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Existence and concentration of nontrivial solutions for a fractional
magnetic Schrödinger-Poisson type equation

VINCENZO AMBROSIO

Abstract. We consider the following fractional Schrödinger-Poisson type equa-
tion with magnetic fields

"2s(�1)sA/"u + V (x)u + "�2t (|x |2t�3 ⇤ |u|2)u = f (|u|2)u in R3,

where " > 0 is a parameter, s 2 ( 34 , 1), t 2 (0, 1), (�1)sA is the fractional
magnetic Laplacian, A : R3 ! R3 is a smooth magnetic potential, V : R3 !
R is a positive continuous electric potential and f : R ! R is a continuous
function with subcritical growth. Using suitable variational methods, we show
the existence of a family of nontrivial solutions which concentrates around global
minima of the potential V (x) as " ! 0.

Mathematics Subject Classification (2010): 35A15 (primary); 35R11, 35S05
(secondary).

1. introduction

In this paper we are interested in the existence of nontrivial solutions u : R3 ! C
for the following fractional nonlinear Schrödinger-Poisson type equation

"2s(�1)sA/"u + V (x)u + "�2t (|x |2t�3 ⇤ |u|2)u = f (|u|2)u in R3, (1.1)

where " > 0 is a parameter, s 2 (34 , 1), t 2 (0, 1), A : R3 ! R3 2 C0,↵ , with
↵ 2 (0, 1], is a magnetic potential, and (�1)sA is the so called fractional magnetic
Laplacian which can be defined by setting

(�1)sAu(x) :=cs lim
r!0

Z

Bcr (x)

u(x)�eı(x�y)·A( x+y2 )u(y)
|x � y|3+2s

dy, cs :=⇡� 3
2 22s

0
⇣
3+2s
2

⌘

�0(�s)
,
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for any u2C1
c (R3,C); see [19,32] for more details. As showed in [47], when s!1,

the previous operator reduces to the magnetic Laplacian �1A :=
⇣
1
ı r � A

⌘2
(see

[35,37]) given by

�1Au = �1u �
2
ı
A(x) · ru + |A(x)|2u �

1
ı
u div(A(x)),

which appears in the study of the following Schrödinger equation with magnetic
fields

�1Au + V (x)u = f (x, |u|2)u in RN . (1.2)
Equation (1.2) has been widely investigated by several authors in the last thirty
years; see for instance [1, 9, 13, 15, 23, 34].

Along the paper, we assume that V : R3 ! R is a continuous potential satis-
fying the following del Pino-Felmer type assumptions [20]:

(V1) V0 := infx2R3 V (x) > 0;
(V2) there exists a bounded domain 3 ⇢ R3 such that

V0 < min
@3

V and M := {x 2 3 : V (x) = V0} 6= ;. (1.3)

Without of loss of generality, we may assume that 0 2 M . The nonlinearity f :
R ! R is a continuous function fulfilling the following conditions:

( f1) f (t) = 0 for t  0 and lim
t!0

f (t)
t

= 0;

( f2) there exist q 2 (4, 2⇤
s ), where 2⇤

s := 6
3�2s , such that

lim
t!1

f (t)

t
q�2
2

= 0;

( f3) there exists ✓ 2 (4, 2⇤
s ) such that 0 < ✓

2 F(t)  t f (t) for any t > 0, where
F(t) :=

R t
0 f (⌧ )d⌧ ;

( f4) t 7! f (t)
t is increasing for t > 0.

Let us state our main theorem:

Theorem 1.1. Assume that (V1)-(V2) and ( f1)-( f4) hold. Then there exists "0 > 0
such that, for any " 2 (0, "0), problem (1.1) has a nontrivial solution. Moreover, if
u" denotes one of these solutions and x" is a global maximum point of |u"|, then we
have

lim
"!0

V (x") = V0

and there exists a constant C > 0 (independent of ") such that

|u"(x)| 
C"3+2s

C"3+2s + |x � x"|3+2s
8x 2 R3.
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The above result is motivated by some works appeared in the last years concerning
fractional Schrödinger equations with magnetic fields of the type

"2s(�1)sAu + V (x)u = f (x, |u|2)u in RN . (1.4)

For instance, in the unperturbed case (that is " = 1), d’Avenia and Squassina [19]
studied via a constrained minimization argument the existence of solutions (1.4), V
is constant and f is a subcritical or critical nonlinearity. Fiscella et al. [27] obtained
a multiplicity result for a fractional magnetic problem with homogeneous boundary
conditions. When " > 0 is small, Zhang et al. [53] focused on a fractional magnetic
Schrödinger equation involving critical frequency and critical growth. Recently, the
author and d’Avenia [8] dealt with the existence and the multiplicity of solutions to
(1.4) for small " > 0, when the potential V satisfies the global condition due to
Rabinowitz [44] and f has a subcritical growth.

In absence of a magnetic field (that is A = 0), the fractional magnetic Lapla-
cian (�1)sA coincides with the fractional Laplacian (�1)s and equation (1.4) be-
comes the well-known fractional Schrödinger equation (see [36])

"2s(�1)su + V (x)u = f (x, u) in RN , (1.5)

for which the existence and concentration phenomena of positive solutions have
been considered by many mathematicians. For example, Dávila et al. [18] used a
Lyapunov-Schmidt variational reduction to prove that (1.5) has a multi-peak solu-
tion when V 2 L1(RN ) \ C1,↵(RN ) is a positive potential and f is a subcritical
nonlinearity; see also [17] in which a concentration result has been established for
a nonlocal problem with Dirichlet datum. Fall et al. [25] showed that the concen-
tration points of the solutions of (1.5) must be the critical points for V , as " goes to
zero. Alves and Miyagaki [2] (see also [4, 5]) used the penalization method in [20]
to study the existence and concentration of positive solutions of (1.5) requiring that
f satisfies ( f1)-( f4) and V fulfills (V1)-(V2).

On the other hand, in these last years, several authors investigated fractional
Schrödinger-Poisson systems of the type

⇢
"2s(�1)su + V (x)�u = g(x, u) in R3
"2t (�1)t� = u2 in R3, (1.6)

which can be seen as the nonlocal counterpart of the well-known Schrödinger-
Poisson systems appearing in quantum mechanics models [11] and in semiconduc-
tor theory [39]. Such systems have been introduced in [10] to describe systems of
identical charged particles interacting each other in the case that effects of magnetic
field could be ignored and its solution represents, in particular, a standing wave
for such a system. We refer to [16, 29, 30, 45, 50, 54] for some interesting exis-
tence and multiplicity results for classical perturbed and unperturbed Schrödinger-
Poisson systems.

Concerning (1.6), Giammetta [28] considered the local and global well-
posedness of a one dimensional fractional Schrödinger-Poisson system in which
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" = 1 and the fractional diffusion appears only in the Poisson equation. Zhang et
al. [52] dealt with the existence of positive solutions to (1.6) with " = 1, V (x) =
µ > 0 and g is a general nonlinearity having subcritical or critical growth. Murcia
and Siciliano [42] proved that, for suitably small ", the number of positive solutions
to a doubly singularly perturbed fractional Schrödinger-Poisson system is estimated
below by the Ljusternick-Schnirelmann category of the set of minima of the poten-
tial. Liu and Zhang [38] studied multiplicity and concentration of solutions to (1.6)
involving the critical exponent and under a global condition on the potential V .
In [6] the author improved the results in [38] by assuming (V1)-(V2) and consid-
ering continuous nonlinearities. Teng [49], inspired by [30], used the penalization
method due to Byeon and Wang [12] to analyze the concentration phenomenon for
(1.6) under conditions (V1)-(V2) and g(u) is a C1 subcritical nonlinearity.

Particularly motivated by [2,4–6,8,30,49,50], in this paper we investigate the
existence and concentration behavior of nontrivial solutions to (1.1) with A 6= 0
and under assumptions (V1)-(V2) and ( f1)-( f4). We note that when s = t = 1 in
(1.1), the multiplicity and concentration for a Schrödinger-Poisson type equation
with magnetic field and under a local condition on V , has been established in [55]
by using some ideas developed in [1]. Anyway, their arguments work for C1-Nehari
manifolds and we can not apply them in our situation because we are assuming the
only continuity of f .

Since we do not have any information on the behavior of V at infinity, we adapt
the penalization argument developed by del Pino and Felmer in [20], which consists
in making an appropriate modification on f , solving a modified problem and then
check that, for " small enough, the solutions of the modified problem are indeed so-
lutions of the original one. We point out that the penalization argument developed
here is different from the one used in [49], in which the author does not assume
the suplinear-4 growth on f but has to require f 2 C1 to apply the techniques de-
veloped in [12, 30]. The existence of nontrivial solutions for the modified problem
is obtained by using the mountain pass theorem [3] to the functional J" associated
with the modified problem. We note that the main issue in the study of J" concerns
the verification of the Palais-Smale compactness condition. Indeed, the presence of
the fractional magnetic Laplacian and the convolution term (|x |2t�3 ⇤ |u|2), make
our analysis more complicated and intriguing, and some suitable arguments will be
needed to achieve our purpose; see Lemma 3.2. The next step is to show that if u"
is a solution of the modified problem, then u" is also a solution of the original one
(1.1). In the case A = 0 (see [2, 49]), this is proved taking into account some fun-
damental estimates established in [26] concerning the Bessel operator. In the case
A 6= 0, we do not have similar informations for the following fractional equation

(�1)sAu + V0u = h(|u|2)u in R3. (1.7)

For the above reason, we use an approximation argument which allows us to deduce
that if u" is a solution to the modified problem, then |u"| is a subsolution for an
autonomous fractional Schrödinger equation without magnetic field, and then we
apply a comparison argument to deduce informations on the behavior at infinity of
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|u"|; see Lemma 4.1. We point out that, in the case s = 1, a similar reasoning works
(see [14,34]) in view of the following distributional Kato’s inequality [33]

�1|u|  <(sign(u)(�1Au)).

Recently, in [31], a distributional Kato’s inequality has been established for some
magnetic relativistic Schrödinger operators which also include (�1)

1/2
A . We sus-

pect that a fractional Kato’s inequality is available for the operator (�1)sA with any
fractional power s 2 (0, 1) (indeed it is easily seen that a pointwise Kato’s inequal-
ity holds for smooth functions), but we are not able to prove it. Again, we can not
repeat the iteration done in [1] to obtain L1-estimates on the modulus of solutions,
due to the nonlocal character of (�1)sA. Anyway, in the present paper, we develop
some appropriate arguments which we believe can be useful to face other problems
like (1.4). Now we give a sketch of our idea. Firstly, we show that the (translated)
sequence |un| of solutions of the modified problem is bounded in L1(R3, R) uni-
formly in n 2 N, by applying an appropriate Moser iteration scheme [41]. After
that, we prove that |un| verifies

(�1)s |un| + V0|un|  g("x, |un|2)|un| in R3,

by using un
u�,n ' as test function in the modified problem, where u�,n =

p
|un|2 + �2

and ' is a real smooth nonnegative function with compact support in R3, and then
we take the limit as � ! 0. In some sense, we are going to prove a fractional Kato’s
inequality for the solutions of the modified problem.. At this point, by comparison,
we can show that |un(x)| ! 0 as |x | ! 1 uniformly with respect to n 2 N,
taking into account the power type decay of solutions of autonomous fractional
Schrödinger equations; see [26]. As far as we know, the results presented here are
new.

The paper is organized as follows. In Section 2 we give some results on frac-
tional magnetic Sobolev spaces and we recall some useful lemmas. In Section 3,
we introduce the modified problem and we show that the corresponding functional
satisfies the assumptions of the mountain pass theorem. In the last section we give
the proof of Theorem 1.1.

Remark 1.2. Arguing as in [7], we can replace the condition V0 < min@3 V in
(V2) by the more general condition inf3 V < min@3 V ; see proof of [7, Lemma
3.2]. In view of this observation, we deduce the existence of a family of solutions
which concentrates around a local minimum of V as " ! 0.

ACKNOWLEDGEMENTS. The author would like to express his sincere gratitude to
the referee for many insightful comments and valuable suggestions, which enabled
us to improve this version of the manuscript.
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2. Preliminaries and functional setting

Let us consider the fractional Sobolev space

Hs(R3, R) = {u 2 L2(R3, R) : [u] < 1},

where
[u]2 :=

cs
2

ZZ

R6

|u(x) � u(y)|2

|x � y|3+2s
dxdy,

endowed with the standard norm kukHs(R3) :=
q

[u]2 + kukL2(R3).
It is well-known (see [21, 40]) that the embedding Hs(R3, R) ⇢ Lq(R3, R) is
continuous for all q 2 [2, 2⇤

s ) and locally compact for all q 2 [1, 2⇤
s ).

Let L2(R3,C) be the space of complex-valued functions such that
R
R3 |u|2 dx<

1 endowed with the inner product hu, viL2 = <
R
R3 uv̄ dx , where the bar denotes

complex conjugation.
Let us denote by

[u]2A :=
cs
2

ZZ

R6

|u(x) � eı(x�y)·A( x+y2 )u(y)|2

|x � y|3+2s
dxdy,

and we define

Ds
A(R3, C) :=

n
u 2 L2

⇤
s (R3, C) : [u]A < 1

o
.

In order to study our problem, for any " > 0 we introduce the Hilbert space

Hs
" :=

⇢
u 2 Ds

A"(R
3, C) :

Z

R3
V ("x)|u|2 dx < 1

�

endowed with the scalar product

hu,vi" :=<
Z

R3
V ("x)uv̄dx

+
cs
2

<
ZZ

R6

(u(x)�eı(x�y)·A"(
x+y
2 )u(y))(v(x)�eı(x�y)·A"(

x+y
2 )v(y))

|x � y|3+2s
dxdy

and we set
kuk" :=

p
hu, ui".

The space Hs
" satisfies the following fundamental properties; see [8, 19] for more

details.

Lemma 2.1 ([8, 19]). The space Hs
" is complete and C1

c (R3, C) is dense in Hs
" .

Theorem 2.2 ([8, 19]). The space Hs
" is continuously embedded in Lr (R3, C) for

all r 2 [2, 2⇤
s ], and compactly embedded in Lrloc(R3, C) for all r 2 [1, 2⇤

s ).
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Lemma 2.3 ([19]). If u 2 Hs
" (R3, C) then |u| 2 Hs(R3, R) and we have

[|u|]  [u]A" .

Lemma 2.4 ([8]). If u2Hs(R3,R) and u has compact support, thenw=eı A(0)·xu2
Hs
" .

We also recall the following vanishing lemma [26] which will be useful for our
study:
Lemma 2.5 ([26]). Let q 2 [2, 2⇤

s ). If (un) is a bounded sequence in Hs(R3, R)
and if

lim
n!1

sup
y2R3

Z

BR(y)
|un|qdx = 0

for some R > 0, then un ! 0 in Lr (R3, R) for all r 2 (2, 2⇤
s ).

Now, let s, t 2 (0, 1) be such that 4s + 2t � 3. Since Hs(R3, R) ⇢ Lq(R3, R) for
all q 2 [2, 2⇤

s ), we can deduce that

Hs(R3, R) ⇢ L
12
3+2t (R3, R). (2.1)

For any u 2 Hs
" , we know that |u| 2 Hs(R3, R) in view of Lemma 2.3, and then

we consider the linear functional L|u| : Dt,2(R3, R) ! R given by

L|u|(v) =
Z

R3
|u|2v dx,

where

Dt,2(R3, R) :=

(

u 2 L2
⇤
t (R3, R) :

ZZ

R6

|u(x) � u(y)|2

|x � y|3+2t
dxdy < 1

)

.

Using the Hölder inequality and (2.1) we can see that

|L|u|(v)| 

✓Z

R3
|u|

12
3+2t dx

◆ 3+2t
6
✓Z

R3
|v|2

⇤
t dx

◆ 1
2⇤t

 Ckuk2Ds,2kvkDt,2,

where
kvk2Dt,2 :=

ct
2

ZZ

R6

|v(x) � v(y)|2

|x � y|3+2t
dxdy,

and this shows that L|u| is well defined and continuous. Applying the Lax-Milgram
Theorem, there exists a unique �t|u| 2 Dt,2(R3, R) such that

(�1)t�t|u| = |u|2 in R3. (2.2)

Then we have the following t-Riesz formula (see Chapter V in [48])

�t|u|(x) = c0t
Z

R3

|u(y)|2

|x � y|3�2t
dy (x 2 R3), c0t = ⇡� 3

2 2�2t 0(3�2t2 )

0(t)
. (2.3)

In the sequel, we will omit the constants cs/2 and c0t in order to lighten the notation.
Finally, we prove some properties on the convolution term.
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Lemma 2.6. Let us assume that 4s + 2t � 3 and u 2 Hs
" . Then we have:

(1) �t|u| : Hs(R3, R) ! Dt,2(R3, R) is continuous and maps bounded sets into
bounded sets;

(2) if un * u in Hs
" then �t|un | * �t|u| in D

t,2(R3, R);
(3) �t|ru| = r2�t|u| for all r 2 R and �t|u(·+y)|(x) = �t|u|(x + y);
(4) �t|u| � 0 for all u 2 Hs

" , and we have

k�t|u|kDt,2  Ckuk2
L

12
3+2t (R3)

 Ckuk2" and
Z

R3
�t|u||u|

2dx

 Ckuk4
L

12
3+2t (R3)

 Ckuk4".

Proof. (1) Since �t|u| 2 Dt,2(R3, R) satisfies (2.2), that is
Z

R3
(�1)

t
2�t|u|(�1)

t
2 v dx =

Z

R3
|u|2v dx

for all v2Dt,2(R3, R), we can see that L|u| is such that kL|u|kL(Dt,2,R) =k�t|u|kDt,2

for all u 2 Hs
" . Hence, in order to prove the continuity of �t|u|, it is enough to

show that the map u 7! L|u| is continuous. Let un ! u in Hs
" . Using Lemma 2.3

and Theorem 2.2 we deduce that |un| ! |u| in L
12
3+2t (R3). Hence, for all v 2

Dt,2(R3, R) we have
|L|un |(v) � L|u|(v)|

=

�
�
�
�

Z

R3
(|un|2 � |u|2)v dx

�
�
�
�



✓Z

R3
||un|2 � |u|2|

6
3+2t dx

◆ 3+2t
6

kvk
L

6
3�2t (R3)

 C

"✓Z

R3
||un| � |u||

12
3+2t dx

◆ 1
2
✓Z

R3
||un| + |u||

12
3+2t dx

◆ 1
2
# 3+2t

6

kvkDt,2

 Ck|un| � |u|k
L

12
3+2t (R3)

kvkDt,2,

which implies that k�t|un | � �t|u|kDt,2 = kL|un | � L|u|kL(Dt,2,R) ! 0 as n ! 1.
(2) If un * u in Hs

" , then Lemma 2.3 and Theorem 2.2 yield |un| ! |u| in
Lqloc(R3, R) for all q 2 [1, 2⇤

s ). Hence, for all v 2 C1
c (R3, R) we get

h�t|un | � �t|u|, vi =
Z

R3
(|un|2 � |u|2)v dx



✓Z

supp(v)
||un| � |u||2 dx

◆ 1
2
✓Z

R3
||un| + |u||2 dx

◆ 1
2
kvkL1(R3)

 Ck|un| � |u|kL2(supp(v))kvkL1(R3) ! 0.
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(3) and (4) are easily obtained by applying the Hardy-Littlewood-Sobolev inequal-
ity (see Theorem 4.3 in [37]), Hölder inequality and Sobolev embedding.

3. The modified problem

Using the change of variable x 7! "x , we can see that the study of (1.1) is equivalent
to consider the following problem

(�1)sA"u + V"(x)u + (|x |2t�3 ⇤ |u|2)u = f (|u|2)u in R3, (3.1)

where A"(x) := A("x) and V"(x) := V ("x).
As in [2,20], we fix  > ✓

✓�2 and a > 0 such that f (a) = V0
 , and we introduce

the function

f̃ (t) :=

(
f (t) if t  a
V0
 if t > a.

Then we define the penalized nonlinearity g : R3 ⇥ R ! R by setting

g(x, t) = �3(x) f (t) + (1� �3(x)) f̃ (t),

where �3 is the characteristic function on 3, and we set G(x, t) =
R t
0 g(x, ⌧ ) d⌧ .

From assumptions ( f1)-( f4) it is standard to check that g verifies the following
properties:

(g1) lim
t!0

g(x, t)
t

= 0 uniformly in x 2 R3;

(g2) limt!1
g(x,t)

t
q�2
2

= 0 uniformly in x 2 R3;

(g3) (i) 0 < ✓
2G(x, t)  g(x, t)t for any x 2 3 and t > 0,

(ii) 0  G(x, t)  g(x, t)t  V (x)
 t and 0  g(x, t)  V (x)

 for any x 2 3c

and t > 0;
(g4) t 7! g(x,t)

t is increasing for all x 2 3 and t > 0.

Then, we consider the following modified problem

(�1)sA"u + V"(x)u + �t|u|u = g"(x, |u|2)u in R3, (3.2)

where g"(x, t) = g("x, t) and �t|u| is given by (2.3).
Let us note that if u is a solution of (3.2) such that

|u(x)| 
p
a for all x 2 3c

", (3.3)

where 3" := {x 2 RN : "x 2 3}, then u is also a solution of the original prob-
lem (3.1).
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In order to find weak solutions to (3.2), we look for critical points of the Euler-
Lagrange functional J" : Hs

" ! R defined as

J"(u) =
1
2
kuk2" +

1
4

Z

R3
�t|u||u|

2dx �
1
2

Z

R3
G"(x, |u|2) dx .

We also consider the scalar limiting problem associated with (3.1), that is

(�1)su + V0u + �t|u|u = f (u2)u in R3, (3.4)

and we denote by I0 : Hs(R3, R) ! R the corresponding energy functional

I0(u) =
1
2
[u]2 +

V0
2

kuk2L2(R3) +
1
4

Z

R3
�t|u|u

2dx �
1
2

Z

R3
F(u2) dx

=
1
2
kuk20 +

1
4

Z

R3
�t|u|u

2dx �
1
2

Z

R3
F(u2) dx

where kuk0 :=
q

[u]2 + V0kuk2L2(R3) is a norm in Hs(R3, R) equivalent to the
standard one.

In what follows, we show that J" verifies the assumptions of the mountain pass
theorem [3].

Lemma 3.1. The functional J" possesses a mountain pass geometry:

(i) J"(0) = 0;
(ii) there exist ↵, ⇢ > 0 such that J"(u) � ↵ for any u 2 Hs

" such that kuk" = ⇢;
(iii) there exists e 2 Hs

" with kek" > ⇢ such that J"(e) < 0.

Proof. The condition (i) is obvious. Using (g1), (g2), and Theorem 2.2, we can see
that for any � > 0 there exists C� > 0 such that

J"(u) �
1
2
kuk2" � �Ckuk4" � C�kukq" .

Choosing � > 0 sufficiently small, we can see that (ii) holds. Regarding (iii), we
can note that in view of (g3), we have for any u 2 Hs

" \ {0} with supp(u) ⇢ 3" and
T > 1

J"(Tu) 
T 2

2
kuk2" +

T 4

4

Z

R3
�t|u||u|

2dx �
1
2

Z

3"

G"(x, T 2|u|2) dx


T 4

2

✓
kuk2" +

Z

R3
�t|u||u|

2dx
◆

� CT ✓
Z

3"

|u|✓ dx + C,

which together with ✓ > 4 implies that J"(Tu) ! �1 as T ! 1.

Lemma 3.2. Let c 2 R. Then J" satisfies the Palais-Smale condition at the level c.
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Proof. Let (un) ⇢ Hs
" be a (PS)c sequence. Then (un) is bounded in Hs

" . Indeed,
using (g3) we have

C(1+ kunk") � J"(un) �
1
✓
hJ 0
"(un), uni

=

✓
1
2

�
1
✓

◆
kunk2" +

✓
1
4

�
1
✓

◆Z

R3
�t|un ||un|

2dx

+
1
✓

Z

R3
g"(x, |un|2)|un|2 dx �

1
2

Z

R3
G"(x, |un|2) dx

�

✓
1
2

�
1
✓

◆
kunk2"+

1
✓

Z

3"

✓
g"(x, |un|2)|un|2 �

✓

2
G"(x, |un|2)

◆
dx

+
1
✓

Z

3c
"

g"(x, |un|2)|un|2 dx �
1
2

Z

R3

V"(x)


|un|2dx

�
1
2

✓
✓ � 2
✓

�
1


◆
kunk2",

and recalling that  > ✓
✓�2 we get the thesis. Now, we show that for any ⇠ > 0

there exists R = R⇠ > 0 such that 3" ⇢ BR/2 and

lim sup
n!1

Z

BcR

"Z

R3

|un(x) � un(y)eı A"(
x+y
2 )·(x�y)|2

|x � y|3+2s
dy

#

+ V"(x)|un|2 dx  ⇠. (3.5)

Assume for the moment that the above claim holds, and we show how this informa-
tion can be used. Using un * u in Hs

" , Theorem 2.2 and (g1)-(g2), it is easy to see
that

(un, )" ! (u, )" and <

✓Z

R3
g"(x, |un|2)un ̄dx

◆

! <

✓Z

R3
g"(x, |u|2)u ̄dx

◆
for all  2 C1

c (R3, C).

(3.6)

Moreover, by (3.5) and Theorem 2.2 we can see that for all ⇠ > 0 there exists
R = R⇠ > 0 such that for any n large enough

kun � ukLq (R3) = kun � ukLq (BR) + kun � ukLq (BcR)

 kun � ukLq (BR) + (kunkLq (BcR) + kukLq (BcR))

 ⇠ + C⇠,

where q 2 [2, 2⇤
s ), which gives

un ! u in Lq(R3, C) 8q 2 [2, 2⇤
s ). (3.7)

Since ||un| � |u||  |un � u| and 12
3+2t 2 (2, 2⇤

s ), we have that |un| ! |u| in

L
12
3+2t (R3, R).
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Then, recalling that �|u| : L
12
3+27 (R3, R) ! Dt,2(R3, R) is continuous (see Lemma

2.6), we can deduce that

�t|un | ! �t|u| in D
t,2(R3, R). (3.8)

Putting together (3.7), (3.8), Hölder’s inequality and Theorem 2.2 we obtain

<

✓Z

R3
(�t|un |un � �t|u|u) ̄dx

◆

= <

✓Z

R3
�t|un |(un � u) ̄ +

Z

R3
(�t|un | � �t|u|)u ̄dx

◆

 k�t|un |kL
6

3+2t (R3)
kun � uk

L
12
3+2t (R3)

k k
L

12
3+2t (R3)

+ k�t|un | � �t|u|k 6
3+2t

kuk
L

12
3+2t (R3)

k k 12
3+2t

 Ckun � uk
L

12
3+2t (R3)

+ Ck�t|un | � �t|u|kDt,2 ! 0.

(3.9)

Now, we show that
Z

R3
�t|un ||un|

2dx !
Z

R3
�t|u||u|

2dx . (3.10)

Let us start by proving that

|D(un) � D(u)| 
q

D(||un|2 � |u|2|1/2)
q

D(||un|2 + |u|2|1/2),

where
D(u) =

ZZ

R6
|x � y|�(3�2t)|u(x)|2|u(y)|2dxdy.

Indeed, taking into account |x |�(3�2t) is even and Theorem 9.8 in [37] (see Remark
after Theorem 9.8 and recall that �3 < �(3� 2t) < 0 ) we have

|D(un) � D(u)|

=

�
�
�
�

ZZ

R6
|x�y|�(3�2t)|un(x)|2|un(y)|2dxdy�

ZZ

R6
|x�y|�(3�2t)|u(x)|2|u(y)|2dxdy

�
�
�
�

=

�
�
�
�

ZZ

R6
|x�y|�(3�2t)|un(x)|2|un(y)|2dxdy+

ZZ

R6
|x�y|�(3�2t)|un(x)|2|u(y)|2dxdy

�
ZZ

R6
|x�y|�(3�2t)|u(x)|2|un(y)|2dxdy�

ZZ

R6
|x�y|�(3�2t)|u(x)|2|u(y)|2dxdy

�
�
�
�

=

�
�
�
�

ZZ

R6
|x � y|�(3�2t)(|un(x)|2 � |u(x)|2|)(|un(y)|2 + |u(y)|2)dxdy

�
�
�
�


ZZ

R6
|x � y|�(3�2t)||un(x)|2 � |u(x)|2||||un(y)|2 + |u(y)|2|dxdy

 C
q

D(||un|2 � |u|2|1/2)
q

D(||un|2 + |u|2|1/2).
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Thus, using the Hardy-Littlewood-Sobolev inequality (see Theorem 4.3 in [37]),
Hölder’s inequality, the boundedness of (|un|) in Hs(R3, R) and |un| ! |u| in
L

12
3+2t (R3, R) we can see that

|D(un) � D(u)|2  Ck||un|2 � |u|2||1/2k4
L

12
3+2t (R3)

k||un|2 + |u|2||1/2k4
L

12
3+2t (R3)

 Ck|un| � |u|k2
L

12
3+2t (R3)

! 0.

Therefore, by hJ 0
"(un), i = on(1) for all  2 C1

c (R3, C), (3.6), (3.9) and ex-
ploiting Lemma 2.1, we can check that J 0

"(u) = 0. In particular,

kuk2" +
Z

R3
�t|u||u|

2dx =
Z

R3
g"(x, |u|2)|u|2 dx . (3.11)

Now, we know that hJ 0
"(un), uni = on(1) is equivalent to

kunk2" +
Z

R3
�t|un ||un|

2dx =
Z

R3
g"(x, |un|2)|un|2 dx + on(1). (3.12)

By (g1)-(g2) and (3.5) we deduce that

Z

R3
g"(x, |un|2)|un|2 dx !

Z

R3
g"(x, |u|2)|u|2 dx . (3.13)

Then, taking into account (3.10), (3.11), (3.12) and (3.13) we can infer that

lim
n!1

kunk2" = kuk2" .

It remains to prove that (3.5) holds. Let ⌘R 2 C1(R3, R) be such that 0  ⌘R  1,
⌘R = 0 in B R

2
, ⌘R = 1 in BcR and |r⌘R|  C

R for some C > 0 independent of R.
Since (un⌘R) is bounded, we can see that hJ 0

"(un), un⌘Ri = on(1), that is

<

✓ZZ

R6

⇥
(un(x) � un(y)eı A"(

x+y
2 )·(x�y))(un(x)⌘R(x) � un(y)⌘R(y)eı A"(

x+y
2 )·(x�y))

|x � y|3+2s
dxdy

1

A

+
Z

R3
�t|un ||un|

2⌘Rdx +
Z

R3
V"(x)⌘R|un|2 dx =

Z

R3
g"(x, |un|2)|un|2⌘R dx + on(1).
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From

<

✓ZZ

R6

⇥
(un(x)�un(y)eı A"(

x+y
2 )·(x�y))(un(x)⌘R(x)�un(y)⌘R(y)eı A"(

x+y
2 )·(x�y))

|x � y|3+2s
dxdy

1

A

=<

 ZZ

R6
un(y)e�ı A"(

x+y
2 )·(x�y) (un(x)�un(y)e

ı A"( x+y2 )·(x�y))(⌘R(x)�⌘R(y))
|x � y|3+2s

dxdy

!

+
ZZ

R6
⌘R(x)

|un(x) � un(y)eı A"(
x+y
2 )·(x�y)|2

|x � y|3+2s
dxdy,

and using (g3)-(ii) and Lemma 2.6-(4), it follows that

ZZ

R6
⌘R(x)

|un(x) � un(y)eı A"(
x+y
2 )·(x�y)|2

|x � y|3+2s
dxdy +

Z

R3
V"(x)⌘R|un|2 dx

 �<

✓ZZ

R6
un(y)e�ı A"(

x+y
2 )·(x�y) (3.14)

⇥
(un(x) � un(y)eı A"(

x+y
2 )·(x�y))(⌘R(x) � ⌘R(y))

|x � y|3+2s
dxdy

!

+
1


Z

R3
V"(x)⌘R|un|2 dx + on(1).

Now, by the Hölder inequality and the boundedness of (un) in Hs
" we get

�
�
�
�
�
<

 ZZ

R6
un(y)e�ı A"(

x+y
2 )·(x�y) (un(x)�un(y)e

ı A"( x+y2 )·(x�y))(⌘R(x)�⌘R(y))
|x � y|3+2s

dxdy

!��
�
�
�



 ZZ

R6
|un(x) � un(y)eı A"(

x+y
2 )·(x�y)|2

|x � y|3+2s
dxdy

! 1
2

(3.15)

⇥

 ZZ

R6
|un(y)|2

|⌘R(x) � ⌘R(y)|2

|x � y|3+2s
dxdy

! 1
2

 C

 ZZ

R6
|un(y)|2

|⌘R(x) � ⌘R(y)|2

|x � y|3+2s
dxdy

! 1
2

.
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In what follows, we show that

lim sup
R!1

lim sup
n!1

ZZ

R6
|un(y)|2

|⌘R(x) � ⌘R(y)|2

|x � y|3+2s
dxdy = 0. (3.16)

Let us note that

R6 = ((R3 \ B2R) ⇥ (R3 \ B2R)) [ ((R3 \ B2R) ⇥ B2R) [ (B2R ⇥ R3)

=: X1R [ X2R [ X3R .

Accordingly,
ZZ

R6

|⌘R(x) � ⌘R(y)|2

|x � y|3+2s
|un(x)|2dxdy

=
ZZ

X1R

|⌘R(x) � ⌘R(y)|2

|x � y|3+2s
|un(x)|2dxdy

+
ZZ

X2R

|⌘R(x) � ⌘R(y)|2

|x � y|3+2s
|un(x)|2dxdy

+
ZZ

X3R

|⌘R(x) � ⌘R(y)|2

|x � y|3+2s
|un(x)|2dxdy.

(3.17)

Since ⌘R = 1 in R3 \ B2R , we can see that

ZZ

X1R

|un(x)|2|⌘R(x) � ⌘R(y)|2

|x � y|3+2s
dxdy = 0. (3.18)

Now, fix k > 4, and we observe that

X2R = (R3 \ B2R) ⇥ B2R ⇢ ((R3 \ BkR) ⇥ B2R) [ ((BkR \ B2R) ⇥ B2R)

If (x, y) 2 (R3 \ BkR) ⇥ B2R , then

|x � y| � |x | � |y| � |x | � 2R >
|x |
2

.

Therefore, using the above fact, 0  ⌘R  1, |r⌘R|  C
R and applying the Hölder
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inequality we obtain
ZZ

X2R

|un(x)|2|⌘R(x) � ⌘R(y)|2

|x � y|3+2s
dxdy

=
Z

R3\BkR

Z

B2R

|un(x)|2|⌘R(x) � ⌘R(y)|2

|x � y|3+2s
dxdy

+
Z

BkR\B2R

Z

B2R

|un(x)|2|⌘R(x) � ⌘R(y)|2

|x � y|3+2s
dxdy

 C
Z

R3\BkR

Z

B2R

|un(x)|2

|x |3+2s
dxdy

+
C
R2

Z

BkR\B2R

Z

B2R

|un(x)|2

|x � y|3+2(s�1)
dxdy

 CR3
Z

R3\BkR

|un(x)|2

|x |3+2s
dx +

C
R2

(kR)2(1�s)
Z

BkR\B2R
|un(x)|2dx

 CR3
✓Z

R3\BkR
|un(x)|2

⇤
s dx

◆ 2
2⇤s

 Z

R3\BkR

1

|x |
32
2s +3

dx

! 2s
3

+
Ck2(1�s)

R2s

Z

BkR\B2R
|un(x)|2dx


C
k3

✓Z

R3\BkR
|un(x)|2

⇤
s dx

◆ 2
2⇤s

+
Ck2(1�s)

R2s

Z

BkR\B2R
|un(x)|2dx


C
k3

+
Ck2(1�s)

R2s

Z

BkR\B2R
|un(x)|2dx .

(3.19)

Take ⇠ 2 (0, 1), and we obtain
ZZ

X3R

|un(x)|2|⌘R(x) � ⌘R(y)|2

|x � y|3+2s
dxdy


Z

B2R\B⇠ R

Z

R3

|un(x)|2|⌘R(x) � ⌘R(y)|2

|x � y|3+2s
dxdy (3.20)

+
Z

B⇠ R

Z

R3

|un(x)|2|⌘R(x) � ⌘R(y)|2

|x � y|3+2s
dxdy.

Since
Z

B2R\B⇠ R

Z

R3\{y:|x�y|<R}

|un(x)|2|⌘R(x)�⌘R(y)|2

|x � y|3+2s
dxdy

C
R2s

Z

B2R\B⇠ R
|un(x)|2dx
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and
Z

B2R\B⇠ R

Z

R3\{y:|x�y|�R}

|un(x)|2|⌘R(x)�⌘R(y)|2

|x � y|3+2s
dxdy

C
R2s

Z

B2R\B⇠ R
|un(x)|2dx,

we can see that
Z

B2R\B⇠ R

Z

R3

|un(x)|2|⌘R(x) � ⌘R(y)|2

|x � y|3+2s
dxdy 

C
R2s

Z

B2R\B⇠ R
|un(x)|2dx . (3.21)

On the other hand, from the definition of ⌘R , ⇠ 2 (0, 1), and 0  ⌘R  1 we obtain

Z

B⇠ R

Z

R3

|un(x)|2|⌘R(x) � ⌘R(y)|2

|x � y|3+2s
dxdy

=
Z

B⇠ R

Z

R3\BR

|un(x)|2|⌘R(x) � ⌘R(y)|2

|x � y|3+2s
dxdy

 C
Z

B⇠ R

Z

R3\BR

|un(x)|2

|x � y|3+2s
dxdy (3.22)

 C
Z

B⇠ R
|un|2dx

Z 1

(1�⇠)R

1
r1+2s

dr

=
C

[(1� ⇠)R]2s

Z

B⇠ R
|un|2dx,

where we used the fact that if (x, y) 2 B⇠ R ⇥ (R3 \ BR) then |x � y| > (1� ⇠)R.
Then (3.20), (3.21) and (3.22) yield

ZZ

X3R

|un(x)|2|⌘R(x) � ⌘R(y)|2

|x � y|3+2s
dxdy


C
R2s

Z

B2R\B⇠ R
|un(x)|2dx +

C
[(1� ⇠)R]2s

Z

B⇠ R
|un(x)|2dx .

(3.23)

In view of (3.17), (3.18), (3.19) and (3.23) we can infer

ZZ

R6

|un(x)|2|⌘R(x) � ⌘R(y)|2

|x � y|3+2s
dxdy


C
k3

+
Ck2(1�s)

R2s

Z

BkR\B2R
|un(x)|2dx (3.24)

+
C
R2s

Z

B2R\B⇠ R
|un(x)|2dx +

C
[(1� ⇠)R]2s

Z

B⇠ R
|un(x)|2dx .
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Since (|un|) is bounded in Hs(R3, R), using the Sobolev embeddings in Theorem
2.2, we may assume that |un| ! |u| in L2loc(R3, R). Letting n ! 1 in (3.24) we
find

lim sup
n!1

ZZ

R6

|un(x)|2|⌘R(x) � ⌘R(y)|2

|x � y|3+2s
dxdy


C
k3

+
Ck2(1�s)

R2s

Z

BkR\B2R
|u(x)|2dx

+
C
R2s

Z

B2R\B⇠ R
|u(x)|2dx +

C
[(1� ⇠)R]2s

Z

B⇠ R
|u(x)|2dx


C
k3

+ Ck2
✓Z

BkR\B2R
|u(x)|2

⇤
s dx

◆ 2
2⇤s

+ C

 Z

B2R\B⇠ R
|u(x)|2

⇤
s dx

! 2
2⇤s

+ C
✓

⇠

1� ⇠

◆2s  Z

B⇠ R
|u(x)|2

⇤
s dx

! 2
2⇤s

,

where in the last passage we used the Hölder inequality. Since |u| 2 L2⇤s (R3, R),
k > 4 and ⇠ 2 (0, 1), we can see that

lim sup
R!1

Z

BkR\B2R
|u(x)|2

⇤
s dx = lim sup

R!1

Z

B2R\B⇠ R
|u(x)|2

⇤
s dx = 0.

Thus, taking ⇠ = 1
k , we have

lim sup
R!1

lim sup
n!1

ZZ

R6

|un(x)|2|⌘R(x) � ⌘R(y)|2

|x � y|3+2s
dxdy

 lim
k!1

lim sup
R!1

2

6
4
C
k3

+Ck2
✓Z

BkR\B2R
|u(x)|2

⇤
s dx
◆2
2⇤s

+C

0

@
Z

B2R\B R
k

|u(x)|2
⇤
s dx

1

A

2
2⇤s

+C
✓

1
k � 1

◆2s
0

@
Z

B R
k

|u(x)|2
⇤
s dx

1

A

2
2⇤s

3

7
5

 lim
k!1

C
k3

+ C
✓

1
k � 1

◆2s ✓Z

R3
|u(x)|2

⇤
s dx
◆2
2⇤s

= 0,
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which implies that (3.16) holds true. Putting together (3.14), (3.15) and (3.16) we
can deduce that

lim sup
R!1

lim sup
n!1

Z

BcR

"Z

R3

|un(x)�un(y)eı A"(
x+y
2 )·(x�y)|2

|x � y|3+2s
dy

#

+

✓
1�

1


◆
V"(x)|un|2dx=0,

and this completes the proof of (3.5).

In view of Lemma 3.1, we can define the mountain pass level by

c" := inf
�20"

max
t2[0,1]

J"(� (t)),

where
0" := {� 2 C([0, 1], Hs

" ) : � (0) = 0 and J"(� (1)) < 0}.

By applying the mountain pass theorem [3], we can see that there exists u" 2 Hs
" \

{0} such that J"(u") = c" and J 0
"(u") = 0. In a similar fashion, one can prove that

also I0 has a mountain pass geometry, and we denote by d0 the mountain pass value
of I0.

Now, let us introduce the Nehari manifold associated with J", that is

N" := {u 2 Hs
" \ {0} : hJ 0

"(u), ui = 0},

and we denote byM0 the Nehari manifold associated with I0.
It is standard to verify (see [51]) that c" can be also characterized as follows:

c" = inf
u2Hs

" \{0}
sup
t�0

J"(tu) = inf
u2N"

J"(u).

Next, we prove the existence of a ground state solution to (3.4).

Lemma 3.3. Let (un) ⇢ M0 be a sequence satisfying I0(un) ! d0. Then, up to
subsequences, the following alternative holds:

(i) (un) strongly converges in Hs(R3, R);
(ii) there exists a sequence (ỹn) ⇢ R3 such that, up to a subsequence, vn(x) :=

un(x + ỹn) converges strongly in Hs(R3, R).

In particular, there exists a minimizer w 2 Hs(R3, R) for I0 with I0(w) = d0.

Proof. Since I0 has a mountain pass geometry, we can use a version of the mountain
pass theorem without (PS) condition (see [51]), and we may suppose that (un) is a
(PS)d0 sequence for I0. Arguing as in Lemma 3.2, it is easy to check that (un) is
bounded in Hs(R3, R) and thus, up to a subsequence, we may assume that un * u
in Hs(R3, R). The weak convergence is enough to deduce that I 00(u) = 0. Now,
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we suppose that u 6= 0. Since u 2M0, we can use ( f3) and Fatou’s Lemma to see
that

d0  I0(u) �
1
4
hI 00(u), ui

=
1
4
kuk2µ +

1
2

Z

R3

1
2
f (u2)u � F(u2) dx

 lim inf
n!1


I0(un) �

1
4
hI 00(u), ui

�
= d0,

which implies that I0(u) = d0.
Let us consider the case u = 0. Since d0 > 0 and I0 is continuous, we can see

that kunk0 6! 0. Then, in view of Lemma 2.5 and ( f1)-( f2), it is standard to prove
that there are a sequence (yn) ⇢ R3 and constants R,� > 0 such that

lim inf
n!1

Z

BR(yn)
|un|4dx � � > 0.

Let us define vn := un(· + yn), and we note that vn has a nontrivial weak limit v
in Hs(R3, R). It is also clear that (vn) is a (PS)d0 sequence for I0, and arguing
as before we can deduce that I0(v) = d0. In conclusion, problem (3.4) admits a
ground state solution.

Now, let u be a ground state for (3.4). Using ' = u� := min{u, 0} as test
function in hI 00(u),'i = 0, it is easy to check that u � 0 in R3. In particular,
observing that �tu � 0 and f has a subcritical growth, we can argue as in Proposition
5.1.1 in [22] to see that u 2 L1(R3, R). In particular, we have

�tu(x) =
Z

|y�x |�1

|u(y)|2

|x � y|3�2t
dy +

Z

|y�x |<1

|u(y)|2

|x � y|3�2t
dy

 kuk2L2(R3) + kuk2L1(R3)

Z

|y�x |<1

1
|x � y|3�2t

dy  C,

so that g(x) = f (u2)u � µu � �tuu 2 L1(R3, R). By Proposition 2.9 in [46] and
s 2 (34 , 1), we can deduce that u 2 C1,� (R3, R) for any � < 2s � 1. Using the
maximum principle (see Corollary 3.4 in [24]) we can see that u > 0 in R3. Since
u 2 C1,� (R3, R) \ L p(R3, R) for all p 2 [2,1], we can deduce that u(x) ! 0
as |x | ! 1, so we can find R > 0 such that (�1)su + V0

2 u  0 in |x | > R.
By Lemma 4.3 in [26] we know that there exists a positive continuous function w

such that for |x | > R (taking R larger if necessary) it holds (�1)sw + V0
2 w = 0

and w(x)  C0
|x |3+2s , for some C0 > 0. In view of the continuity of u and w there

exists some constant C1 > 0 such that z := u � C1w  0 on |x | = R. Moreover,
we can see that (�1)s z + V0

2 z � 0 in |x | � R. Then, it follows by the maximum
principle that z  0 in |x | � R, that is 0 < u(x)  C1w(x)  C2

|x |3+2s for all |x | big
enough.
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Now we prove the following interesting relation between c" and d0.

Lemma 3.4. The numbers c" and d0 satisfy the following inequality

lim sup
"!0

c"  d0.

Proof. Let w 2 Hs(R3, R) be a positive ground state to the autonomous prob-
lem (3.4) (see Lemma 3.3), so I 00(w) = 0 and I0(w) = d0. We recall that w 2
C1,� (R3, R) \ L1(R3, R) and that satisfies the following decay estimate:

0 < w(x) 
C

|x |3+2s
for all |x | > 1. (3.25)

Let ⌘ 2 C1
c (R3, [0, 1]) be a cut-off function such that ⌘ = 1 in a neighborhood of

zero B �
2
and supp(⌘) ⇢ B� ⇢ 3 for some � > 0.

Let us define w"(x) := ⌘"(x)w(x)eı A(0)·x , with ⌘"(x) := ⌘("x) for " > 0, and
we observe that |w"| = ⌘"w, and w" 2 Hs

" in virtue of Lemma 2.4. Now we prove
that

lim
"!0

kw"k
2
" = kwk20 2 (0,1). (3.26)

Since it is clear that
R
R3 V"(x)|w"|

2dx !
R
R3 V0|w|2dx , we only need to show that

lim
"!0

[w"]
2
A" = [w]2. (3.27)

By Lemma 5 in [43] we know that

[⌘"w] ! [w] as " ! 0. (3.28)

On the other hand,

[w"]
2
A"

=
ZZ

R6

|eı A(0)·x⌘"(x)w(x) � eı A"(
x+y
2 )·(x�y)eı A(0)·y⌘"(y)w(y)|2

|x � y|3+2s
dxdy

= [⌘"w]2 +
ZZ

R6

⌘2"(y)w2(y)|e
ı[A"( x+y2 )�A(0)]·(x�y) � 1|2

|x � y|3+2s
dxdy

+2<
ZZ

R6

(⌘"(x)w(x)�⌘"(y)w(y))⌘"(y)w(y)(1�e�ı[A"(
x+y
2 )�A(0)]·(x�y))

|x � y|3+2s
dxdy

=: [⌘"w]2 + X" + 2Y".
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Then, in view of |Y"|  [⌘"w]
p
X" and (3.28), it is suffices to prove that X" ! 0

as " ! 0 to deduce that (3.27) holds. Let us note that for 0 < � < ↵/(1+ ↵ � s),

X" 
Z

R3
w2(y)dy

Z

|x�y|�"��

|eı[A"(
x+y
2 )�A(0)]·(x�y) � 1|2

|x � y|3+2s
dx

+
Z

R3
w2(y)dy

Z

|x�y|<"��

|eı[A"(
x+y
2 )�A(0)]·(x�y) � 1|2

|x � y|3+2s
dx

=: X1" + X2" .

(3.29)

Using |eıt � 1|2  4 and w 2 Hs(R3, R), we get

X1"  C
Z

R3
w2(y)dy

Z 1

"��
⇢�1�2sd⇢  C"2�s ! 0. (3.30)

Since |eıt �1|2  t2 for all t 2 R, A 2 C0,↵(R3, R3) for ↵ 2 (0, 1], and |x+ y|2 
2(|x � y|2 + 4|y|2), we have

X2" 
Z

R3
w2(y)dy

Z

|x�y|<"��

|A"
� x+y
2
�
� A(0)|2

|x � y|3+2s�2
dx

 C"2↵
Z

R3
w2(y)dy

Z

|x�y|<"��

|x + y|2↵

|x � y|3+2s�2
dx

 C"2↵
✓Z

R3
w2(y)dy

Z

|x�y|<"��

1
|x � y|3+2s�2�2↵

dx

+
Z

R3
|y|2↵w2(y)dy

Z

|x�y|<"��

1
|x � y|3+2s�2

dx
◆

=: C"2↵(X2,1" + X2,2" ).

(3.31)

Then

X2,1" = C
Z

R3
w2(y)dy

Z "��

0
⇢1+2↵�2sd⇢  C"�2�(1+↵�s). (3.32)

On the other hand, using (3.25), we infer that

X2,2"  C
Z

R3
|y|2↵w2(y)dy

Z "��

0
⇢1�2sd⇢

 C"�2�(1�s)

"Z

B1
w2(y)dy +

Z

Bc1

1
|y|2(3+2s)�2↵

dy

#

 C"�2�(1�s).

(3.33)
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Taking into account (3.29), (3.30), (3.31), (3.32) and (3.33) we can conclude that
X" ! 0. Therefore (3.26) holds. Moreover, since ⌘"w strongly converges to w in
Hs(R3, R), we can use Lemma 2.4-(5) in [38] to see that

lim
"!0

Z

R3
�t|w"||w"|

2dx =
Z

R3
�tww2dx . (3.34)

Now, let t" > 0 be the unique number such that

J"(t"w") = max
t�0

J"(tw").

Then t" satisfies

kw"k
2
" + t2"

Z

R3
�t|w"||w"|

2dx =
Z

R3
g"(x, t2" |w"|

2)|w"|
2dx

=
Z

R3
f (t2" |w"|

2)|w"|
2dx

(3.35)

where we used supp(⌘) ⇢ 3 and g = f on 3.
Let us prove that t" ! 1 as " ! 0. Since ⌘ = 1 in B �

2
and that w is a continuous

positive function, we can see that ( f4) yields

1
t2"

kw"k
2
" +

Z

R3
�t|w"||w"|

2dx �
f (t2" ↵20)
t2" ↵20

Z

B �
2

|w|2dx,

where ↵0 := minB̄ �
2

w > 0. Hence, if t" ! 1 as " ! 0, we can use ( f3), (3.34)

and (3.26) to deduce that
R
R3 �

t
|w||w|2dx = 1, that is a contradiction. On the other

hand, if t" ! 0 as " ! 0, we can use the growth assumptions on g, (3.34), (3.26)
to infer that kwk20 = 0 which gives an absurd. Therefore, t" ! t0 2 (0,1) as
" ! 0. Now, taking the limit as " ! 0 in (3.35) and using (3.34), (3.26), we can
deduce that

1
t20

kwk20 +
Z

R3
�t|w||w|2dx =

Z

R3

f (t20 |w|2)

(t20 |w|2)
|w|4dx . (3.36)

Then t0 = 1 as a consequence of w 2 M0 and ( f4). Applying the Dominated
Convergence Theorem we obtain that

Z

R3
F(|t"w"|2) dx !

Z

R3
F(|w|2) dx,

so we have lim"!0 J"(t"w") = I0(w) = d0. Since c"  maxt�0 J"(tw") =
J"(t"w"), we can infer that lim sup"!0 c"  d0.
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Now, we prove the following useful compactness result:

Lemma 3.5. Let "n!0 and (un)⇢Hs
"n be such that J"n (un)=c"n and J 0

"n (un)=0.
Then there exists (ỹn) ⇢ R3 such that vn(x) := |un|(x + ỹn) has a convergent
subsequence in Hs(R3, R). Moreover, up to a subsequence, yn := "n ỹn ! y0 for
some y0 2 3 such that V (y0) = V0 (i.e., y0 2 M).

Proof. Since hJ 0
"n (un), uni = 0, J"n (un) = c"n and using Lemma 3.4, we can see

that (un) is bounded in Hs
"n . Then, there exists C > 0 (independent of n) such that

kunk"n  C for all n 2 N. Moreover, from Lemma 2.3, we also know that (|un|) is
bounded in Hs(R3, R).

Now, we prove that there exist a sequence (ỹn) ⇢ R3 and constants R > 0 and
� > 0 such that

lim inf
n!1

Z

BR(ỹn)
|un|2 dx � � > 0. (3.37)

Assume by contradiction (3.37) does not hold, so that, for all R > 0 we get

lim
n!1

sup
y2R3

Z

BR(y)
|un|2 dx = 0.

Using the boundedness of (|un|) and Lemma 2.5, we know that |un| ! 0 in
Lq(R3, R) for any q 2 (2, 2⇤

s ). This fact and (g1) and (g2) yield

lim
n!1

Z

R3
g"n (x, |un|

2)|un|2 dx = 0 = lim
n!1

Z

R3
G"n (x, |un|

2) dx . (3.38)

On the other hand, |un| ! 0 in L
12
3+2t (R3, R) and by Lemma 2.6-(4) we deduce

that
Z

R3
�t|un ||un|

2dx ! 0. (3.39)

Taking into account hJ 0
"n (un), uni=0, (3.38) and (3.39) we can infer that kunk"n !

0 as n ! 1. This is impossible because (g1), (g2) and hJ 0
"n (un), uni = 0 imply

that there exists ↵0 > 0 such that kunk2"n � ↵0 for all n 2 N. Now, we set
vn(x) := |un|(x + ỹn). Then, (vn) is bounded in Hs(R3, R) and we may suppose
that vn * v 6⌘ 0 in Hs(R3, R) as n ! 1. Fix tn > 0 such that ṽn = tnvn 2M0.
In view of Lemma 2.3 we have

d0  I0(ṽn)  max
t�0

J"n (tvn) = J"n (un),

which together with Lemma 3.4 yields I0(ṽn) ! d0. Then, ṽn 9 0 in Hs(R3, R).
Since (vn) and (ṽn) are bounded in Hs(R3, R) and ṽn 9 0 in Hs(R3, R), we
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deduce that tn ! t⇤ > 0. From the uniqueness of the weak limit we can deduce
that ṽn * ṽ = t⇤v 6⌘ 0 in Hs(R3, R), and using Lemma 3.3 we can infer that

ṽn ! ṽ in Hs(R3, R). (3.40)

Therefore, vn ! v in Hs(R3, R) as n ! 1.
Now, we define yn := "n ỹn and we show that (yn) admits a subsequence, still

denoted by yn , such that yn ! y0 for some y0 2 3 satisfying V (y0) = V0. Firstly,
we prove that (yn) is bounded. Assume by contradiction that, up to a subsequence,
|yn| ! 1 as n ! 1. Take R > 0 such that 3 ⇢ BR . Since we may suppose that
|yn| > 2R, we have that for any z 2 BR/"n

|"nz + yn| � |yn| � |"nz| > R.

Hence using hJ 0
"n (un), uni = 0, (V1), Lemma 2.3, Lemma 2.6 and the change of

variable x 7! z + ỹn we obtain that

[vn]
2 +

Z

R3
V0v2n dx  [vn]

2 +
Z

R3
V0v2n dx +

Z

R3
�t|vn |v

2
n dx


Z

R3
g("nx + yn, |vn|2)|vn|2dx


Z

B R
"n

f̃ (|vn|2)|vn|2dx (3.41)

+
Z

R3\B R
"n

f (|vn|2)|vn|2dx .

Since vn ! v in Hs(R3, R) as n ! 1 and f̃ (t)  V0
 , we can see that (3.41)

yields

min
⇢
1, V0

✓
1�

1


◆�✓
[vn]

2 +
Z

R3
|vn|

2 dx
◆

= on(1),

that is vn ! 0 in Hs(R3, R) and this gives a contradiction. Thus, (yn) is bounded
and we may assume that yn ! y0 2 R3. If y0 /2 3, we can proceed as before
to deduce that vn ! 0 in Hs(R3, R). Therefore y0 2 3. We observe that if
V (y0) = V0, then y0 /2 @3 in view of (V2). Then, it is enough to verify that
V (y0) = V0. Otherwise, if we suppose that V (y0) > V0, putting together (3.40),
Fatou’s Lemma, the invariance of R3 by translations, Lemma 2.3 and Lemma 3.4,
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we have

d0 = I0(ṽ) <
1
2
[ṽ]2 +

1
2

Z

R3
V (y0)ṽ2 dx +

1
4

Z

R3
�t|ṽ|ṽ

2dx �
1
2

Z

R3
F(|ṽ|2) dx

 lim inf
n!1


1
2
[ṽn]

2 +
1
2

Z

R3
V ("nx + yn)|ṽn|2 dx

+
1
4

Z

R3
�t|ṽn ||ṽn|

2dx �
1
2

Z

R3
F(|ṽn|

2) dx
�

 lim inf
n!1

"
t2n
2

[|un|]2 +
t2n
2

Z

R3
V ("nz)|un|2 dz

+
t4n
4

Z

R3
�t|un ||un|

2dx �
1
2

Z

R3
F(|tnun|2) dz

#

 lim inf
n!1

J"n (tnun)  lim inf
n!1

J"n (un)  d0,

which is a contradiction. This ends the proof of this lemma.

4. Proof of Theorem 1.1

This section is devoted to the proof of the main theorem of this work. Firstly,
we prove the following lemma which plays a fundamental role to show that the
solutions of (3.2) are indeed solutions to (3.1).
Lemma 4.1. Let "n ! 0 and un 2 Hs

"n be a solution to (3.2). Then, vn := |un|(· +
ỹn) satisfies vn 2 L1(R3, R) and there exists C > 0 such that

kvnkL1(R3)  C for all n 2 N,

where ỹn is given by Lemma 3.5. Moreover it holds
lim

|x |!1
vn(x) = 0 uniformly in n 2 N.

Proof. For each n 2 N and L > 0, we define uL ,n := min{|un|, L} � 0 and
vL ,n := u2(��1)

L ,n un , where � > 1 will be chosen later. Taking vL ,n as test function
in (3.2) we can see that

<

 ZZ

R6

(un(x) � un(y)eı A"n ( x+y2 )·(x�y))

|x � y|3+2s

⇥(un(x)u
2(��1)
L ,n (x) � un(y)u

2(��1)
L ,n (y)eı A"n ( x+y2 )·(x�y)) dxdy

◆

= �
Z

R3
�t|un ||un|

2u2(��1)
L ,n dx +

Z

R3
g"n (x, |un|

2)|un|2u
2(��1)
L ,n dx

�
Z

R3
V"n (x)|un|

2u2(��1)
L ,n dx .

(4.1)
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Let us observe that

<


(un(x) � un(y)eı A"n ( x+y2 )·(x�y))

⇥ (un(x)u
2(��1)
L ,n (x) � un(y)u

2(��1)
L ,n (y)eı A"n ( x+y2 )·(x�y))

�

= <


|un(x)|2u

2(��1)
L ,n (x) � un(x)un(y)u

2(��1)
L ,n (y)e�ı A"n ( x+y2 )·(x�y)

� un(y)un(x)u
2(��1)
L ,n (x)eı A"n ( x+y2 )·(x�y) + |un(y)|2u

2(��1)
L ,n (y)

�

� (|un(x)|2u
2(��1)
L ,n (x) � |un(x)||un(y)|u

2(��1)
L ,n (y)

� |un(y)||un(x)|u
2(��1)
L ,n (x) + |un(y)|2u

2(��1)
L ,n (y)

= (|un(x)| � |un(y)|)(|un(x)|u
2(��1)
L ,n (x) � |un(y)|u

2(��1)
L ,n (y)),

from which we deduce that

<

✓ZZ

R6

(un(x) � un(y)eı A"n ( x+y2 )·(x�y))

|x � y|3+2s

⇥ (un(x)u
2(��1)
L ,n (x) � un(y)u

2(��1)
L ,n (y)eı A"n ( x+y2 )·(x�y)) dxdy

◆
(4.2)

�
ZZ

R6

(|un(x)| � |un(y)|)
|x � y|3+2s

(|un(x)|u
2(��1)
L ,n (x) � |un(y)|u

2(��1)
L ,n (y)) dxdy.

For all t � 0, let us define

� (t) := �L ,�(t) = t t2(��1)
L

where tL := min{t, L}. Let us observe that, since � is an increasing function, then
it holds

(a � b)(� (a) � � (b)) � 0 for any a, b 2 R.

Let us define the functions

3(t) :=
|t |2

2
and 0(t) :=

Z t

0
(� 0(⌧ ))

1
2 d⌧

and we note that

30(a � b)(� (a) � � (b)) � |0(a) � 0(b)|2 for any a, b 2 R. (4.3)
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Indeed, for any a, b 2 R such that a < b, and using the Jensen inequality we have

30(a � b)(� (a) � � (b)) = (a � b)
Z a

b
� 0(t)dt = (a � b)

Z a

b
(00(t))2dt

�

✓Z a

b
00(t)dt

◆2
= (0(a) � 0(b))2.

In a similar fashion, we can prove that (4.3) holds true for any a � b.
In view of (4.3) we can deduce that

|0(|un(x)|) � 0(|un(y)|)|2  (|un(x)| � |un(y)|)
⇣
|un(x)|u

2(��1)
L ,n (x)

� |un(y)|u
2(��1)
L ,n (y)

⌘
.

(4.4)

Putting together (4.2) and (4.4) we have

<

✓ZZ

R6

(un(x) � un(y)eı A"n ( x+y2 )·(x�y))

|x � y|3+2s

⇥ (un(x)u
2(��1)
L ,n (x) � un(y)u

2(��1)
L ,n (y)eı A"n ( x+y2 )·(x�y)) dxdy

◆
(4.5)

�
ZZ

R6

|0(|un(x)|) � 0(|un(y)|)|2

|x � y|3+2s
dxdy = [0(|un|)]2.

Since 0(|un|) � 1
� |un|u

��1
L ,n and recalling that Ds,2(R3, R) ⇢ L2⇤s (R3, R) (see

[21]), we get

[0(|un|)]2 � S⇤k0(|un|)k2L2⇤s (R3) �

✓
1
�

◆2
S⇤k|un|u

��1
L ,n k2

L2⇤s (R3)
. (4.6)

Taking into account (4.1), (4.5) and (4.6) we obtain
✓
1
�

◆2
S⇤k|un|u

��1
L ,n k2

L2⇤s (R3)
+
Z

R3
V"n (x)|un|

2u2(��1)
L ,n dx


Z

R3
g"n (x, |un|

2)|un|2u
2(��1)
L ,n dx .

(4.7)

On the other hand, from assumptions (g1) and (g2), for any ⇠ > 0 there exists
C⇠ > 0 such that

g"(x, t2)t2  ⇠ |t |2 + C⇠ |t |2
⇤
s for all (x, t) 2 R3 ⇥ R. (4.8)

Taking ⇠ 2 (0, V0) and using (4.7), (4.8) and Lemma 2.6 we can infer that

kwL ,nk
2
L2⇤s (R3)

 C�2
Z

R3
|un|2

⇤
s u2(��1)

L ,n dx, (4.9)
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where we set wL ,n := |un|u
��1
L ,n . Now, take � = 2⇤s

2 and fix R > 0. Observing that
0  uL ,n  |un| and applying Hölder’s inequality we have
Z

R3
|un|2

⇤
s u2(��1)

L ,n dx =
Z

R3
|un|2

⇤
s�2|un|2u

2⇤s�2
L ,n dx

=
Z

R3
|un|2

⇤
s�2
�
|un|u

2⇤s�2
2

L ,n
�2 dx


Z

{|un |<R}
R2

⇤
s�2|un|2

⇤
s dx

+
Z

{|un |>R}
|un|2

⇤
s�2
�
|un|u

2⇤s�2
2

L ,n
�2 dx


Z

{|un |<R}
R2

⇤
s�2|un|2

⇤
s dx

+

✓Z

{|un |>R}
|un|2

⇤
s dx
◆2⇤s�2

2⇤s
✓Z

R3
(|un|u

2⇤s�2
2

L ,n )2
⇤
s dx
◆ 2
2⇤s

.

(4.10)

Since (|un|) is bounded in Hs(R3, R), we can choose R sufficiently large such that

✓Z

{|un |>R}
|un|2

⇤
s dx

◆ 2⇤s�2
2⇤s


1

2C�2
. (4.11)

In view of (4.9), (4.10) and (4.11) we can infer

✓Z

R3

�
|un|u

2⇤s�2
2

L ,n
�2⇤s dx

◆ 2
2⇤s

 C�2
Z

R3
R2

⇤
s�2|un|2

⇤
s dx < 1

and letting L ! 1 we obtain |un| 2 L
(2⇤s )2
2 (R3, R).

Now, using 0  uL ,n  |un| and taking the limit as L ! 1 in (4.9) we have

k|un|k
2�
L2⇤s � (R3)

 C�2
Z

R3
|un|2

⇤
s+2(��1) dx,

from which we deduce that

✓Z

R3
|un|2

⇤
s� dx

◆ 1
2⇤s (��1)

 (C�)
1

��1

✓Z

R3
|un|2

⇤
s+2(��1) dx

◆ 1
2(��1)

.

For m � 1 we define �m+1 inductively so that 2⇤
s + 2(�m+1 � 1) = 2⇤

s�m and
�1 = 2⇤s

2 .
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Then we can see that

✓Z

R3
|un|2

⇤
s�m+1dx

◆ 1
2⇤s (�m+1�1)

 (C�m+1)
1

�m+1�1

✓Z

R3
|un|2

⇤
s�m

◆ 1
2⇤s (�m�1)

.

Let us define

Dm :=

✓Z

R3
|un|2

⇤
s�m

◆ 1
2⇤s (�m�1)

,

and using an iteration argument, we can find C0 > 0 independent of m such that

Dm+1 
mY

k=1
(C�k+1)

1
�k+1�1 D1  C0D1.

Passing to the limit as m ! 1 we find

kunkL1(R3)  C0D1 =: K for all n 2 N. (4.12)

In what follows, we show that |un| is a weak subsolution to

(
(�1)sv + V0v = g("nx, v2)v in R3

v � 0 in R3.
(4.13)

Fix ' 2 C1
c (R3, R) such that ' � 0, and we take  �,n = un

u�,n ' as test function in
(3.1), where we set u�,n =

p
|un|2 + �2 for � > 0. We note that  �,n 2 Hs

"n for all
� > 0 and n 2 N. Indeed

R
R3 V"n (x)| �,n|

2dx 
R
supp(') V"n (x)'

2dx < 1. On
the other hand, we can observe

 �,n(x) �  �,n(y)eı A"n ( x+y2 )·(x�y)

=

✓
un(x)
u�,n(x)

◆
'(x) �

✓
un(y)
u�,n(y)

◆
'(y)eı A"n ( x+y2 )·(x�y)

=

✓
un(x)
u�,n(x)

◆
�

✓
un(y)
u�,n(x)

◆
eı A"n ( x+y2 )·(x�y)

�
'(x)

+ ['(x) � '(y)]
✓
un(y)
u�,n(x)

◆
eı A"n ( x+y2 )·(x�y)

+

✓
un(y)
u�,n(x)

�
un(y)
u�,n(y)

◆
'(y)eı A"n ( x+y2 )·(x�y)
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which gives

| �,n(x) �  �,n(y)eı A"n ( x+y2 )·(x�y)|2


4
�2

|un(x) � un(y)eı A"n ( x+y2 )·(x�y)|2k'k2L1(R3)+
4
�2

|'(x) � '(y)|2kunk2L1(R3)

+
4
�4

kunk2L1(R3)k'k2L1(R3)|u�,n(y) � u�,n(x)|2


4
�2

|un(x) � un(y)eı A"n ( x+y2 )·(x�y)|2k'k2L1(R3) +
4K 2

�2
|'(x) � '(y)|2

+
4K 2

�4
k'k2L1(R3)||un(y)| � |un(x)||2,

where we used

|z + w + k|2  4(|z|2 + |w|2 + |k|2) 8z, w, k 2 C,

|eıt | = 1 for all t 2 R, u�,n � �, | unu�,n |  1, (4.12) and the following inequality

|
q

|z|2 + �2 �
q

|w|2 + �2|  ||z| � |w|| 8z, w 2 C.

Since un 2 Hs
"n , |un| 2 Hs(R3, R) (by Lemma 2.3) and ' 2 C1

c (R3, R), we
deduce that  �,n 2 Hs

"n .
Therefore

<

 ZZ

R6

(un(x) � un(y)eı A"n ( x+y2 )·(x�y))

|x � y|3+2s

⇥

✓
un(x)
u�,n(x)

'(x) �
un(y)
u�,n(y)

'(y)e�ı A"n ( x+y2 )·(x�y)
◆
dxdy

�

+
Z

R3
V"n (x)

|un|2

u�,n
'dx +

Z

R3
�t|un |

|un|2

u�,n
'dx

=
Z

R3
g"n (x, |un|

2)
|un|2

u�,n
'dx .

(4.14)



1054 VINCENZO AMBROSIO

Since <(z)  |z| for all z 2 C and |eıt | = 1 for all t 2 R, we get

<


(un(x) � un(y)eı A"n ( x+y2 )·(x�y))

⇥

✓
un(x)
u�,n(x)

'(x) �
un(y)
u�,n(y)

'(y)e�ı A"n ( x+y2 )·(x�y)
◆�

= <


|un(x)|2

u�,n(x)
'(x) +

|un(y)|2

u�,n(y)
'(y) �

un(x)un(y)
u�,n(y)

'(y)e�ı A"n ( x+y2 )·(x�y)

�
un(y)un(x)
u�,n(x)

'(x)eı A"n ( x+y2 )·(x�y)
�

�


|un(x)|2

u�,n(x)
'(x) +

|un(y)|2

u�,n(y)
'(y) � |un(x)|

|un(y)|
u�,n(y)

'(y)

� |un(y)|
|un(x)|
u�,n(x)

'(x)
�
.

(4.15)

Now, we can note that

|un(x)|2

u�,n(x)
'(x) +

|un(y)|2

u�,n(y)
'(y) � |un(x)|

|un(y)|
u�,n(y)

'(y) � |un(y)|
|un(x)|
u�,n(x)

'(x)

=
|un(x)|
u�,n(x)

(|un(x)| � |un(y)|)'(x) �
|un(y)|
u�,n(y)

(|un(x)| � |un(y)|)'(y)

=


|un(x)|
u�,n(x)

(|un(x)| � |un(y)|)'(x) �
|un(x)|
u�,n(x)

(|un(x)| � |un(y)|)'(y)
�

+

✓
|un(x)|
u�,n(x)

�
|un(y)|
u�,n(y)

◆
(|un(x)| � |un(y)|)'(y) (4.16)

=
|un(x)|
u�,n(x)

(|un(x)| � |un(y)|)('(x) � '(y))

+

✓
|un(x)|
u�,n(x)

�
|un(y)|
u�,n(y)

◆
(|un(x)| � |un(y)|)'(y)

�
|un(x)|
u�,n(x)

(|un(x)| � |un(y)|)('(x) � '(y)),

where in the last inequality we used the fact that
✓

|un(x)|
u�,n(x)

�
|un(y)|
u�,n(y)

◆
(|un(x)| � |un(y)|)'(y) � 0

because

h(t) =
t

p
t2 + �2

is increasing for t � 0 and ' � 0 in R3.
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Observing that

| |un(x)|
u�,n(x) (|un(x)| � |un(y)|)('(x) � '(y))|

|x � y|N+2s


||un(x)| � |un(y)||

|x � y|
3+2s
2

|'(x) � '(y)|

|x � y|
3+2s
2

2 L1(R6),

and |un(x)|
u�,n(x) ! 1 a.e. in R3 as � ! 0, we can use (4.15), (4.16) and the Dominated

Convergence Theorem to deduce that

lim sup
�!0

<

"ZZ

R6

(un(x) � un(y)eı A"n ( x+y2 )·(x�y))

|x � y|3+2s

⇥

 
un(x)
u�,n(x)

'(x) �
un(y)
u�,n(y)

'(y)e�ı A"n ( x+y2 )·(x�y)

!

dxdy

#

� lim sup
�!0

ZZ

R6

|un(x)|
u�,n(x)

(|un(x)| � |un(y)|)('(x) � '(y))
dxdy

|x � y|3+2s

=
ZZ

R6

(|un(x)| � |un(y)|)('(x) � '(y))
|x � y|3+2s

dxdy.

(4.17)

We can also see that the Dominated Convergence Theorem (we recall that |un |2
u�,n 

|un| and ' 2 C1
c (R3, R)) and Fatou’s Lemma yield

lim
�!0

Z

R3
V"n (x)

|un|2

u�,n
'dx =

Z

R3
V"n (x)|un|'dx �

Z

R3
V0|un|'dx (4.18)

lim inf
�!0

Z

R3
�t|un |

|un|2

u�,n
'dx �

Z

R3
�t|u||u|'dx � 0 (4.19)

and

lim
�!0

Z

R3
g"n (x, |un|

2)
|un|2

u�,n
'dx =

Z

R3
g"n (x, |un|

2)|un|'dx . (4.20)

Taking into account (4.14), (4.17), (4.19), (4.18) and (4.20) we can infer that
ZZ

R6

(|un(x)| � |un(y)|)('(x) � '(y))
|x � y|3+2s

dxdy +
Z

R3
V0|un|'dx


Z

R3
g"n (x, |un|

2)|un|'dx

for any ' 2 C1
c (R3, R) such that ' � 0, that is |un| is a weak subsolution to (4.13).
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Now, we note that vn = |un|(· + ỹn) solves

(�1)svn + V0vn  g("nx + "n ỹn, v2n)vn in R3. (4.21)

Let us denote by zn 2 Hs(R3, R) the unique solution to

(�1)s zn + V0zn = gn in R3, (4.22)

where
gn := g("nx + "n ỹn, v2n)vn 2 Lr (R3, R) 8r 2 [2,1].

Since (4.12) yields kvnkL1(R3)  C for all n 2 N, by interpolation we know
that vn ! v strongly converges in Lr (R3, R) for all r 2 [2,1), for some v 2
Lr (R3, R). From the growth assumptions on f , we have gn! f (v2)v in Lr (R3, R)
and kgnkL1(R3)  C for all n 2 N. In view of [26], we know that zn = K ⇤ gn ,
where K is the Bessel kernel, and proceeding as in [2], we can infer that |zn(x)| !
0 as |x | ! 1 uniformly with respect to n 2 N. Since vn solves (4.21) and zn
verifies (4.22), it is easy to use a comparison argument to deduce that 0  vn  zn
a.e. in R3 and for all n 2 N. Therefore, vn(x) ! 0 as |x | ! 1 uniformly with
respect to n 2 N.

Now, we are ready to give the proof of Theorem 1.1.

Proof of Theorem 1.1. In view of Lemma 3.5, we can find (ỹn) ⇢ R3 such that
"n ỹn ! y0 for some y0 2 3 satisfying V (y0) = V0. Then there is r > 0 such
that, for some subsequence still denoted by itself, it holds Br (ỹn) ⇢ 3 for all
n 2 N. Thus, B r

"n
(ỹn) ⇢ 3"n for all n 2 N, and we can deduce that R3 \ 3"n ⇢

R3 \ B r
"n

(ỹn) for all n 2 N. By Lemma 4.1, we know that there exists R > 0 such
that

vn(x) <
p
a for all |x | � R, n 2 N,

where vn(x) := |u"n |(x + ỹn). Thus, |u"n (x)| <
p
a for any x 2 RN \ BR(ỹn) and

n 2 N. On the other hand, there exists ⌫ 2 N such that for any n � ⌫ and r/"n > R
it holds

R3 \3"n ⇢ R3 \ B r
"n

(ỹn) ⇢ R3 \ BR(ỹn),

which gives |u"n (x)| <
p
a for any x 2 R3 \3"n and n � ⌫.

Therefore, there exists "0 > 0 such that problem (3.1) admits a nontrivial
solution u" for all " 2 (0, "0). Setting û"(x) := u"(x/"), we can see that û" is a
solution to the original problem (1.1). Finally, we investigate the behavior of the
maximum points of |u"n |. Using (g1), there exists � 2 (0,

p
a) small such that

g"(x, t2)t2 
V0
2
t2, for all x 2 R3, |t |  � . (4.23)
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Arguing as before, we can take R > 0 such that

ku"nkL1(BcR(ỹn)) < � . (4.24)

Up to a subsequence, we may also assume that

ku"nkL1(BR(ỹn)) � � . (4.25)

Indeed, if (4.25) does not hold, we have ku"nkL1(R3) < � , and using J 0
"n (u"n ) = 0,

(4.23) and Lemma 2.3 we can see that

[|u"n |]
2 +

Z

R3
V0|u"n |

2dx  ku"nk
2
"n +

Z

R3
�t|u"n ||u"n |

2dx

=
Z

R3
g"n (x, |u"n |

2)|u"n |
2 dx 

V0
2

Z

R3
|u"n |

2 dx

that is k|u"n |kHs(R3) = 0 which is a contradiction. Accordingly, (4.25) holds true.
Let now pn be a global maximum point of |u"n |. In view of (4.24) and (4.25), we
can see that pn belongs to BR(ỹn), that is pn = ỹn + qn for some qn 2 BR . Since
ûn(x) = u"n (x/"n) is a solution to (1.1), we deduce that ⌘"n = "n ỹn + "nqn is a
global maximum point of |ûn|. Thanks to qn 2 BR , "n ỹn ! y0 and V (y0) = V0,
we can use the continuity of V to infer that

lim
n!1

V (⌘"n ) = V0.

Finally, we prove the power decay estimate of |ûn|. Applying Lemma 4.3 in [26],
we can find a function w such that

0 < w(x) 
C

1+ |x |3+2s
, (4.26)

and

(�1)sw +
V0
2

w = 0 in BcR1 (4.27)

for some suitable R1 > 0. Invoking Lemma 4.1, we know that vn(x) ! 0 as
|x | ! 1 uniformly in n 2 N, and according to ( f1), we can find R2 > 0 such that

hn = g("nx + "n ỹn, v2n)vn 
V0
2

vn in BcR2 . (4.28)

Let wn be the unique solution to

(�1)swn + V0wn = hn in R3.
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Then, wn(x) ! 0 as |x | ! 1 uniformly in n 2 N, and by comparison 0  vn 
wn in R3. By (4.28) we can see that

(�1)swn +
V0
2

wn = hn �
V0
2

wn  0 in BcR2 .

Set R3 := max{R1, R2} and we define

� := inf
BR3

w > 0 and w̃n := (b + 1)w � �wn, (4.29)

where b := supn2N kwnkL1(R3) < 1. Our aim is to prove that

w̃n � 0 in R3. (4.30)

We first observe that

lim
|x |!1

sup
n2N

w̃n(x) = 0, (4.31)

w̃n � b� + w � b� > 0 in BR3, (4.32)

(�1)sw̃n +
V0
2

w̃n � 0 in BcR3 . (4.33)

Now assume by contradiction that there exists a sequence (x̄ j,n) ⇢ R3 such that

inf
x2R3

w̃n(x) = lim
j!1

w̃n(x̄ j,n) < 0. (4.34)

Clearly, by (4.31), it follows that (x̄ j,n) is bounded, and thus, up to subsequence,
we may suppose that there exists x̄n 2 R3 such that x̄ j,n ! x̄n as j ! 1. Then,
(4.34) implies that

inf
x2R3

w̃n(x) = w̃n(x̄n) < 0. (4.35)

From the minimality of x̄n and the representation formula for the fractional Lapla-
cian [21], we obtain that

(�1)sw̃n(x̄n) =
cs
2

Z

R3

2w̃n(x̄n) � w̃n(x̄n + ⇠) � w̃n(x̄n � ⇠)

|⇠ |3+2s
d⇠  0. (4.36)

In view of (4.32) and (4.34), we have x̄n 2 BcR3 , and using (4.35) and (4.36), we
can conclude that

(�1)sw̃n(x̄n) +
V0
2

w̃n(x̄n) < 0,

which is impossible due to (4.33). Therefore, (4.30) holds true and using (4.26) and
vn  wn we have

0  vn(x)  wn(x) 
(b + 1)
�

w(x) 
C̃

1+ |x |3+2s
for all n 2 N, x 2 R3,
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for some constant C̃ > 0. Bearing in mind the definition of vn , we can infer that

|ûn|(x) = |u"n |
✓
x
"n

◆
= vn

✓
x
"n

� ỹn
◆


C̃

1+ | x"n � ỹ"n |3+2s

=
C̃"3+2sn

"3+2sn + |x � "n ỹ"n |3+2s


C̃"3+2sn

"3+2sn + |x � ⌘"n |
3+2s

.
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[52] J. ZHANG, M. DO Ó and M. SQUASSINA, Fractional Schrödinger-Poisson systems with a
general subcritical or critical nonlinearity, Adv. Nonlinear Stud. 16 (2016), 15–30.

[53] B. ZHANG, M. SQUASSINA and X. ZHANG, Fractional NLS equations with magnetic field,
critical frequency and critical growth, Manuscripta Math. 155 (2018), 115–140.

[54] L. ZHAO and F. ZHAO,On the existence of solutions for the Schrödinger-Poisson equations,
J. Math. Anal. Appl. 346 (2008), 155–169.

[55] A. ZHU and X. SUN, Multiple solutions for Schrödinger-Poisson type equation with mag-
netic field, J. Math. Phys. 56 (2015), 091504.

Dipartimento di Ingegneria Industriale
e Scienze Matematiche
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