
Ann. Sc. Norm. Super. Pisa Cl. Sci. (5)
Vol. XXI (2020), 999-1021

Applications of interpolation methods and Morrey spaces
to elliptic PDEs

MIECZYS LAW MASTY LO AND YOSHIHIRO SAWANO

Abstract. We study abstract classes of Morrey spaces generated by the Calderón-
Lozanovskii product and investigate their interpolation properties. We also estab-
lish the stability of isomorphisms on interpolation scales of upper Calderón com-
plex interpolation spaces. These studies are motivated by applications to elliptic
differential equations which involve generalized Morrey spaces.
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1. Introduction

Morrey spaces play an important role in nonlinear potential analysis and harmonic
analysis (see [1, 2]). These Banach spaces were used for the first time by Morrey
in [23] to prove that certain systems of partial differential equations have Hölder
continuous solutions. We point out that Morrey spaces are also widely used in the
study of the local behavior of solutions of partial differential equations including
the Navier-Stokes equations (see [15, 22, 32]). Recently, more and more devices
related to Morrey spaces are invented to investigate various problems in analysis.
We notice that they are often quite close to Morrey spaces. The aim of this paper
is to obtain interpolation results whose structure has something in common with
Morrey spaces and then to apply the results to elliptic differential equations.

We recall that for 1  q  p  1, the Morrey spaceMp
q :=Mp

q (Rn) on the
n-dimensional Euclidean spaceRn is defined as the space of all q-locally integrable
functions f on Rn ( f 2 Lqloc for short) such that

k f kMp
q

:= sup
(x,r)2Rn⇥(0,1)

|B(x, r)|
1
p� 1

q

✓Z

B(x,r)
| f (y)|q dy

◆1/q
< 1.
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Here |A| stands for the measure of a Lebesgue measurable set A in Rn , and B(x, r)
denotes the open ball in Rn centred at x of radius r > 0. In particular, by the
Lebesgue Differentiation Theorem M1

q = L1 with identical norms. In what
follows, for simplicity of notation, we abbreviate B(0, r) to B(r).

Stampacchia [30], Campanato and Murthy [6] and Peetre [26] obtained some
interpolation properties of the classical Morrey spaces as early as the 1960’s.
Lemarié-Rieusset [15,17] and Yuan, Sickel and Yang [33] studied complex interpo-
lation of Morrey spaces. We mention that Lemarié-Rieusset [17] pointed out that if

1  q j < p j < 1, j 2 {0, 1}, 1/p = (1� ✓)/p0 + ✓/p1,
1/q = (1� ✓)/q0 + ✓/q1,

(1.1)

then for every ✓ 2 (0, 1),
⇥
Mp0

q0 ,M
p1
q1
⇤
✓

6=Mp
q .

In the case where q0/p0 = q1/p1, Lemarié-Rieusset [17] obtained that
⇥
Mp0

q0 ,M
p1
q1
⇤✓

=Mp
q

with identical norms. Here and below, [ · ]✓ and [ · ]✓ denote the lower and upper
Calderón complex methods of interpolation, respectively.

Lemarié-Rieusset [16] also studied real interpolation of Morrey spaces. More-
over under condition (1.1), we have

(Mp0
q0 ,M

p1
q1
�
✓,q ,!Mp

q

with continuous inclusion (see [16, Theorem 3]). So, we may expect that the op-
posite inclusion is available once we choose p suitably in the above. However,
Lemarié-Rieusset [16] also showed that

Mp
q ,! (Mp0

q0 ,M
p1
q1
�
✓,1

if and only if q0/p0 = q1/p1 (see [16,17,33] for more details).
We point out that for now there is no a complete description of the complex

interpolation spaces between Morrey spaces for general parameters. This motivates
the challenging question of describing these spaces. To answer this question we will
need new ideas which we apply to more general abstract settings. In Section 2 we
define abstract Morrey spaces generated by the Calderón-Lozanovskii product. We
name them abstract Morrey product type spaces. We prove some general embed-
ding properties between them. Section 3 contains applications of our results to the
interpolation of Morrey spaces. In Section 4 we study the stability of isomorphic
embeddings and surjections for the upper complex method [ · ]✓ of interpolation for
✓ 2 (0, 1). Under some mild assumptions we estimate the modulus of injectiv-
ity. Combining these results, we prove the stability of invertible operators between
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these interpolation scales. The study of these stability properties is motivated by
a problem arising in PDE’s. In Section 5 we present applications of our results to
elliptic differential equations, which involve generalized Morrey spaces and amal-
gam spaces (uniformly local Lebesgue spaces). We will work in non-homogeneous
function spaces, which allows us to consider r(1�1)�1/2 instead of @ j (�1)�1/2.
Since r(1�1)�1/2 is a sort of local singular integral operator, our function spaces
will fall under the scope of the a priori estimates we will obtain here.

Throughout the paper we employ standard notation, in particular, for a Banach
space E , we denote by B(E) the closed unit ball. Given two nonnegative functions
f and g defined on the same set A, we write f � g or g � f , if there is a constant
c > 0 such that f (x)  cg(x) for all x 2 A, while f ⇣ g means that both
conditions f � g and g � f hold. If X and Y are topological linear spaces, then
X ,! Y means that X ⇢ Y and that the inclusion map is continuous. Let E and
F be Banach spaces. For simplicity of notation, we write E = F if E ,! F and
F ,! E . If E = F with identical norms, then we write E ⇠= F .

ACKNOWLEDGEMENTS. We thank the referee for the helpful comments that led to
improvement of the paper.

2. Abstract Morrey spaces

We use standard notions from interpolation theory from [4]. AmappingF acting on
the class of all couples of Banach lattices is called a positive interpolation functor if
for every couple EX = (X0, X1) of Banach lattice F( EX) is an intermediate Banach
lattice with respect to EX (i.e., X0 \ X1 ⇢ F( EX) ⇢ X0 + X1), and we denote
T : F( EX) ! F( EY ) if T : EX ! EY is a positive operator between couples of Banach
lattices (meaning that T : X0+X1 ! Y0+Y1 is linear and its restrictions T : X j !
Y j , j 2 {0, 1} are defined and are positive operators). If, in addition there is a
constant C > 0 such that for every T : EX ! EY

kTkF( EX)!F( EY )  C max{kTkX0!Y0, kTkX1!Y1},

then F is called bounded (and exact if C = 1).
We employ the Calderón-Lozanovskii spaces. Recall that if EX = (X0, X1) is

a couple of Banach lattices on (X ,A, µ) and  2 U (i.e.,  : [0,1) ⇥ [0,1) !
[0,1) is a positively homogeneous and concave function), then the Calderón-
Lozanovskii space  ( EX) =  (X0, X1) consists of all f 2 L0(µ) such that | f | 
� (| f0|, | f1|) µ-a.e on X for some � > 0 and some some f j 2 B(X j ), j 2 {0, 1}.
The space  ( EX) is a Banach lattice under the norm (see [19])

k f k ( EX) := inf
�
� > 0 : | f |  � (| f0|, | f1|), f0 2 B(X0), f1 2 B(X1)

 
.
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In the case of the power function  (s, t) := s1�✓ t✓ for all s, t � 0 with 0 < ✓ < 1,
 ( EX) is the well-known Calderón space which is denoted by X1�✓0 X✓1 (see [5]). It
should be noted that F is an exact positive interpolation functor [28].

Here we work on abstract Morrey spaces. Fix a measure space (X ,A, µ), and
let D be a countable family of subsets of a given index set. Often, D is used to
denote the set of all dyadic cubes, but in our general setting D merely stands for a
covering of some index set.

Assume that ⌧ : D ! A is a monotone increasing set function with respect
to inclusion, in the sense that ⌧ (Q) ⇢ ⌧ (R) whenever Q, R 2 D satisfy Q ⇢ R.
Assume also that

X =
[

Q2D
⌧ (Q).

For every Q 2 D, suppose that we are given a Banach function lattice EQ on
(X ,A, µ). We will write E = {EQ}Q2D.

We define the abstract Morrey spaceM⌧ ({EQ}Q2D) (for simplicity of nota-
tion, we writeM⌧ ({EQ}) for short) to be the space of all f 2 L0(µ) endowed with
the norm

k f kM⌧ ({EQ}Q2D) = sup
Q2D

k f �⌧ (Q)kEQ .

If D ⇢ A and ⌧ = idD : D ! A is the embedding, then we writeM({EQ}Q2D)

instead ofM⌧ ({EQ}Q2D).
Let1 : D⇥D ! A be a function satisfying1(Q1, Q2) ⇢ 1(R1, R2) when-

ever the sets Q1, Q2, R1, R2 2 D satisfy Q1 ⇢ R1 and Q2 ⇢ R2. Assume that

X =
[

Q0,Q12D
1(Q0, Q1).

Define the abstract Morrey product type spaceM1
 ({EQ

0 }Q2D, {EQ
1 }Q2D) as the

set of all f 2 L0(µ) for which there exist � > 0, { f Q0 }Q2D 2
Q

Q2D
B(EQ

0 ) and

{ f Q1 }Q2D 2
Q

Q2D
B(EQ

1 ) such that

| f (x)|�1(Q0,Q1)(x)  � 
�
| f Q00 (x)|, | f Q11 (x)|

�
(2.1)

for µ-a.e. x 2 X . The quantity k f kM1
 ({EQ0 }Q2D,{EQ1 }Q2D)

stands for the infimum
over all possible �. IfD and1 satisfy1(Q0, Q1)=Q0\Q12D for all Q0, Q12D,
then we omit1 inM1

 ({EQ
0 }Q2D, {EQ

1 }Q2D) to writeM ({EQ
0 }Q2D,{EQ

1 }Q2D).
The case where D is a disjoint family and 1(Q1, Q2) = Q1 \ Q2 is note-

worthy. Then condition (2.1) above reads as: there exist � > 0, { f Q0 }Q2D 2
Q

Q2D
B(EQ

0 ) and { f Q1 }Q2D 2
Q

Q2D
B(EQ

1 ) such that

| f |�Q  � 
�
| f Q0 |, | f Q1 |

�
µ � a.e.
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for all Q 2 D. Since we can describe the Calderón-Lozanovskii product, we will be
able to compute the complex interpolation between the function spaces generated
by a disjoint family D.

We have the following observation:

Proposition 2.1. LetM⌧ ({EQ
j }) :=M⌧ ({EQ

j }Q2D) be an abstract Morrey space
for j 2 {0, 1}. Then for any positive exact interpolation functor F the following
continuous inclusion holds:

F(M⌧ ({EQ
0 }Q2D),M⌧ ({EQ

1 }Q2D)) ,!M⌧ ({F(EQ
0 , EQ

1 )}Q2D),

with norm of the inclusion map less than or equal to 1.

Proof. For a given R 2 D we define a positive linear operator TR by

TR( f ) := �⌧ (R) f, f 2M⌧ ({EQ
0 }Q2D) +M⌧ ({EQ

1 }Q2D).

It is clear that TR : (M⌧ ({EQ
0 }Q2D), M⌧ ({EQ

1 }Q2D)) ! (ER
0 , ER

1 ) with
kTRkM⌧ ({EQj })!ER

j
 1 for each j 2 {0, 1}. Thus, by interpolation,

TR : F(M⌧ ({EQ
0 }Q2D),M⌧ ({EQ

1 }Q2D)) ! F(ER
0 , ER

1 )

is bounded with norm less than or equal to 1. Hence

k�⌧ (R) f kF(ER
0 ,ER

1 )  k f kF(M⌧ ({EQ0 }Q2D),M⌧ ({EQ1 }Q2D))

for all R 2 D. Since R 2 D is arbitrary, it follows that
k f kM⌧ ({F(EQ0 ,EQ1 )}Q2D)

= sup
R2D

k�⌧ (R) f kF(ER
0 ,ER

1 )

 k f kF(M⌧ ({EQ0 }Q2D),M⌧ ({EQ1 }Q2D))
.

It should be noted that Proposition 2.1 generalizes the result due to Yuan,
Sickel and Yang [33, page 1836], which states: Let 0 < ✓ < 1, 1  q  p < 1,
1  q0  p0 < 1 and 1  q1  p1 < 1 satisfy (1.1), and let F be any interpola-
tion functor of exponent ✓ such that F(Lq0, Lq1) ⇢ Lq . Then T maps F(X0, X1)
toMp

q for any linear operator T bounded from X0 toMp0
q0 and from X1 toMp1

q1 .
The following theorem is our originating point:

Theorem 2.2. Let ⌧ j : D ! A, j = 0, 1, be such that ⌧ j (Q) ⇢ ⌧ j (R) for all
Q, R 2 D with Q ⇢ R. Assume that

S

Q2D
⌧0(Q) =

S

Q2D
⌧1(Q) = X . Write

1(Q, R) := ⌧0(Q) \ ⌧1(R) for Q, R 2 D. Then

 
�
M⌧0({EQ

0 }Q2D),M⌧1({EQ
1 }Q2D)

� ⇠=M1
 

�
{EQ
0 }Q2D, {EQ

1 }Q2D
�
.

In particular, when ⌧ : D ! D is a mapping such that {⌧ (Q)}Q2D forms a disjoint
family, then

 
�
M⌧ ({EQ

0 }Q2D),M⌧ ({EQ
1 }Q2D)

� ⇠=M⌧
�
{ (EQ

0 , EQ
1 )}Q2D

�
.
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Proof. Let f 2 M1
 

�
{EQ
0 }Q2D, {EQ

1 }Q2D
�
with norm less than 1. Then for each

Q 2 D there exist f Q0 2 EQ
0 and f Q1 2 EQ

1 such that for all Q0, Q1 2 D,

| f |�⌧0(Q0)\⌧1(Q1)   
�
| f Q00 |, | f Q11 |

�

with f Q00 �⌧0(Q0) 2 B(EQ0
0 ) and f Q11 �⌧1(Q1) 2 B(EQ1

1 ). Define

f0(x) := inf
�
| f Q0 (x)| : Q 2 D, x 2 ⌧0(Q)

 
,

f1(x) := inf
�
| f Q1 (x)| : Q 2 D, x 2 ⌧1(Q)

 

for all x 2 X . Then our hypothesis
S

Q2D
⌧0(Q) =

S

Q2D
⌧1(Q) = X implies

| f |   (| f0|, | f1|), Q 2 D,

and that

�
� f0�⌧0(Q)

�
�
EQ0


�
� f Q0 �⌧0(Q)

�
�
EQ0

 1,
�
� f1�⌧1(Q)

�
�
EQ1


�
� f Q1 �⌧1(Q)

�
�
EQ1

 1.

Thus, it follows that f 2 B( 
�
M⌧ ({EQ

0 }Q2D),M⌧ ({EQ
1 }Q2D)

�
).

To prove the opposite continuous inclusion we fix

f 2  
�
M⌧0({EQ

0 }Q2D),M⌧1({EQ
1 }Q2D)

�

with norm less than or equal 1. Then we can find f0 2 B(M⌧0({EQ
0 }Q2D)) and

f1 2 B(M⌧1({EQ
1 }Q2D)) such that

| f |   (| f0|, | f1|).

By letting f Q0 = f0�⌧0(Q) and f Q1 = f1�⌧1(Q) for every Q 2 D, we obtain

| f |�1(Q0,Q1) = | f |�⌧0(Q0)\⌧1(Q1)   
�
| f Q00 |, | f Q11 |

�

and
�
� f Q0

�
�
EQ0

=
�
� f0�⌧0(Q)

�
�
EQ0

 1 and
�
� f Q1

�
�
EQ1

=
�
� f1�⌧1(Q)

�
�
EQ1

 1. Thus, we
conclude that

f 2M1
 

�
{EQ
0 }Q2D, {EQ

1 }Q2D
�

with norm less than or equal to 1.
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3. Application to the interpolation of abstract Morrey spaces

We present applications of Theorem 2.2. We check that Morrey spaces fall under
the scope of this framework. Let 1  q  p < 1. To show that Theorem 2.2
covers the Morrey spaceMp

q (Rn), we denote by D the set of all dyadic cubes in
Rn . A prominent example of E = {EQ}Q2D, which recovers the classical Morrey
spaceMp

q , is:

EQ = EQ(p, q) =
�
f 2 Lq : supp( f ) ⇢ Q

 

and the norm is given by

k f kEQ = |Q|
1
p� 1

q k f kLq , f 2 EQ .

In this case we have
Mp

q =M({EQ(p, q)}Q2D).

We note that the set EQ(p, q) is independent of p as a set. However, its norm
depends on p.

Based on this observation, we generalize the above observation as follows:
Here and below in this section we once again work on a measure space (X ,A, µ),
where we are given a countable collection D of sets. The abstract Morrey space
Mp

q (D) is the set of all f 2 L0(µ) for which

k f kMp
q (D) = sup

Q2D
µ(Q)

1
p� 1

q k f �QkLq < 1.

The following theorem explains why the output of the interpolation

(Mp0
q0 (D))1�✓ (Mp1

q1 (D))✓

can be described within the framework of Morrey spaces when p0/q0 = p1/q1,
which was proved in the case of classical Morrey spaces over Euclidean spaces
[16,17] and Morrey spaces over metric measure spaces [20]:

Theorem 3.1. Let 0 < ✓ < 1, 1  q  p < 1, 1  q0  p0 < 1 and
1  q1  p1 < 1 satisfy

1
p

=
1� ✓

p0
+
✓

p1
,

1
q

=
1� ✓

q0
+
✓

q1
,

q0
p0

=
q1
p1

.

Then
(Mp0

q0 (D))1�✓ (Mp1
q1 (D))✓ =Mp

q (D).

We show that the above theorem is a consequence of Theorem 2.2.
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Proof. By Theorem 2.2, it follows that the unit ball B((Mp0
q0 (D))1�✓ (Mp1

q1 (D))✓ )

consists of all f 2 L0(µ) for which there exist f Q0 2 B(EQ(p0, q0)) and f Q1 2
B(EQ(p1, q1)) with

| f |�Q0\Q1 
�
� f Q00

�
�1�✓

�
� f Q11

�
�✓ , Q0, Q1 2 D.

Let r := p0
q0 = p1

q1 2 [1,1).
Now observe that the unit ball B((Mp0

q0 (D))1�✓ (Mp1
q1 (D))✓ ) consists of all

f 2 L0(µ) such that

| f |�Q0\Q1 
�
�gQ00

�
�
1�✓
q0

�
�gQ11

�
�
✓
q1 , Q0, Q1 2 D.

for some gQ0 2 B(EQ(r, 1)) and gQ1 2 B(EQ(r, 1)). If we consider the minimum
of the functions, we learn that this set coincides with the set of all f 2 L0(µ) for
which there exist g0, g1 2 L0(µ) with g0�Q , g1�Q 2 B(EQ(r, 1)) such that

| f |�Q0\Q1  |g0�Q0 |
1�✓
q0 |g1�Q1 |

✓
q1 , Q0, Q1 2 D.

But this set of functions consists of all f 2 L0(µ) for which we can find g0, g1 2
L0(µ) with g0�Q , g1�Q 2 B(EQ(r, 1)) and

| f | 
�
�g0

�
�
1�✓
q0

�
�g1

�
�
✓
q1 .

To conclude we need only to observe that the above set coincides with of all f 2
L0(µ) such that

| f |  |g|
1�✓
q0

+ ✓
q1

for some g 2 L0(µ) such that g�Q 2 B(EQ(r, 1)) for all Q 2 D. Obviously, this
set is the unit ball B(Mp

q (D)), as required.

If we consider the interpolation between Morrey spaces and L1, then we have
the following result:

Theorem 3.2. Suppose that we are given a collection of Banach spaces {EQ}Q2D.
Then

 (M({EQ}Q2D), {L1}Q2D) =M({ (EQ, L1)}Q2D)

with identical norms.

Proof. Based on Theorem 2.2, we calculate that:

B
�
 
�
M({EQ}Q2D), {L1}Q2D

��

=
\

Q2D

�
f 2 L0(µ) : | f |�Q   ( f Q0 , 1) for some f Q0 2 B(EQ)

 

= B
�
M({ 

�
EQ, L1)}Q2D

��
.
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We have the following corollaries which relate the Calderón-Lozanovskii prod-
uct and generalized Orlicz–Morrey spaces.

Corollary 3.3. Suppose that the parameters p, q satisfy 1  q  p < 1. Let
8 : [0,1) ! [0,1) be an Orlicz function (i.e., 8(0) = 0 and 8 is a non-zero
convex function), and let  (s, t) := t8�1(s/t), t > 0 and  (s, t) := 0 if t = 0,
where 8�1 is the right continuous inverse of 8. Then we have

 (Mp
q (D), L1)

=
[

�>0

⇢
f 2 L0(µ) : µ(Q)

q
p�1

Z

Q
8(��1| f (x)|)q dµ(x)  1, Q 2 D

�

and the norm is given by

k f k (Mp
q (D),L1) = sup

Q2D
k�Q f k (EQ ,L1)

= sup
Q2D


inf

⇢
� > 0 : µ(Q)

q
p�1

Z

Q
8(��1| f (x)|)q dµ(x)  1

��
.

Proof. Fix Q 2 D. Let EQ := Lq(Q) be the space of all q-integrable functions f
with support Q, where the norm is given by k f kEQ = µ(Q)

1
p� 1

q k f kLq . Then we
have

k�Q f k (EQ ,L1) = inf
�
� > 0 : ��1| f |�Q   (| fQ |, 1), fQ 2 B(EQ)

 

= inf
�
� > 0 : 8(��1| f |�Q)  | fQ |, fQ 2 B(EQ)

 

= inf
�
� > 0 : 8(��1| f |�Q) 2 B(EQ)

 

= inf
n
� > 0 : |Q|

q
p�1

Z

Q
8(��1| f (x)|)q dµ(x)  1

o
.

We point out that to the best knowledge of the authors, there are three classes
of generalized Orlicz-Morrey spaces. Let (X ,A, µ) be a measure space, and let
8 : [0,1) ⇥ X ! [0,1) and � : D ! (0,1) be suitable functions. For Q 2 D
define the (�,8)-average over Q of f 2 L0(µ) by

k f k(�,8) : Q := inf
⇢
� > 0 :

�(Q)

µ(Q)

Z

Q
8

✓
| f (x)|
�

, x
◆
dµ(x)  1

�
.

Define the generalized Orlicz-Morrey space L�,8(Rn)(µ) of the first kind to be the
Banach space of all f 2 L0(µ) such that k f kL�,8(Rn)(µ):= sup{k f k(�,8):Q : Q 2
D} < 1. For Q 2 D define the 8-average over Q of f by

k f k8;Q := inf
⇢
� > 0 :

1
µ(Q)

Z

Q
8

✓
| f (x)|
�

, x
◆
dµ(x)  1

�
.
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Define the generalized Orlicz-Morrey space fM�,8(Rn)(D) of the second kind as
the Banach space of all f 2 L0(µ) such hat

k f k fM�,8(Rn)(µ) := sup{�(Q)k f k8;Q : Q 2 D} < 1.

Assume that 8 is independent of x . Write 8(t) = 8(t, x) for t � 0 and x 2 X .
The generalized Orlicz-Morrey spaceM�,8(Rn) of the third kind is defined

as the set of all measurable functions f equipped with the norm:

k f kM�,8(Rn) := sup
Q2Q

1
�(`(Q))

8�1
✓

1
µ(Q)

◆
k f kL8(Q).

In Rn the generalized Orlicz-Morrey spaces L�,8(Rn), fM�,8(Rn) andM�,8(Rn)

are studied in [24, 25]. We point out that L�,8(Rn) and fM�,8(Rn) as well as
fM�,8(Rn) andM�,8(Rn) are different spaces in general (see [9]).

We can generalize Corollary 3.3 to an even wider class of spaces. We do not
have to work on metric measure spaces and we can assume that  is a function of
s, t > 0 and x 2 X . Namely for a given measure space (X ,A, µ) we consider
a function  : [0,1) ⇥ [0,1) ⇥ X ! [0,1) such that,  (·, ·, x) 2 U for every
x 2 X and every non-negative  (s, t, ·) 2 L0(µ). For example,

 (s, t, x) = s1�✓(x)t✓(x), (s, t, x) 2 [0,1) ⇥ [0,1) ⇥X ,

where ✓ 2 L0(µ) with 0  ✓  1. We can define  (X0, X1; x) analogously to
 (X0, X1).

Corollary 3.4. Suppose that the parameters p, q satisfy 1  q  p < 1. Define a
bijective function8 : [0,1)⇥X ! [0,1) so that for each x 2 X the generalized
inverse 8�1(·, x) satisfies

8�1(t, x) =  (t, 1, x), t � 0.

Then we have

 (Mp
q (D), L1; x)

=
[

�>0

⇢
f 2 L0(µ) : µ(Q)

q
p�1

Z

Q
8(��1| f (x)|, x)q dµ(x)  1, Q 2 D

�

and the norm is given by

k f k (Mp
q (D),L1;x) = sup

Q2D
k�Q f k (EQ ,L1;x)

= sup
Q2D


inf

⇢
� > 0 : µ(Q)

q
p�1

Z

Q
8(��1| f (x)|, x)q dµ(x)  1

��
.
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4. Stability of isomorphisms between upper complex spaces

The question of stability of isomorphisms when one changes the parameters that
determine the lower complex interpolation space was first considered by Shneiberg
[29]. In this section we study the stability of isomorphisms on interpolation scales
of upper complex interpolation spaces. These studies are motivated by applications,
in the next section, to elliptic differential equations which involve generalized Mor-
rey spaces.

We will use the complex methods of interpolation introduced by Calderón in
his fundamental paper [5]. Let S := {z 2 C : 0 < Rez < 1} be an open strip in
the complex plane. For a given ✓ 2 (0, 1) and any couple EX = (X0, X1) we denote
by F( EX) the Banach space of all continuous functions f : S ! X0 + X1 on the
closure S that are analytic on S, and for which R 3 t 7! f ( j + i t) 2 X j is a
bounded continuous function, for j = 0, 1. The space is endowed with the norm

k f kF( EX) := max
j=0,1

sup
t2R

k f ( j + i t)kX j .

The lower complex interpolation space is defined by [ EX]✓ := { f (✓) : f 2 F( EX)}.
It is equipped with the norm

kxk[ EX]✓
:= inf{k f kF( EX) : f 2 F( EX), f (✓) = x}.

Since [ EX]✓ is isometrically isomorphic with the quotient of F( EX) by the closed
subspace { f 2 F( EX) : f (✓) = 0}, it is a Banach space.

Calderón defined a different interpolation method as follows. Let G( EX) the
Banach space of all continuous functions g : S̄ ! X0 + X1 that are analytic on S
and grow no faster than C(1+|z|) for some C > 0. We endow G( EX) with the norm

kgkG( EX) := max
j=0,1

⇢
sup

�1<s<t<1

kg( j + is) � g( j + i t)kX j

|s � t |

�
.

The upper complex interpolation space is defined by
⇥
EX
⇤✓

:=
�
g0(✓) : g 2 G( EX)

 

and it is equipped with the quotient norm.
Throughout the paper when the complex methods are applied to a couple

(X0, X1) of Banach lattices, we mean that X j := X j (C) is a complexification
of X j for each j = 0, 1.

We recall that the Gagliardo completion or the relative completion of an inter-
mediate with respect to EX is the Banach spaceX⇠of all limits in X0+X1 of sequences
that are bounded in X and endowed with the norm kxkX⇠ := inf supn�1 kxnkX ,
where the infimum is taken over all bounded sequences {xn} in X whose limit in
X0 + X1 equals x .

We need the following lemma from [21].

Lemma 4.1. Let EX = (X0, X1) be a complex Banach couple, and let ✓ 2 (0, 1).
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(i) [X0, X1]✓ ,! [X0, X1]⇠✓ with the norm of the continuous inclusion less or
equal than 1.

(ii) [X0, X1]✓ ⇠= [X0, X1]⇠✓ if and only if B([X0, X1]✓ ) is closed in X0 + X1.

It is well known that the mapping d : S ! D defined by d(z) := tan
�
⇡
2
�
z� 1

2
��
for

all z 2 S is a conformal map of the strip S onto the open unit disc D in the complex
plane C. We are also going to need the following key estimate.

Theorem 4.2. Let EX = (X0, X1) be a complex Banach couple. Write

q(z, ⇠) :=
|d(z) � d(⇠)|

|1� d(z) d(⇠)|
, z, ⇠ 2 D. (4.1)

Then for all g 2 G( EX) \ {0} and all s, t 2 (0, 1),

kg0(t)k[ EX]t � kgkG( EX)

kg0(s)k[ EX]⇠s
� q(s, t)kgkG( EX)

kgkG( EX) � q(s, t)kg0(s)k[ EX]⇠s

.

Proof. Clearly, we need to consider the case s < t . In what follows we employ the
following facts: if a > 0 and q := q(s, t) 2 (0, 1), then the function ⇢1 given by

(qa,1) 3 x 7! x
a � qx
x � qa

is decreasing and that if b > 0 and q := q(s, t), then the function ⇢2 given by

[0, b] 3 x 7!
x � qb
b � qx

is increasing.
Invoking the invariant form of Schwarz’s Lemma from complex analysis, it is

shown in [28] that, for every f 2 F( EX) \ {0} and all s, t 2 (0, 1),

k f (t)k[ EX]t
� k f kF( EX)

k f (s)k[ EX]s
� q(s, t)k f kF( EX)

k f kF( EX) � q(s, t)k f (s)k[ EX]s

. (⇤)

Fix any g 2 G( EX) \ {0}. For a given " > 0 we can find f 2 G( EX) such that
f 0(t) = g0(t) and

k f kG( EX) < kg0(t)k[ EX]t + "  kgkG( EX) + ".

For each positive integer n, let fn : S ! C be given by

fn(z) = n( f (z + i/n) � f (z)), z 2 S.
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Since f 2 G( EX) and fn 2 F( EX) for each n,

k fn(s)k[ EX]s
 k fnkF( EX)  k f kG( EX)  kgkG( EX) + ".

Combining all the above estimates with the monotonicity of ⇢1 yields

" + kg0(t)k[ EX]t � k fnkF( EX)

k fn(s)k[ EX]s
� q(s, t)k fnkF( EX)

k fnkF( EX) � q(s, t)k fn(s)k[ EX]s

�
�
kgkG( EX) + "

�k fn(s)k[ EX]s
� q(s, t)

�
kgkG( EX) + "

�

�
kgkG( EX) + "

�
� q(s, t)k fn(s)k[ EX]s

.

Since R := sup
n2N

k fnk[ EX]s
< 1, we conclude from the monotonicity of ⇢2 that

" + kg0(t)k[ EX]t �
�
kgkG( EX) + "

� R � q(s, t)
�
kgkG( EX) + "

�

�
kgkG( EX) + "

�
� q(s, t)R

.

From the definition of g0(s), it follows that k fn(s) � g0(s)kX0+X1 ! 0 and so
g0(s) 2 [ EX]⇠s . This fact, combined with the above inequality and kg0(s)k[ EX]⇠s

 R,
yields,

" + kg0(t)k[ EX]t �
�
kgkG( EX) + "

�kg0(s)k[ EX]⇠s
� q(s, t)

�
kgkG( EX) + "

�

�
kgkG( EX) + "

�
� q(s, t)kg0(t)k[ EX]⇠s

.

Since " > 0 was arbitrary, the desired estimate follows.

We will obtain two corollaries.

Corollary 4.3. Let EX = (X0, X1) be a complex Banach couple. Then for all g 2
G( EX) and all s, t 2 (0, 1),

kg0(t)k[ EX]t � kg0(s)k[ EX]⇠s
� q(s, t)kgkG( EX).

Proof. We may assume kgkG( EX) > 0 and kg0(s)k[ EX]⇠s
� q(s, g)kgkG( EX ) > 0; oth-

erwise the conclusion is trivial. It follows from Theorem 4.2 that for all s, t 2 (0, 1)
we have

kg0(t)k[ EX]t � kgkG( EX)

kg0(s)k[ EX]⇠s
� q(s, t)kgkG( EX)

kgkG( EX) � q(s, t)kg0(s)k[ EX]⇠s

.

Since kgkG( EX) � q(s, t)kg0(s)k[ EX]⇠s
� 0, we obtain the desired result.

Corollary 4.4. Assume that (X0, X1) is a complex Banach couple such that the
B([ EX]s) is closed in X0 + X1. Then for all g 2 G( EX) \ {0} and all s, t 2 (0, 1),

kg0(t)k[ EX]t � kgkG( EX)

kg0(s)k[ EX]s � q(s, t)kgkG( EX)

kgkG( EX) � q(s, t)kg0(s)k[ EX]s
.
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Proof. If we use Lemma 4.1, then we have [ EX]s ⇠= [ EX]⇠s , and hence Theorem 4.2
applies.

We recall that if S : E ! F is a linear operator between Banach spaces, then
the modulus of injectivity of S is defined by

j (S : E ! F) := inf
x2B(E)

kSxkF .

Theorem 4.5. Let ✓0, ✓ 2 (0, 1). Let EX = (X0, X1) and EY = (Y0,Y1) be couples
of Banach spaces, and let T : EX ! EY be a bounded linear operator. Let j✓0(T ) :=
j
�
T : [ EX]✓0 ! [ EY ]⇠✓0

�
, and let M := kTk EX! EY . Assume that B([ EX]✓0) and B([ EX]✓ )

are closed in X0 + X1 and that B([ EY ]✓0) and B([ EY ]✓ ) are closed in Y0 + Y1. Then

j
�
T : [ EX]✓ ! [ EY ]✓

�
� M max

⇢
j✓0(T ) � q(✓, ✓0)M
M � q(✓, ✓0) j✓0(T )

, 0
�
.

Proof. Let x 2 B([ EX]✓ ). For a given " > 0 we can find g 2 G( EX) such that
kgkG( EX)  1 + " and g0(✓) = x . From Theorem 4.2 and the monotonicity of ⇢1
mentioned in its proof, we deduce that

kg0(✓0)k[ EX]✓0 � �(") := (1+ ")
1� q(✓, ✓0)(1+ ")

1+ " � q(✓, ✓0)
.

We put f (z) := T (g(z)) for all z 2 S. Then we have f 2 G(Y0,Y1) with
k f kG( EY )  (1+ ")M . This implies (by f 0(z) = T (g0(z)) for all z 2 S),

k f 0(✓0)k[ EY ]⇠✓0
� j✓0(T )kg0(✓0)k[ EX]✓0 � j✓0(T )�(").

Applying Lemma 4.1 and Corollary 4.4, we obtain

k f 0(✓)k[ EY ]✓ � (1+ ")M
k f 0(✓0)k[ EY ]⇠✓0

� q(✓, ✓0) (1+ ")M

(1+ ")M � q(✓, ✓0)k f 0(✓0)k[ EY ]⇠✓0

.

Combining this with k f 0(✓0)k[ EY ]⇠✓0
� j✓0(T )�(") yields

k f 0(✓)k[ EY ]✓ � M(1+ ")
j✓0(T )�(") � q(✓, ✓0)M(1+ ")

M(1+ ") � q(✓, ✓0) j✓0(T )�(")
.

Since �(") ! 1 as " # 0, we deduce that

kT xk[ EY ]✓ = k f 0(✓)k[ EY ]✓ � M
j✓0(T ) � q(✓, ✓0)M
M � q(✓, ✓0) j✓0(T )

,

which completes the proof.
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We apply Theorem 4.5 to see that T is injective.

Corollary 4.6. Assume that B([ EX]✓0) and B([ EX]✓ ) are closed in X0 + X1 and that
B([ EY ]✓0) and B([ EY ]✓ ) are closed in Y0 + Y1. Then under the assumptions of Theo-
rem 4.2, the condition j✓0(T ) > Mq(✓, ✓0) implies that j

�
T : [ EX]✓ ! [ EY ]✓

�
> 0,

i.e., T : [ EX]✓ ! [ EY ]✓ is an isomorphic embedding.

Observe that if ✓0 2 (0, 1), then q(✓, ✓0) ! 0 as ✓ ! ✓0. Thus we deduce
j✓0(T ) > 0 implies that there exists " > 0 such that j

�
T : [ EX]✓ ! [ EY ]✓

�
> 0 for

all ✓ in (0, 1) with |✓ � ✓0| < ". Suppose that B([ EX]
1
2 ) and B([ EX]✓ ) are closed in

X0 + X1 and that B([ EY ]
1
2 ) and B([ EY ]✓ ) are closed in Y0 + Y1. If j1/2(T ) > 0, then

by

q(✓, 1/2) =
�
�
� tan

h⇡
2

⇣
✓ �

1
2

⌘i��
�,

we obtain a variant of Shneiberg’s result [29] (proved for the lower complex
method) for the upper method, which states that j

�
T : [ EX]✓ ! [ EY ]✓

�
> 0 pro-

vided that �
�
�✓ �

1
2

�
�
� <

2
⇡
arctan

✓
j1/2(T )

M

◆
.

To state the next result, we still need the following well-known technical result that
can be found in [14], which is a part of the standard proof of the Open Mapping
Theorem.

Lemma 4.7. Let X and Y be Banach spaces and T : X ! Y a linear operator.
Suppose that there exist constants M > 0 and 0 < " < 1 with the following
property: For every y 2 B(Y ), there exists x 2 X with kxkX  M and kT x �
ykY < ". Then T is onto.

Now we are ready to state the next result on the stability of isomorphisms.

Theorem 4.8. Let EX = (X0, X1) and EY = (Y0,Y1) be Banach couples such that,
for all s 2 (0, 1), B([ EX]s) and B([ EY ]s) are closed in X0 + X1 and Y0 + Y1, respec-
tively. Assume that T : EX ! EY is such that T : [ EX]✓0 ! [ EY ]✓0 is an invertible oper-
ator. Then there exists a � > 0 such that |✓ � ✓0| < � implies that T : [ EX]✓ ! [ EY ]✓

is an invertible operator.

Proof. We considered injectivity in Theorem 4.5; we concentrate on surjectivity.
Fix y 2 B([Y0,Y1]✓ ). Then we can find g 2 G( EY ) such that y = g0(✓) with

kgkG( EY )  2kyk[ EY ]✓  2.

In particular this implies
kg0(✓0)k[ EY ]✓0  2.
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Since T : [ EX]✓0 ! [ EY ]✓0 is an invertible operator by hypothesis, there exists x0 2
[ EX]✓0 such that T x0 = g0(✓0) with

kx0k[ EX]✓0  kT�1k[ EY ]✓0![ EX]✓0kg
0(✓0)k[ EY ]✓0  2C,

where C := kT�1k[ EY ]✓0![ EX]✓0 .
We choose f 2 G( EX) such that x0 = f 0(✓0) with

k f kG( EX)  2kx0k[ EX]✓0 . (4.2)

Now let h := T f � g 2 G( EY ). Then h0(z) = T ( f 0(z)) � g0(z) for all z 2 S and
hence h0(✓0) = 0. Thus we obtain, by Corollary 4.3,

0 = kh0(✓0)k[ EY ]✓0 � kh0(✓)k[ EY ]✓ � d(✓, ✓0)kgkG( EY ).

Combining the above estimates gives that

kT ( f 0(✓)) � yk[ EY ]✓ = kT ( f 0(✓)) � g0(✓)k[ EY ]✓ = kh0(✓)k[ EY ]✓

 d(✓, ✓0)kgkG( EY )  2d(✓, ✓0)kyk[ EY ]✓  2d(✓, ✓0).

Since d(✓, ✓0) ! 0 as ✓ ! ✓0, we deduce that there exists � > 0 such that
|✓ � ✓0| < � implies that

kT ( f 0(✓)) � yk[ EY ]✓ 
1
2
.

To conclude, we observe that f 2 G( EX), combined with (4.2), imply that for all
✓ 2 (0, 1) we have

k f 0(✓)k[ EX]✓  4kT�1k[ EY ]✓0![ EX]✓0

and so Lemma 4.7 applies with M = 4kT�1k[ EY ]✓0![ EX]✓0 and " = 1/2.

Corollary 4.9. Let EX = (X0, X1), EY = (Y0,Y1) be couples of Banach lattices with
the Fatou property. Assume that T : EX ! EY is such that T : [ EX]✓0 ! [ EY ]✓0 is
an invertible operator. Then there exists � > 0 such that T : [ EX]✓ ! [ EY ]✓ is an
invertible operator whenever |✓ � ✓0| < �.

Proof. It was shown in [21, Corollary 3.3] that for any couple EX = (X0, X1) of
Banach lattices and all ✓ 2 (0, 1) we have that [X0, X1]✓ ⇠= X1�✓0 X✓1 and X

1�✓
0 X✓1

is a maximal Banach lattice. In particular this implies that the unit ball of [X0, X1]s
is closed in X0 + X1 for all s 2 (0, 1). To conclude it is enough to apply Theo-
rem 4.8.
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5. Application to elliptic PDE with non-smooth coefficients

In recent years a lot of activity has been devoted to the boundary-value problems and
layer potential operators associated to the elliptic differential operator �divAru,
where A is an elliptic matrix; that is, there are some real numbers ⌫1 � ⌫0 > 0 such
that, if ⌘, ⇠ 2 Cn+1 and if x 2 Rn , t 2 R, then

⌫0|⌘|
2  Re (⌘ · A(x, t)⌘) , |⇠ · A(x, t)⌘|  ⌫1|⇠ ||⌘|.

The following Dirichlet problem
divAru = 0, in Rn+1

+ with Tr u = f on Rn,

where Tr denotes the trace operator, and the Neumann problem
divAru = 0, in Rn+1

+ with ⌫ · Aru = f on Rn

were studied by many authors with data in a special type of spaces (here we identify
Rn with @Rn+1

+ ).
In this section we will apply our generalized Morrey spaces to elliptic differ-

ential equations with non-smooth coefficients. We do not employ the heat kernel
to solve this problem. A natural starting point in the study of problems mentioned
above is when the coefficients A(x, t) = A(x) are independent of the (n + 1)st
coordinate, often called the t-coordinate.

The celebrated solution of the Kato conjecture in [3] motivated, in recent years,
the study of the above Dirichlet and Neumann problems with data in L p and in
Sobolev W p spaces. We mention here that the Kato conjecture asserts that

Dom
�p

L0
�

= H1(Rn),
�
�
p
L0 f

�
�
L2 ⇣ kr f k(L2)n ,

where
L0 := � divAr =

nX

i, j=1

@

@xi

✓
ai j

@

@x j

◆
.

We consider an elliptic differential operator L with non-smooth coefficients gener-
ated by a symmetric matrix A = [ai j ]ni, j=1 2 (L1(Rn))n

2 given by

L := I + L0 = I �
nX

i, j=1

@

@xi

✓
ai j

@

@x j

◆
.

Here and below I stands for the identity operator in a Banach space X . For given
1 < q  p < 1 we define the non-local Morrey space Mp

q (Rn) to be the space of
all f 2 Lqloc(Rn) endowed with the norm given by

k f kMp
q

:= sup
x2Rn,r�1

|B(x, r)|
1
p� 1

q

✓Z

B(x,r)
| f (y)|q dy

◆ 1
q
.

When 1 < q < p < 1, one has thatMp
q (Rn) is a proper subspace of Mp

q (Rn) as
the example of the function f (x) = |x |�

1
2p� 1

2q shows.
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We observe that Mp
q (Rn) falls under the scope of generalized Morrey spaces

[27]. In fact we have Mp
q (Rn) = M'

q (Rn) with '(t) = min{tn/q , tn/p} for all
t > 0, where for a given function ' : (0,1) ! (0,1),M'

q is defined to be the
Banach space of all f 2 Lqloc(Rn) endowed with the norm

k f kM'
q

:= sup
x2Rn,r>0

'(r)
✓

1
|Q(x, r)|

Z

Q(x,r)
| f (y)|q dy

◆ 1
q
.

Let s 2 R and 1 < p < 1. Throughout this section we define WsM p
2 (Rn) to be

the space of all f 2 S 0(Rn) for which (I �1)
s
2 f 2 Mp

2 (Rn). One defines

k f kWsM p
2

:= k(1�1)
s
2 f kMp

2
, f 2 WsM p

2 (Rn).

This type of generalized Sobolev space falls under the scope of [13, 18], so that
WsM p

q (Rn) is a Banach space such that S(Rn) ,! WsM p
q (Rn) ,! S 0(Rn).

We notice that singular integral operators such as the Riesz transform are
bounded on Mp

q (Rn) =M'
q (Rn) according to the criterion in [11] and so

k f kW 1Mp
q

� k f kMp
q

+ kr f k(Mp
q )n

for all f 2 Mp
q (Rn) with r f 2 Mp

q (Rn)n .
Another observation is that for any given a > 1 and all f 2 Mp

q (Rn), we have

k f kMp
q

⇣ k f kMp
q ;a := sup

x2Rn,r�a
|B(x, r)|

1
p� 1

q

✓Z

B(x,r)
| f (y)|q dy

◆ 1
q

for all measurable functions f . It is easy to show that u 2 W 1Mp
2 (Rn) 7! Lu 2

W�1Mp
2 (Rn) is bounded. We note that WsM p

q (Rn) is a variant studied extensively
in [33].

Remark that L maps W 1Mp
2 (Rn) boundedly to W�1Mp

2 (Rn). In fact, for
any u 2 W 1Mp

2 (Rn), we have ru 2 (Mp
2 (Rn))n . Thus, A · ru 2 (Mp

2 (Rn))n ,
so it remains to combine this with the boundedness of Mp

q (Rn) 3 f 7! r f 2
W�1Mp

q (Rn)n .
We will need the estimate established in the following lemma:

Lemma 5.1. Let p � 2. Then for all u 2 W 1Mp
2 (Rn)

kukMp
2

+ kDuk(Mp
2 )n � kLukW�1Mp

2
.

Proof. Fix " 2 (0, 3�n⌫0). It suffices to show that

kukMp
2 ;"�1 + kDuk(Mp

2 ;"�1)n � kLukW�1Mp
2 ;"�1

for all u 2 W 1Mp
2 (Rn). Let  be a bump function that equals 1 on a cube Q of

volume "�n and vanishes outside its triple 3Q and satisfies kr k1  M1". We
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put f := Lu 2 W�1Mp
2 (Rn). Then we have

h f, ui =
Z

Rn

✓
u(x)2 (x) +  (x)

nX

i, j=1
ai j (x)@i u(x)@ j u(x)

+
nX

i, j=1
ai j (x)u(x)@i u(x)@ j (x)

◆
dx .

Thus we have

⌫0

✓
kuk2L2(Q)

+
nX

j=1
k@ j uk2L2(Q)

◆
� "

nX

j=1
k@ j uk2L2(3Q)

� "kuk2L2(3Q)


Z

Rn
 (x)

✓
u(x)2 +

nX

i, j=1
ai j (x)@i u(x)@ j u(x)

◆
dx

+
Z

Rn

nX

i, j=1
ai j (x)u(x)@i u(x)@ j (x) dx = h f, ui.

Denote by M the Hardy–Littlewood maximal operator. Recall that for ✓ 2 (�1, 1)
and f 2 L1loc(Rn), we have (M f )✓ 2 A2 and the A2-constant depends only ✓ ;
see [8]. Then we have

⌫0

✓
kuk2L2(Q)

+
nX

j=1
k@ j uk2L2(Q)

◆
� 3n" sup

R2D
|R|="�n

✓ nX

j=1
k@ j uk2L2(R)

+ kuk2L2(R)

◆

� k(M�Q)✓ (1�1)�1/2 f kL2k(M�Q)�✓ (1�1)1/2( u)kL2

� k f kW�1Mp
2 ;"

nX

j=1
k(M�Q)�✓ @ j (1�1)�1/2@ j ( u)kL2 .

Recall that @ j (1�1)�
1
2 is a singular integral operator considered in [8]. Thus,

k(M�Q)�✓ @ j (1�1)�1/2@ j ( u)kL2 � k(M�Q)�✓ @ j ( u)kL2 .

Using this estimate, we obtain

⌫0

✓
kuk2L2(Q)

+
nX

j=1
k@ j uk2L2(Q)

◆
� 3n" sup

R2D
|R|="�n

✓ nX

j=1
k@ j uk2L2(R)

+ kuk2L2(R)

◆

� k f kW�1Mp
2 ;"

nX

j=1
k(M�Q)�✓ @ j ( u)kL2

� k f kW�1Mp
2 ;"

�
k(M�Q)�✓ur kL2 + k(M�Q)�✓ rukL2

�

� k f kW�1Mp
2 ;"

⇣
kukL2(supp( )) + krukL2(supp( ))

⌘
.
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Thus, we obtain

(⌫0 � 3n") sup
R2D

|R|="�n

✓ nX

j=1
k@ j uk2L2(R)

+ kuk2L2(R)

◆

� k f kW�1Mp
2 ;"

⇣
kukL2(supp( )) + krukL2(supp( ))

⌘
.

By taking the supremum over Q and divide both sides by kukL2(supp( )) +
krukL2(supp( )), we obtain the desired result.

As an application of Lemma 5.1, we obtain the bijectivity of L as long as ⌫0
and ⌫1 in the assumption given in the beginning of this section are not so different.

Corollary 5.2. Let ⌫0 > 0 and p � 2 be fixed. If |⌫1 � ⌫0| < � for a sufficiently
small � > 0, Then (1�1)�1/2L(1�1)�1/2 : Mp

2 (Rn) ! Mp
2 (Rn) is an invertible

operator.

Proof. If L = 1� ⌫01, then this is a consequence of the fact that singular integral
operators are bounded in Mp

2 (Rn). In general, k(1�1)�1/2L(1�1)�1/2 f kMp
2

�
k f kMp

2
, where the implicit constant depends on ⌫0, ⌫1. As is in [10], by connecting

1� ⌫01 and L by a segment, we obtain the desired result.

Corollary 5.3. Let A = [ai j ]ni, j be a symmetric elliptic matrix with ai j 2 L1(Rn).
Let L be an elliptic differential operator with non-smooth coefficients A = [ai j ]ni, j .
Suppose that the parameters ✓ 2 (0, 1), 1  q0  p0 < 1 and 1  q1  p1 < 1
satisfy

1
p

=
1� ✓

p0
+
✓

p1
,

1
2

=
1� ✓

q0
+
✓

q1
, and

q0
q1

=
p0
p1

.

Then there exists an open set U containing (1/2, 1/2) such that (1�1)�1/2L(1�
1)�1/2 is an isomorphism from Mp

q (Rn) to Mp
q (Rn) whenever (1/p, 1/q) 2 U

\ {(1/p, 1/2) : p � 2}.

Proof. It is easy to verify that Mp
q (Rn) is a maximal Banach lattice. We have

Mp
2 (Rn) ⇠= Mp0

q0 (Rn)1�✓Mp1
q1 (Rn)✓ ⇠= [Mp0

q0 (Rn),Mp1
q1 (Rn)]✓

by Theorem 2.2 and [21, Corollary 3.3] (or by [12, Theorem 2]). Thus the statement
follows from Corollary 4.6.

A similar argument works for the amalgam space Lquloc(Rn). Recall that the
amalgam space (the uniformly local Lebesgue space) Lquloc(Rn) is the set of all
f 2 Lqloc(Rn) for which

k f kLquloc = sup
m2Zn

k f kLq (m+[0,1]n)
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is finite. It should be noted for any " > 0

k f kLquloc ⇣ sup
m2Zn

k f kLq ("m+[0,"]n)

and that

k f kLquloc ⇣ sup
x2Rn,r>0

✓
min(rn, 1)
|Q(x, r)|

Z

Q(x,r)
| f (y)|q dy

◆ 1
q

.

Although singular integral operators fail to be bounded in Lquloc(Rn) [11], we have
the following result:

Proposition 5.4. Let 1 < q < 1. Then

k@ j (1�1)�1/2 f kLquloc � k f kLquloc

for all f 2 Lquloc(Rn). In particular, for g 2 Lquloc(Rn), (1 �1)1/2g 2 Lquloc(Rn)

if and only if rg 2 Lquloc(Rn)n . Furthermore for such g,

k(1�1)1/2gkLquloc ⇣ kgkLquloc + krgk(Lquloc)n
.

Proof. The second inequality is an consequence of the first inequality. We invoke
an equality from [31]. The operator (1�1)�

1
2 is a convolution operator with kernel

K (x) =
1
2⇡

Z 1

0
exp

✓
�
⇡ |x |2

t
�

t
4⇡

◆
t
1
2 (�n+1)

dt
t

,

from which we can easily deduce that

|rK (x)| � |x |�n�1, x 2 Rn.

With this in mind, we prove at first the required estimate

k@ j (1�1)�1/2 f kLquloc � k f kLquloc, f 2 Lquloc(R
n).

Let m 2 Zn be fixed. Then we have

k@ j (1�1)�1/2 f kLq (m+[0,1]n)


X

l2Zn
k@ j (1�1)�1/2[�l+[�1,2]n f ]kLq (m+[0,1]n)

� k f kLq (m+[�1,2]n) +
X

l2Zn
k(| · �l| + 1)�n�1 ⇤ f kLq (m+[0,1]n)

� k f kLquloc .
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Let ↵ 2 R and 1 < q < 1. The space W↵Lquloc(Rn) consists of f 2 S 0(Rn)

for which k f kW↵Lquloc
= k(1 � 1)↵/2 f kLquloc is finite. Going through the same

argument as before, we obtain the following conclusion:

Lemma 5.5. For all u 2 W 1L2uloc(Rn)

kukL2uloc + kDuk(L2uloc)n
� kLukW�1L2uloc

.

Combining these results with the latter half of Theorem 2.2 in a similar manner, we
obtain the following corollary:

Corollary 5.6. Let q be sufficiently close to 2.
Then (1�1)�1/2L(1�1)�1/2 : Lquloc(Rn) ! Lquloc(Rn) is an invertible oper-

ator, or equivalently, L : W 1Lquloc(Rn) ! W�1Lquloc(Rn) is a linear isomorphism.
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