0. (3.37)

BR(yn)

n—oo

Assume by contradiction (3.37) does not hold, so that, for all R > 0 we get

lim sup/ lun|*>dx = 0.
%0y er3 JBr(y)

Using the boundedness of (Ju,|) and Lemma 2.5, we know that |u,| — O in
L4(R3, R) for any ¢ € (2, 2¥). This fact and (g1) and (g2) yield

lim | g, (x, |ug|D|un*dx =0 = 1im/ Ge, (x, |un|)dx.  (3.38)
n—oo R3

n—oo RS

On the other hand, |u,| — 0 in L3Jlr_22t (R3, R) and by Lemma 2.6-(4) we deduce
that

/R % ¢l lunl*dx — 0. (3.39)

Taking into account (ben (un), un)=0,(3.38) and (3.39) we can infer that ||u, ||, —
0 as n — oo. This is impossible because (g1), (g2) and (Jg/n (un), up) = 0 imply
that there exists ag > 0 such that ||u,,||§n > ag for all n € N. Now, we set
Uy (x) := |uy|(x + ¥,). Then, (v,) is bounded in H*® (R3,R) and we may suppose
that v, — v # 0 in H*(R?,R) as n — oco. Fix t, > 0 such that ¥, = t,v, € Mo.
In view of Lemma 2.3 we have

do < Ip(vy) < ma(;( Js,, (tvp) = Ja,, (un),
>

which together with Lemma 3.4 yields Io(v,) — do. Then, v,, - 0 in H® (R3, R).
Since (v,) and (,) are bounded in H*(R3,R) and 7, — 0 in H*(R3 R), we
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deduce that t, — ¢* > 0. From the uniqueness of the weak limit we can deduce
that 7, — ¥ = t*v # 0 in H*(R3, R), and using Lemma 3.3 we can infer that

i, — 0 in H*(R3, R). (3.40)

Therefore, v, — v in H*(R3, R) as n — oo.

Now, we define y, := ¢,¥, and we show that (y,) admits a subsequence, still
denoted by yj,, such that y, — yg for some yy € A satisfying V (yg9) = Vp. Firstly,
we prove that (y,) is bounded. Assume by contradiction that, up to a subsequence,
|yn| = oo asn — oo. Take R > 0 such that A C Bg. Since we may suppose that
|yn| > 2R, we have that for any z € Bgye,

lenz + ynl = |ynl — lenzl > R.

Hence using <Js/,, (un), uy) = 0, (V1), Lemma 2.3, Lemma 2.6 and the change of
variable x — z + y, we obtain that

[vn]2+/ Vovgdx < [Un]2+/ Vovﬁdx—i—/ cpltvnlvﬁdx
R3 R3 R3
2 2
< /R g(enx + Y. [vaP)val?dx

5/ FlloaP)lvaPdx (3.41)
B r

n

+/ Fval®) v Pdx.
R3\B

Since v, — v in H*(R3,R) as n — oo and f(t) < % we can see that (3.41)

yields
s YO Un] + |Un| dx - On(l)v
K R3

that is v, — 0 in H*(R3, R) and this gives a contradiction. Thus, (y,) is bounded
and we may assume that y, — yo € R3. If yo ¢ A, we can proceed as before
to deduce that v, — 0 in H*(R3,R). Therefore yo € A. We observe that if
V(yo) = Vo, then yo ¢ 9dA in view of (V2). Then, it is enough to verify that
V(yo) = Vp. Otherwise, if we suppose that V (yg) > Vp, putting together (3.40),
Fatou’s Lemma, the invariance of R3 by translations, Lemma 2.3 and Lemma 3 4,
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we have

do = Ip(D) < 1[f;]2+1/ V(yo)o? dx + ~ / ¢>vv2dx—1/ F(191%) dx
2 2 Js 2 Jmo

1 1
< liminf | =[§,]% + = / V(enx + yn)|17n|2dx
2 2 R3

n—oo
+1/ !5 |ﬁn|2dx—1/ F(|0a]?) dx
4 R3 [Un | 2 R3
AR 2 2
< liminf | Z[|u,|]* + 2 V(en2)lunl”dz
n—oo | 2 2 Jgr3

4
! t 2 1 2
2 [ bl lunldx =3 [ PGPz

< liminf Jg, (t,u,) < liminf J,, (u,) < dp,
n—oo n—oo

which is a contradiction. This ends the proof of this lemma. O

4. Proof of Theorem 1.1

This section is devoted to the proof of the main theorem of this work. Firstly,
we prove the following lemma which plays a fundamental role to show that the
solutions of (3.2) are indeed solutions to (3.1).

Lemma 4.1. Lete, — Oand u, € H; be a solution to (3.2). Then, vy = |un|(- +
V) satisfies v, € L®°(R3, R) and there exists C > 0 such that

Vall Loor3) < C foralln €N,
where Y, is given by Lemma 3.5. Moreover it holds

lim v, (x) = 0 uniformly inn € N.

|x|—00
Proof. For each n € N and L > 0, we define uy , := min{|u,|, L} > 0 and
VL. = ui(ﬁ l)un, where B > 1 will be chosen later. Taking vy, , as test function

in (3.2) we can see that

9N / (un(x) — un()’)elAgn(#)'(X—Y))
$ »

|x _y|3+2s

x (g 570 00) = un g B ”(y)elA@n(%(x—”)dxdy> @.1)

1 2 1
/¢|u||un|2u - )dx—i-/ 8en ., [t g Pz " dx

—/ Ve, )Pz 5~V dx.
R3
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Let us observe that

Eﬁ[(un(x) — iy (y)etAen (T

2
X (up(X)uy (ﬂ 1)(x) un(y)uL(ﬁ 1)(y)e““fn( ) y))j|
— 2(B— _ XYy o0
= s)‘i|:|un(x)|2u (F= 1)()c) —un(x)un(y)uL(fl D(y)e 1Ag, (735)-(x—Y)

1 1
— sy (Nt ur B0 ()¢t Aen 5Oy () P B Ry)]

> (lun )Py “(x) ot GO 1t D75 ()
- |un(y>||un(x>|u P00 + ) P50 ()
= (Jun ()| — |un(y>|><|un<x>|uL,n‘ V@) = luauzh "),

from which we deduce that

RN / (uy(x) — Mn(y)elAEn(%)'(x*y))
1 -

|x _ y|3+2s

x (n ;870 () — upy (P E7D (et Aen ”'“‘—”)dxdy)

>/ (lun | = lun ()]
Z [ e

1049

4.2)

oy (@ e =l ()l ) dxdy.

For all ¢+ > 0, let us define

y(t) =y p(t) = 11; P~

where 77 := min{¢, L}. Let us observe that, since y is an increasing function, then

it holds
(a—>b)(y(a)—y®)) >0 foranya,beR.

Let us define the functions

|t]? N
A(t) = > and TI'(r):= / (y'(v))2drt
0

and we note that

A(a —b)(y(a) — y(b)) > [T'(a) — T'(b)|* for any a, b € R.

4.3)



1050 VINCENZO AMBROSIO

Indeed, for any a, b € R such that a < b, and using the Jensen inequality we have

Aa—=b)(y(a) —y®) = (a - b)fb y'(®dt = (a — b)/b (I (1)) dt

a 2
z(/ r’(t)dz) = ([(a) — T(b))>.
b

In a similar fashion, we can prove that (4.3) holds true for any a > b.
In view of (4.3) we can deduce that
Pt (D) = Tt I = Q)] = 1t 0D (100 @135 )
26-1) 44
— a5 ).

Putting together (4.2) and (4.4) we have

% / (tn () — ity (y)et Aen (55 G2y
) 9

|x _ y|3+2s

X (tn )y 70 () =y (B ”(y)e”‘sﬂ%@—”)dxdy) (4.5)

y = [T (lux 1>

2
2// [T (un () = T'(lun (DI dxd
RO

|x _ y|3+2s
Since I'(Jju,|) > %|”n|”§,_n] and recalling that D*?(R3,R) C L% (R3, R) (see
[21]), we get
1\2
M (D = ST QDI o) = (E) Scllualt] 2y e 46)

Taking into account (4.1), (4.5) and (4.6) we obtain

2
1 2 1
(E) Sellalef 1222 g, + /R Ve, ()Mt P28 dx

4.7
5/ Qo (. L Dt 1280 dix.
R3

On the other hand, from assumptions (g;) and (g2), for any & > 0 there exists
Ct > 0 such that

ge(x, 12)12 < £|t]> + Cet|* forall (x,1) € R x R. (4.8)

Taking & € (0, Vp) and using (4.7), (4.8) and Lemma 2.6 we can infer that

* 2(B—1
lwLals o, < CB? /RS e P2 4.9)
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where we set wy , := |un|uL . Now, take g = 2 " and fix R > 0. Observing that
0<ur, <|uy|and applying Holder s inequality we have

2(8-1
/ > up b0 dx = f 2Py dx
R? R3
o 2* 2 2
:/ lup|™s (|un|uLn ) dx
R3
<[ R dx
{lun| <R}
2%-2 (4.10)
2
+/ |un|2S (l“nWLn ) dx
{lun|>R}

*_ *
< / R%72|u, ) dx
{Jun| <R}

52 22 s
2 % S B
+ un|™dx (I”n|uLn ) dx
{lun|> R} R3 '

Since (|u,]|) is bounded in H* (R3, R), we can choose R sufficiently large such that

%2

* 2 1
/ |un|® dx < . 4.11)
{un]>R) 2Cp?

In view of (4.9), (4.10) and (4.11) we can infer

2
(f (A dx) = C/BZ/ R 72 |u, [ dx < o0
R3 ’ R3

,R).
Now, using 0 < uy, , < |u,| and taking the limit as L — oo in (4.9) we have

a1 < Ccp? / |5 F2ED g,

Lz*ﬂ(RB) —

from which we deduce that

! 1
* ZE-D L . B
(f ] »*ﬂdx) < (C)FT (/ PRESECE dx) .
R3 R3

For m > 1 we define 4+ inductively so that 2} + 2(8,+1 — 1) = 2¥B,, and

=
Il
(NT551
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Then we can see that

: 1
X B -1 1 e —_
|un|2:,3m+ldx s Bm41 < (Cﬂm_i_l)ﬁer]fl |un|2:ﬁm s (Bm .
R3 .

Let us define
1
2% —1
Dy, = (/ IunIQ?ﬂm) o
R3

and using an iteration argument, we can find Co > 0 independent of m such that

m 1
Dpi1 < [ [(CAr) 17T Dy < CoD1.
k=1
Passing to the limit as m — oo we find
lunll poorsy < CoD1 =: K foralln € N. (4.12)
In what follows, we show that |u,| is a weak subsolution to

(—=A)v + Vou = g(eux, v¥)v  inR3

v>0 in R3. @13

Fix ¢ € C2°(R?, R) such that ¢ > 0, and we take /5, = ¢ as test function in

Us.n
(3.1), where we set us , = +/|un|? + 82 for § > 0. We note that 5 , € HZ, for all
8 > 0and n € N. Indeed [p3 Vi, (0)|¥s.0]dx < |, Ve, (x)p*dx < oo. On
the other hand, we can observe

upp(e)

Y (x—
Vs.n(x) — Wa,n(y)e’AEn( ) (x—y)

_ < Up(x) >(p(x) _ < un(y) )go(y)ems,,(%)-(x—y)

ugs,n(x) us n(y)

_ un—(x) _ u"_(y) lAsn(%)-(x—y)]
B |:<u8,n(x)> (u(g,n(x)> ¢ @(x)

+ [p(x) —o(y)] <M> ol Aen (55)-(x=)
uS,n(x)

un(y)  un(y) 1 Agy (2).(x—y)
* <M8,n(x) Ma,n(y)) pe 2
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which gives

Yy (r—
|1//8,n(x) —wS’n(y)elASn( 7 )-(x y)|2

1 Agy (£

4
2 () — n(y)etAen CEI 0 2 10117 oo 3, + 8—2|¢<x>—<p<y>|2||un||iw(R3)

<5
+ — llun 2 lell? lts n(y) — s 0 ()|
84 n LOO(R3) LOO(R3) N N

2

4K
IR} ) + 5 o) — 9P

4

= 82|un(x) un(y)e
TA 2 _ 2

+ ||<o||LOO(R3)||un<y)| (0112,

where we used

lz+w+kI? <4z + |w* + kI*) Vz,w,k € C,

le''| =1forallt € R,us, >, |u’f3”n| < 1, (4.12) and the following inequality

W1z 482 = \JlwpP + 82 < llzl = lwll Vzw e C.

Since u, € HS , |u,) € H*(R? R) (by Lemma 23) and ¢ € CX(R’, R), we
deduce that ¥s , € Hgn.
Therefore

?R[/ (U (X) — 1 (y)e! Aen CFH)- (=)
R6

Ix _y|3+23

w0 T

8 ( U, (x) un(y) w(y)e—zAgn(%)-(x—y))dxdy

(4.14)

|u n|2 |”n|2
+ Ve, (x ) @dx + ¢|Mn| odx
R3

un?
=f g, (. lunl) 2 gt
R3

Us.n
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Since M(z) < |z| forall z € Cand |¢''| = 1 forall t € R, we get

?H[(un(x) — ()t Aen CF5-3))

x ( ) 4y — L) w(y)e_lAg”(#)'(x_y)ﬂ

us,n(x) us.n(y)
2 2 TN .
N m[ |Z ”“Ei'm + l: n(y<)|> o) — MHLEX)LEngy)w(y)e—”‘eﬂ%)'(x—”
8.n 8,nYy §,nY (4.15)
_ “"(y)”"(x)(p(x)ezAgn(#»(x—y)}
us n(x)
2 2
N [|un(x>| LG [ /100
uS,n(x) uS,n(y) ué,n(y)
— Jun (e go(x)].
ué,n(x)
Now, we can note that
2 2
1 COT ey 4 a0y 2O o) o 2
us,n(x) us,n(y) usn(y) usn(x)
it ()] i ()]
= (tn ()] = un () D (x) — (tn ()] = lun () D@ (¥)
us,n(x) us.n(y)
()] |1, ()]
= (tn ()] = 1 (M DEE) — 2 iy ()] = Jun () D (y)
us n(x) ug n(x)
+ ('””(x" - '””(y)'> (ttn ()] = a0 (y) (4.16)
usn(x)  usn(y)

= L )]~ (D ) — 93
ug p(x)
(|un(x)| _Jua()I
us,n(x) us n(y)
)]
T usp(x)

) (Jun )| = lun (y)De(y)

(lun () = lun (YD (@(x) = @(¥)),

where in the last inequality we used the fact that

<|un<x>| )]

usn(x)  usa(y)

) (lun QO = lun (y)De(y) = 0

because

h(t) = isincreasing forr >0 and ¢ >0in R3.

t
Vi? + 52
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Observing that

| Ba L (Ju (0)] = L (DD (x) — ()

jx — y[NH
IIMn(x)I - Iun()’)ll lp(x) — oI c LI(RS)
|x_y| 2 |x_y|3+25 ’

and |””(E‘x))‘ — lae. inR3as & — 0, we can use (4.15), (4.16) and the Dominated

Convergence Theorem to deduce that

lim sup R
8—0

(n(x) — uy (y)e’ASn (%)’(X—y))
I

|x _y|3+2s

o up(x) o(x) — un(y) go(y)e_lAsn(%)'(x_y) dxdy
U (x) us,n(y)

4.17)

. ()] dxdy
> limsup //RG (O] = D) = 90—

50 ug n(x) |x
_ / (ltn )] = lun (YD (@(x) — QO(Y))dxd
- RS lx — y|3+2s y

2
We can also see that the Dominated Convergence Theorem (we recall that % <
|un| and ¢ € C° (R3, R)) and Fatou’s Lemma yield

2
tim [ Ve, 0 g = / Vo (O)litnldx > / Volulpdx — (4.18)
8—0 JRr3 5’,, R3 R3
timinf | 9! '””'2 dxz | glylulpdx =0 (4.19)
0 lnl 7 PN Jul IH1PGX :
and
. 2 |’/ln|2 2
tim [ ge O, e = [ g luaPlunlodr.  420)
8—0 JRr3 Usn R3

Taking into account (4.14), (4.17), (4.19), (4.18) and (4.20) we can infer that

/ (|un(x)|—|Mn(y)|)(€0(x)—§0(y))dxdy+/ Volunlodx
RO =

|x _y|3+2s

< / ge, (5. litn D) tnlpdx
R3

forany ¢ € C° (R3, R) such that ¢ > 0, thatis |u,| is a weak subsolution to (4.13).
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Now, we note that v, = |u,|(- + J,) solves
(=A)’v, + Vov, < glepnx + & Fn, v%)vn in R, 4.21)
Let us denote by z, € H*(R>, R) the unique solution to
(=A)zy + Voz, = gn in R?, (4.22)

where
g = g(EnX 4 enPn, v, € L'(R3,R)  Vr € [2, ol

Since (4.12) yields ||yl o3y < C for all n € N, by interpolation we know

that v, — v strongly converges in L’ (R, R) for all r € [2, o), for some v €
L"(R3 R). From the growth assumptions on f, we have g, — f(v*)vin L" (R, R)
and [|gnll o3y < C forall n € N. In view of [26], we know that z, = K * g,,
where K is the Bessel kernel, and proceeding as in [2], we can infer that |z, (x)| —
0 as |[x| — oo uniformly with respect to n € N. Since v, solves (4.21) and z,
verifies (4.22), it is easy to use a comparison argument to deduce that 0 < v, < z,
a.e. in R? and for all n € N. Therefore, v,(x) — 0 as |x| — o0 uniformly with
respectton € N. O

Now, we are ready to give the proof of Theorem 1.1.

Proof of Theorem 1.1. In view of Lemma 3.5, we can find (3,) C R? such that
&nYn — Yo for some yg € A satisfying V(y9) = Vo. Then there is r > 0 such
that, for some subsequence still denoted by itself, it holds B,(y,) C A for all
n € N. Thus, BgL(yn) C Ag, forall n € N, and we can deduce that R3\ Ag, C

R3\ Br (yn) for all n € N. By Lemma 4.1, we know that there exists R > 0 such

that
v (x) < &/a forall x| > R,n €N,

where v, (x) := |ug, |(x + Fn). Thus, |u., (x)| < /a for any x € RN\ Bg(3,) and
n € N. On the other hand, there exists v € N such that forany n > v andr/e, > R
it holds

R\ Ag, € R\ Bz () € B2\ Br(Gn).

which gives |ug, (x)| < o/a forany x € R3\ A, andn > v.

Therefore, there exists &g > 0 such that problem (3.1) admits a nontrivial
solution u, for all ¢ € (0, &9). Setting i1, (x) := u.(x/¢), we can see that ii, is a
solution to the original problem (1.1). Finally, we investigate the behavior of the
maximum points of |ug, |. Using (g1), there exists y € (0, v/a) small such that

Vi
ge(x, tz)z‘2 < 70t2, forall x € R3, [t] < y. 4.23)
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Arguing as before, we can take R > 0 such that

e, | Lo (B Gy < V- (4.24)
Up to a subsequence, we may also assume that

lue, Lo (BR Gy = V- (4.25)

Indeed, if (4.25) does not hold, we have ||u, || g3y < ¥, and using Je/” (ug,) =0,
(4.23) and Lemma 2.3 we can see that

2 2 2 2
(e, 17+ | Volue,|"dx < llue, |5, + | @/, |1ue,|"dx
R3 tooJre T

Vo
=/ e, (x, |1g, |*) e, |* dx < —f lug, |* dx
R3 2 R3

that is |||ug, ||| s R3) = 0 which is a contradiction. Accordingly, (4.25) holds true.
Let now p, be a global maximum point of |u,,|. In view of (4.24) and (4.25), we
can see that p, belongs to Bg(y,), thatis p, = y, + g, for some g, € Bg. Since
U, (x) = ug,(x/ey) is a solution to (1.1), we deduce that n,, = &,y, + €., is a
global maximum point of |ii,|. Thanks to g, € Bg, .y, — yo and V (y9) = Vo,
we can use the continuity of V to infer that

lim V(ne,) = Vo.

n—oo

Finally, we prove the power decay estimate of |i,|. Applying Lemma 4.3 in [26],
we can find a function w such that

C
and
\%
(=AY w + 70w = 0in B, (4.27)

for some suitable R; > 0. Invoking Lemma 4.1, we know that v,(x) — 0O as
|x| = oo uniformly in n € N, and according to (f1), we can find R, > 0 such that

- Vo .
hy = g(enx + &, 90, vﬁ)vn < 71)" in Bf,ez. (4.28)

Let wy, be the unique solution to

(=AY wy, + Vowy, = hy, in R,
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Then, w,(x) — 0 as |x| — oo uniformly in n € N, and by comparison 0 < v, <
w, in R3. By (4.28) we can see that

Vo Vo .
Tw,, =h, — Ewn <0in Biez-

(=N’ w, +
Set R3 := max{R;, Ry} and we define

o:=infw >0and w, := b+ DHw —ow,, 4.29)

Bpy

where b := sup,, e |wn | oo g3y < ©0. Our aim is to prove that

W, > 0in R>. (4.30)
We first observe that
lim sup w,(x) =0, 4.31)
|x|—>oon€N
Wy > bo +w —bo > 0in Bg,, (4.32)
.- Vo - .
(—A)“wn + 711),, >0in B%S. (4.33)

Now assume by contradiction that there exists a sequence (x; ,) C R such that

inf w,(x) = lim w,(x;,) <0. (4.34)
xeR3 Jj—>00
Clearly, by (4.31), it follows that (x; ,) is bounded, and thus, up to subsequence,

we may suppose that there exists X, € R> such that X jon —> Xy as j — oo. Then,
(4.34) implies that

inf w,(x) = wy(x,) <O0. (4.35)

xeR3

From the minimality of x,, and the representation formula for the fractional Lapla-
cian [21], we obtain that

/ 20 (Xy) — Wy (X + &) — Wy (X, — &)
R3

s~ = Cs
(=A) Wy (X)) = — |€|3+25

2

In view of (4.32) and (4.34), we have X, € B;'Q, and using (4.35) and (4.36), we
can conclude that

dE <0. (4.36)

(_A)Sa)n(in) + %ﬁ)n(in) <0,

which is impossible due to (4.33). Therefore, (4.30) holds true and using (4.26) and
v, < w, we have

b+1)

0<v,(x) <w,(x) < foralln e N, x € R?,

wx) < —————
()— 1+|x|3+2x
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for some constant C > 0. Bearing in mind the definition of v,, we can infer that

~ X X -
lity|(x) = |u£n| <g_> = U <8_ - yn)

C
= X _ 5 |342s
L [ =5, P2
~ L3428
_ Ce;,
— 342s ~
g0 7 41X — enFe, P2
~ o 342s
Ce;

<
<53 .
et A+ lx — g, P2
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