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Applications of interpolation methods and Morrey spaces
to elliptic PDEs

MIECZYSLAW MASTYLO AND YOSHIHIRO SAWANO

Abstract. We study abstract classes of Morrey spaces generated by the Calderén-
Lozanovskii product and investigate their interpolation properties. We also estab-
lish the stability of isomorphisms on interpolation scales of upper Calderén com-
plex interpolation spaces. These studies are motivated by applications to elliptic
differential equations which involve generalized Morrey spaces.
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1. Introduction

Morrey spaces play an important role in nonlinear potential analysis and harmonic
analysis (see [1,2]). These Banach spaces were used for the first time by Morrey
in [23] to prove that certain systems of partial differential equations have Holder
continuous solutions. We point out that Morrey spaces are also widely used in the
study of the local behavior of solutions of partial differential equations including
the Navier-Stokes equations (see [15,22,32]). Recently, more and more devices
related to Morrey spaces are invented to investigate various problems in analysis.
We notice that they are often quite close to Morrey spaces. The aim of this paper
is to obtain interpolation results whose structure has something in common with
Morrey spaces and then to apply the results to elliptic differential equations.

We recall that for 1 < g < p < oo, the Morrey space M} := M (R") on the
n-dimensional Euclidean space R” is defined as the space of all g-locally integrable
functions f on R” (f € L{ _ for short) such that
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Here | A| stands for the measure of a Lebesgue measurable set A in R”, and B(x, r)
denotes the open ball in R" centred at x of radius r > 0. In particular, by the
Lebesgue Differentiation Theorem M2° = L with identical norms. In what
follows, for simplicity of notation, we abbreviate B(0, r) to B(r).

Stampacchia [30], Campanato and Murthy [6] and Peetre [26] obtained some
interpolation properties of the classical Morrey spaces as early as the 1960°s.
Lemarié-Rieusset [15,17] and Yuan, Sickel and Yang [33] studied complex interpo-
lation of Morrey spaces. We mention that Lemarié-Rieusset [17] pointed out that if

1 <gj<pj<oo,jel{0,1}, 1/p=({1-0)/po+06/pi1,

(1.1)
/g =0 —0)/q0 +0/q1,

then for every 6 € (0, 1),
M. MG, #M§.
In the case where g/ po = ¢q1/p1, Lemarié-Rieusset [17] obtained that
6
[Mao. Mg!]" = Mg

with identical norms. Here and below, [ -]y and [ -]? denote the lower and upper
Calder6n complex methods of interpolation, respectively.

Lemarié-Rieusset [16] also studied real interpolation of Morrey spaces. More-
over under condition (1.1), we have

Po P1 p
M MY, > M}

with continuous inclusion (see [16, Theorem 3]). So, we may expect that the op-
posite inclusion is available once we choose p suitably in the above. However,
Lemarié-Riecusset [16] also showed that

Mg — (Mg(?’ Mgll)e,oo

if and only if g0/ po = g1/ p1 (see [16,17,33] for more details).

We point out that for now there is no a complete description of the complex
interpolation spaces between Morrey spaces for general parameters. This motivates
the challenging question of describing these spaces. To answer this question we will
need new ideas which we apply to more general abstract settings. In Section 2 we
define abstract Morrey spaces generated by the Calderdn-Lozanovskii product. We
name them abstract Morrey product type spaces. We prove some general embed-
ding properties between them. Section 3 contains applications of our results to the
interpolation of Morrey spaces. In Section 4 we study the stability of isomorphic
embeddings and surjections for the upper complex method [ - 1 of interpolation for
0 € (0,1). Under some mild assumptions we estimate the modulus of injectiv-
ity. Combining these results, we prove the stability of invertible operators between
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these interpolation scales. The study of these stability properties is motivated by
a problem arising in PDE’s. In Section 5 we present applications of our results to
elliptic differential equations, which involve generalized Morrey spaces and amal-
gam spaces (uniformly local Lebesgue spaces). We will work in non-homogeneous
function spaces, which allows us to consider V(1 — A)~Y2 instead of 3 i (=A)~V2,
Since V(1 — A)~1/2 is a sort of local singular integral operator, our function spaces
will fall under the scope of the a priori estimates we will obtain here.

Throughout the paper we employ standard notation, in particular, for a Banach
space E, we denote by B(E) the closed unit ball. Given two nonnegative functions
f and g defined on the same set A, we write f < g or g > f, if there is a constant
¢ > 0 such that f(x) < cg(x) for all x € A, while f < g means that both
conditions f < g and g < f hold. If X and Y are topological linear spaces, then
X < Y means that X C Y and that the inclusion map is continuous. Let E and
F be Banach spaces. For simplicity of notation, we write £ = F if E < F and
F — E.If E = F with identical norms, then we write £ = F.

ACKNOWLEDGEMENTS. We thank the referee for the helpful comments that led to
improvement of the paper.

2. Abstract Morrey spaces

We use standard notions from interpolation theory from [4]. A mapping F acting on
the class of all couples of Banach lattices is called a positive interpolation functor if
for every couple X = (Xo, X1) of Banach lattlce F (X ) is an intermediate Banach
lattice w1th respect to X (z Le., XO NnX; C ]:(X) C Xo + X1), and we denote
T:F (X ) —> F (Y YIf T X > Yisa positive operator between couples of Banach
lattices (meaning that 7': Xo+X; — Yp+7Y is linear and its restrictions T": X ; —
Y;, j € {0, 1} are defined and are positive operators). If, in addition there is a
constant C > 0 such that for every T : X—>7Y

1Tl iy < € max{IT xg— oo 1T lx, 13 ),

then F is called bounded (and exact if C = 1). .

We employ the Calderén-Lozanovskii spaces. Recall that if X = (Xp, X1) is
a couple of Banach lattices on (X, A, u) and ¥ € U (i.e., ¥ : [0, 0) x [0, 00) —
[0, o0) is a positively homogeneous and concave functlon) then the Calderén-

Lozanovskii space w(X ) = ¥ (X0, X1) consists of all f € LO(M) such that | f| <
AU fol, | fi) n-a.e on X for some A > 0 and some some f; € B(X;), j € {0, 1}.

The space 1//(;( ) is a Banach lattice under the norm (see [19])

Ifly ) =inf{r >0 |fl <2 fol, | fiD, fo € B(Xo), fi € B(XD}.
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In the case of the power function ¥ (s, t) := s170¢% forall s, 1 > O with0 < 6 < 1,
1/f(X ) is the well-known Calderon space which is denoted by X, 1= 9X 0 (see [5]). It
should be noted that F is an exact positive interpolation functor [28]

Here we work on abstract Morrey spaces. Fix a measure space (X, A, i), and
let D be a countable family of subsets of a given index set. Often, D is used to
denote the set of all dyadic cubes, but in our general setting D merely stands for a
covering of some index set.

Assume that 7: D — A is a monotone increasing set function with respect
to inclusion, in the sense that t(Q) C t(R) whenever O, R € D satisfy Q C R.

Assume also that
X=Jro.
QeD
For every Q € D, suppose that we are given a Banach function lattice E¢ on
(X, A, ). We will write E = {E€}gep.
We define the abstract Morrey space M™({E Q}er) (for simplicity of nota-

tion, we write M ({ E2}) for short) to be the space of all f € LO%(w) endowed with
the norm

||f||Mr({EQ}QED) = sup || fxz(@)llge-
QeD

IfDC Aand v = idp: D — A is the embedding, then we write M({E9}gep)
instead of M*({E9} pep).

Let A: D x D — A be a function satisfying A(Q1, Q2) C A(Ry, Ry) when-
ever the sets Q1, O, R1, Ry € D satisfy Q1 C Ry and Q» C R,. Assume that

xX= [J Ao 0.
00,0:€D

Define the abstract Morrey product type space M@({EOQ}QGD, {E 1Q}QeD) as the
set of all f € L%(w) for which there exist A > 0, {fOQ}QED e |1 B(EOQ) and
QeD

(/@) 0ep € T1 B(ED) such that
QeD

| 01X 00 @) < A (1£2 @)L 1£2 () 2.1)

for u-a.e. x € X. The quantity ||f||M$({E0Q}Q€D’{E1Q}Q€D)

over all possible 1. If D and A satisfy A(Qo, Q1)=QoN Q€D forall Qy, Q1€D,
then we omit A in M5 ({E¢} gep. {E} gep) to write My, ({EC}gen {EL ) gep).
The case where D is a disjoint family and A(Q1, Q2) = Q1 N Q3 is note-
worthy. Then condition (2.1) above reads as: there exist A > 0, { fOQ}er €
[T B(EE) and {f%}gep € 1‘[ B(E?) such that
QeD

stands for the infimum

1flxo < M (IF2112) n—ae.
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forall Q € D. Since we can describe the Calderon-Lozanovskii product, we will be
able to compute the complex interpolation between the function spaces generated
by a disjoint family D.

We have the following observation:

Proposition 2.1. Let M” ({EJQ}) = M" ({E].Q}er) be an abstract Morrey space

for j € {0, 1}. Then for any positive exact interpolation functor F the following
continuous inclusion holds:

FM (ES}oen), MFUEP)0ep)) = MEUF(ES, ED))ep),
with norm of the inclusion map less than or equal to 1.

Proof. For a given R € D we define a positive linear operator Tg by
TR(f) = xew fy | € MTUES ) gen) + MTUER) gep).

It is clear that Tg: (MT({EC}oep), MTUEL)oep)) — (EE, ER) with
||TR”MT({EJ.Q})—>E_f < 1 for each j € {0, 1}. Thus, by interpolation,

Tr: FIMT(EZ}oep), MTUEL) gep)) — F(ER, EF)

is bounded with norm less than or equal to 1. Hence

”X‘E(R)f”]—‘(Eée,ElR) = ”f”]:(Mr({E()Q}er)’Mr({ElQ}QeD))

for all R € D. Since R € D is arbitrary, it follows that

I pte 2 £ 01 gemy = 390 Ixect) e 8

< I e (52 g M (EL e -

It should be noted that Proposition 2.1 generalizes the result due to Yuan,
Sickel and Yang [33, page 1836], which states: Let0 < 6 < 1,1 < g < p < 00,
1 <go<po<ooandl < gq; < p; < oo satisfy (1.1), and let F be any interpola-
tion functor of exponent 6 such that F (L%, L91) ¢ L4. Then T maps F(Xo, X1)
to MY for any linear operator T bounded from X to M2 and from X, to MJ!.

The following theorem is our originating point:

Theorem 2.2. Let t;: D — A, j = 0,1, be such that t;(Q) C t;(R) for all

O,R € Dwith Q C R. Assume that |J ©(Q) = |J u(Q) = X. Write
QeD QeD
A(Q, R) :=1(Q) N 11(R) for O, R € D. Then

Y (MOUES) gep). M (EL) gep)) = ME(ES 0ep. {EL ) 0eD).

In particular, when t: D — D is a mapping such that {t(Q)}oep forms a disjoint
family, then

Y (MTUEE) 0ep), MTUEL ) 0ep)) = MT((W(EZ, E2)} gep).
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Proof. Let f € M@({E()Q}er, {EIQ}er) with norm less than 1. Then for each
0 € D there exist f° € EL and f2 € EZ such that for all Qg, Q1 € D,

| fIxwnnmn < WL 1A2M)

with f()QOXro(Qo) € B(EOQO) and leIXTl(Ql) € B(EIQI). Define

fox) =inf{|f2@)] : QeD, xen(Q)
Sy =inf{|f2@)] : QeD, xen(0Q)

for all x € X. Then our hypothesis | J w(Q) = | 71(Q) = & implies
QeD QeD

|[fl=vdfl.IAD. QeD,

and that

”fOXTo(Q) ||E(30- = ”fOQXTo(Q) HEOQ =1, ”letl(Q) ”EIQ = ||f1QXTI(Q) HEIQ =1L

Thus, it follows that f € B (M*(EZ}gen)s MTUEZ} gep))).
To prove the opposite continuous inclusion we fix

f e p(MOUEL) oep), MTUEL) gep))

with norm less than or equal 1. Then we can find fy € B(MTO({EOQ}QEp)) and
fi € B(MT({E?} gep)) such that

|f1 =¥l 1f1D-

By letting fOQ = foXw (o) and le = f1Xz (o) forevery Q € D, we obtain

0 0
| f1Xac00,00) = | f1Xzo0pnmon < (15201 1)

and [ £, po = [ foxwo | go < Tand [ 2] yo = [ fixn(o) | g < 1. Thus, we
conclude that

fe MS(E& oen {ER) 0en)

with norm less than or equal to 1. O
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3. Application to the interpolation of abstract Morrey spaces

We present applications of Theorem 2.2. We check that Morrey spaces fall under
the scope of this framework. Let 1 < g < p < oo. To show that Theorem 2.2
covers the Morrey space Mé’ (R™), we denote by D the set of all dyadic cubes in
R". A prominent example of E = {E Q}er, which recovers the classical Morrey
space MY, is:

EC=E%(p.q)={f €LY : supp(f) C O}
and the norm is given by

1

1
Ifllge =1017 4| fllLe, f€E“.

In this case we have

ML = MUEC(p, 9)}gep)-

We note that the set E2(p, ¢) is independent of p as a set. However, its norm
depends on p.

Based on this observation, we generalize the above observation as follows:
Here and below in this section we once again work on a measure space (X, A, u),
where we are given a countable collection D of sets. The abstract Morrey space
MUE(D) is the setof all f € LO(w) for which

1_1
1 £y = sup 1(Q)? 411 fxollze < oo.
QeD

The following theorem explains why the output of the interpolation
(M (D)~ (MG (D))’

can be described within the framework of Morrey spaces when po/qo = p1/q1,
which was proved in the case of classical Morrey spaces over Euclidean spaces
[16,17] and Morrey spaces over metric measure spaces [20]:

Theorem 3.1. Let 0 < 6 < 1,1 < g < p < 00,1 < gy < po < o0 and
1 <q1 < p1 < oo satisfy

1 1—-0 0 1 1-0 6
- + 9 + ) @:q—l

p Po P1 q q0 q1 Po P1

Then
(ME(D)' P (MEN(D))? = MI(D).

We show that the above theorem is a consequence of Theorem 2.2.
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Proof. By Theorem 2.2, it follows that the unit ball B((ML? (D))= (MF! (D))?)
consists of all f € LO(w) for which there exist fOQ € B(E Q(p(), qo)) and le €
B(E9(p1, q1)) with

1-6 0
|

f]Q 1

|f|XQ0ﬂQ1 =< |fOQO| s QO? Ql S D.

— b0 _ D1
Letr := o = ar € [1, 00).

Now observe that the unit ball B((Mg(? (D))'—? (./\/lgl1 (D))?) consists of all
fe L%(w) such that

1-6 9
| f1xoono; < |g2°| ™ |e2' |7, Qo, Q1 €D.

for some gOQ € B(E2(r, 1)) and ng € B(EC(r, 1)). If we consider the minimum
of the functions, we learn that this set coincides with the set of all f € L%(u) for
which there exist gg, g1 € LO(w) with 80X0->81X0 € B(E2(r, 1)) such that
1-6 0
| f1xoono = 180x0ol © Ig1x0, 1%, Qo, Q1 €D.
But this set of functions consists of all f € L%(u) for which we can find gg, g1 €
LO(w) with goxg. 81xo € B(EC(r, 1)) and
1= 8
If1 < |go|  |gi]7.

To conclude we need only to observe that the above set coincides with of all f €
LO(w) such that

Fl < lgl® T
for some g € LO(,u) such that gxp € B(EQ(r, 1)) forall Q € D. Obviously, this
set is the unit ball B(/\/lf; (D)), as required. ]

If we consider the interpolation between Morrey spaces and L°°, then we have
the following result:

Theorem 3.2. Suppose that we are given a collection of Banach spaces {E Q}QED.
Then

Y(MUE2} gep), (L™} gep) = MUY (EC, L™)} gep)

with identical norms.

Proof. Based on Theorem 2.2, we calculate that:

B(¥(MUE9}gen), (L™} gep))

= (N {Fel’w : Iflxe < w(fP. D forsome £’ € B(Eo))
QeD

= B(M{y(E2, L®)}gep)). O
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We have the following corollaries which relate the Calderén-Lozanovskii prod-
uct and generalized Orlicz—Morrey spaces.

Corollary 3.3. Suppose that the parameters p, q satisfy 1 < g < p < 00. Let
®: [0,00) — [0, 00) be an Orlicz function (i.e., ©(0) = 0 and ® is a non-zero
convex function), and let (s, t) := tCD’l(s/t), t >0and Y(s,t) :==0ift =0,
where ®~! is the right continuous inverse of ®. Then we have

Y(MED), L)
= {f e Lo%u) : w(@)r ! /Q SR FWDT dux) < 1,0 € D}

>0

and the norm is given by

1Ay (e Dy, Loy = sUP X0 fllyeo, 1o
YMyD).L%) = S V(EQ.L®)

= sup [inf{k >0: M(Q)%_l
QeD

/QCD(/\‘IIf(X)I)" dp(x) < 1”

Proof. Fix Q € D. Let EQ := L(Q) be the space of all g-integrable functions f

1_1
with support Q, where the norm is given by || fllgo = w(Q)? 4| fllre. Then we
have

Ixo fllyEe.roey =inf{A >0: A7 flxo <¥(fol.1). fo € B(ED)}

{
=inf{x>0: ®07"Iflxo) <|fol. fo <€ BE?)]
=inf{r>0: ®0"'|flxo) € B(ED)}

—inf{>0: |Q|Z1/Q¢<Al|f(x>|)qcm<x>sl}. o

We point out that to the best knowledge of the authors, there are three classes
of generalized Orlicz-Morrey spaces. Let (X, A, u) be a measure space, and let
®: [0,00) x X — [0,00) and ¢: D — (0, 00) be suitable functions. For Q € D
define the (¢, ®)-average over Q of f € LO(w) by

¢(Q) ¢(|f()€)|
n(@) Jo A

Define the generalized Orlicz-Morrey space Ly o(R™)(u) of the first kind to be the

Banach space of all f € LO(M) such that || fllz, o @)= sup{ll fll@.0)0 : O €
D} < o00. For Q € D define the ®-average over Q of f by

||f||<D;Q::inf{A>O: @/;»('fi’“)',x)dmx)sl}.

||f||(¢’q)):QI:inf{)\.>02 ,x) d,u(x)fl}.




1008 MIECZYSLAW MASTYLO AND YOSHIHIRO SAWANO

Define the generalized Orlicz-Morrey space M¢,¢(R”)(D) of the second kind as
the Banach space of all f € L%(u1) such hat

1153, o e = SUPIS (D) fllozg = Q € D} < oo,

Assume that @ is independent of x. Write ®(¢) = ®&(¢,x) fort > 0and x € X.
The generalized Orlicz-Morrey space Mg, o(IR") of the third kind is defined
as the set of all measurable functions f equipped with the norm:

1 1
ny 1= o ! ®(0)-
I f Mg (R 5‘;% 50)) (M(Q))llfllL 0

In R” the generalized Orlicz-Morrey spaces L4 o ([R"), /\A/iq,,@(JR") and Mgy o (@R")
are studied in [24,25]. We point out that L4 »([R") and My o (@R") as well as

My o@®R") and My o(R") are different spaces in general (see [9]).

We can generalize Corollary 3.3 to an even wider class of spaces. We do not
have to work on metric measure spaces and we can assume that v is a function of
s,t > 0 and x € X. Namely for a given measure space (X, A, u) we consider
a function v : [0, 00) x [0, 00) x X — [0, 00) such that, ¥ (-, -, x) € U for every
x € X and every non-negative ¥ (s, t, ) € LO(M). For example,

U(s, t,x) =s70O0ID (51, x) € [0, 00) x [0, 00) x X,

where 6 € LO(M) with 0 < 6 < 1. We can define ¥ (X, X1; x) analogously to
¥ (Xo, X1).

Corollary 3.4. Suppose that the parameters p, q satisfy 1 < q < p < 00. Define a
bijective function ®: [0, 0c0) x X — [0, 00) so that for each x € X the generalized
inverse ®~1(-, x) satisfies

o't x) =y, 1,x), 1>0.
Then we have

Y (MJ (D), L*; x)
-U {f € L°Gn) : p(@)?!

>0

/ SN )L, x)dux) <1, Q€ D}
0
and the norm is given by

||f||W(M,’1’(D),Loo;x) = 51;113) ”XQf”w(EQ’Loo;x)

= sup |:inf{k >0: [L(Q)%_l/ CD()»_IIf(x)I,x)q du(x) < 1}i|
0

QeD
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4. Stability of isomorphisms between upper complex spaces

The question of stability of isomorphisms when one changes the parameters that
determine the lower complex interpolation space was first considered by Shneiberg
[29]. In this section we study the stability of isomorphisms on interpolation scales
of upper complex interpolation spaces. These studies are motivated by applications,
in the next section, to elliptic differential equations which involve generalized Mor-
rey spaces.

We will use the complex methods of interpolation introduced by Calder6n in
his fundamental paper [5]. Let S := {z € C : 0 < Rez < 1} be an open strip in
the complex plane. For a given 6 € (0, 1) and any couple X = (Xp, X1) we denote
by F ()? ) the Banach space of all continuous functions f: S — Xo + X on the
closure S that are analytic on S, and for which R 3 ¢ + f(j +it) € X jisa
bounded continuous function, for j = 0, 1. The space is endowed with the norm

1l 2%y = max, sup IfG+inlx,.

The lower complex interpolation space is defined by [)? lo:={f0): feF ()? )}
It is equipped with the norm

lxllygy, = il £l r g, : £ € FAX). £O) = x).

Since [}2' Jo is isometrically isomorphic with the quotient of F' (f( ) by the closed
subspace { f € .7-"()?) : f(@) = 0}, it is a Banach space.

Calder6n defined a different interpolation method as follows. Let g()? ) the
Banach space of all continuous functions g: S — X + X, that are analytic on §
and grow no faster than C (1 + |z|) for some C > 0. We endow g()? ) with the norm

Ig(j +is) —g(j +inlx;
”g”g()}) = jrr:la .

X {
0,1 —00<s§ <t <00 |S - t|

The upper complex interpolation space is defined by [5(]9 = { g0 :geg (X )}
and it is equipped with the quotient norm.

Throughout the paper when the complex methods are applied to a couple
(Xo, X1) of Banach lattices, we mean that X; := X;(C) is a complexification
ofXj foreach j =0, 1.

We recall that the Gagliardo completion or the relative completion of an inter-
mediate with respect to X is the Banach space X of all limits in X¢+X of sequences
that are bounded in X and endowed with the norm |x| x~ := infsup,~; |[x.|lx,
where the infimum is taken over all bounded sequences {x,} in X whose limit in
Xo + X1 equals x.

We need the following lemma from [21].

Lemmad4.l. Let X = (X0, X1) be a complex Banach couple, and let 0 € (0, 1).
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i) [Xo, X117 — [Xo, X1y with the norm of the continuous inclusion less or
equal than 1.
() [Xo, X117 = [Xo, X1lg if and only if B([Xo, X119) is closed in Xo + X ;.

It is well known that the mapping d: S — D defined by d(z) := tan (% (z - %)) for
all z € S is a conformal map of the strip S onto the open unit disc D) in the complex
plane C. We are also going to need the following key estimate.

Theorem 4.2. Let X = (X0, X1) be a complex Banach couple. Write

ld(z) —d(&)]

, ):= e
19 = 0 de)

z,& eD. 4.1)

Then for all g € G(X) \ {0} andalls,t € (0, 1),

I8’ ®lg — a6 Dliglg )
Iglg, — a6 DIg ® gy

”g/(t)”[)}]t = ”g”g()})

Proof. Clearly, we need to consider the case s < ¢. In what follows we employ the
following facts: if a > 0 and ¢ := ¢ (s, t) € (0, 1), then the function p; given by

a—qx

(ga,00) 3 x > x
X —qa

is decreasing and that if » > 0 and g := ¢(s, t), then the function p, given by

—qgb
[0,b]5x —> 4
b—gx

is increasing.
Invoking the invariant form of Schwarz’s Lemma from complex analysis, it is
shown in [28] that, for every f € F(X) \ {0} and all 5,7 € (0, 1),

) N ®ligy, =96 D1 Flp g
17Ol = 1 e,

()

Fix any g € G(X) \ {0}. For a given ¢ > 0 we can find f € G(X) such that
f'@) =g'(t) and
1 llge < 18O llzy +6 < gl + &

For each positive integer n, let f,: § — C be given by

fa@ =n(fz+i/n)— f(2), z€S.
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Since f € g(i() and f, € ]-'()2') for each n,

1 lzy < Walzg < 1o < lgllge, +e-
Combining all the above estimates with the monotonicity of p; yields
12z, — 46 Ol fall 2
1 allr i, — a6 DIz,
1l z,, — a6 D(Iglgi + )
(Illge) + &) — a6 DI a5,

Since R := sup || f» ||[ %), < 00, we conclude from the monotonicity of p, that
neN

e+ 18 Ollzy = 1full 23

> (”g”g(fg) + 8)

R —q(s, t)(“g”g(f() + 5)
(Igllgeg, +€) —a(s, DR

€+ ”g/(t)”[f(]r = (”g”g()}) + 8)

From the definition of g’(s), it follows that || f,(s) — g'(s)llx,+x, — O and so
g'(s) € [X]; . This fact, combined with the above inequality and ||g’ Oz~ <R,
yields, ‘
IIg/(S)II[;(]; —q(s, f)(||g||g(;}) +¢)
(||g||g(;}) +&) —q(s, Dlig" Oz~ '

e+ 18 Olzy = (Iglgz +¢)

Since ¢ > 0 was arbitrary, the desired estimate follows. O

We will obtain two corollaries.
Corollary 4.3. Let X = (X0, X1) be a complex Banach couple. Then for all g €
GX)andalls,t € (0, 1),
18 Ollgy = 18 ® g — a6 Dlglg g,

Proof. We may assume ||g||g(;() > 0 and ||g/(s)||[;(]; —q(s, g)llgllg(j) > 0; oth-
erwise the conclusion is trivial. It follows from Theorem 4.2 that for all s, r € (0, 1)

we have ,
lg" ) llizy~ —a (s, Dllgllgzy

”g”g(f() —q(s, t)“g/(s)”[)?]; ‘

“g/(t)H[)}]t > ”g”g()})
Since ||g||g(;0 —q(s, t)||g’(s)||[;(]7 > 0, we obtain the desired result. O

Corollary 4.4. Assume that (Xo, X1) is a complex Banach couple such that the
B([X1%) is closed in Xo + X1. Thenforall g € G(X)\ {0} and all s, t € (0, 1),

18z — a6 Dlglg )
I8llge — G- D8 ® gy

”g/(t)”[)}]t = ”g”g(f()
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Proof. If we use Lemma 4.1, then we have [}? | [)? 15", and hence Theorem 4.2
applies. O

We recall that if S: E — F is a linear operator between Banach spaces, then
the modulus of injectivity of S is defined by

j(§: E— F):= inf |Sx|F.
x€B(E)

Theorem 4.5. Let 60,6 € (0,1). Let X = (Xo, X1) and Y = (Yo, Y1) be couples
of Banach spaces, and let T : X — Y be a bounded linear operator. Let jg,(T) :=

J(T: X1 — (Y1), and let M = |T||5_ j. Assume that B(IX1") and B([X1°)
are closed in Xo + X and that B([f}]%) and B([)?]e) are closed in Yo + Y. Then

Joo(T) — q (0, 60)M 0}
M —q(8,60) jo,(T)’

J(T: X1 — Y1) = Mmax{

Proof. Let x € B([)}]G). For a given ¢ > 0 we can find g € g(f() such that
||g||g(;() < 1+ ¢ and g’'(®) = x. From Theorem 4.2 and the monotonicity of p;
mentioned in its proof, we deduce that

1—4(0,600)(1 +¢)
1+¢—q(0,6)

I8 @)l 70 = 8(e) = (1 + &)

We put f(z) := T(g(z)) for all z € S. Then we have f € G(Xy, Y1) with
I fllg, = (1+&)M. This implies (by f(2) =T(g'(z)) forall z € S),

£ @0l = Jan (DI E gy = o (T3E).
Applying Lemma 4.1 and Corollary 4.4, we obtain

IIf/(Go)II[fz]gO —q(0,60) (1 + )M

")l 50 1+e)M .
If( )H[Y] > ( €) (l—|—8)M—Q(eaeo)”f/(QO)“[?J;O

Combining this with ||f/(90)||mg > Jjg,(T)5(e) yields
0

Joo (T)3() —q (0, 60)M(1 + ¢)
M1+ &) —q(8, 600) o, (T)3(e)

1O 7 = M(1+¢)

Since (¢) — 1 as e | 0, we deduce that

Joo(T) — q(8, 60)M
M —q(8,60) jo, (T)’

which completes the proof. O

1Tl g = 1F @)l gy = M
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We apply Theorem 4.5 to see that T is injective.

Corollary 4.6. Assume that B([X]QO) and B([X]G) are closed in Xo + X1 and that
B([Y]QO) and B([Y ]9) are closed in Yo + Y. Then under the assumptions of Theo—
rem 4.2, the condition jg,(T) > Mq(6, 60) implies that j (T [X]9 — [Y] )

ie., T: [X]G — [Y]9 is an isomorphic embedding.

Observe that if 6y € (0, 1), then g(0,6p) — 0 as & —_6p. Thus we deduce
Jao(T) > 0 implies that there exists ¢ > 0 such that J(T [X]G — [Y] ) > 0 for

all 8 in (0, 1) with |8 — 6y| < e. Suppose that B([X] ) and B([X] ) are closed in
Xo + X1 and that B([¥]?) and B([V]°) are closed in Yo + Y1. If jj ;2(T) > 0, then

by
q6,1/2) = |tan [z(e _ %)]

we obtain a variant of Shneiberg’s result [29] (proved for the lower complex
method) for the upper method, which states that j(7 : (X1 — [Y] %) > 0 pro-

vided that
1 2 i12(T
‘0 — —‘ < —arctan JIL() .
2 T M

To state the next result, we still need the following well-known technical result that
can be found in [14], which is a part of the standard proof of the Open Mapping
Theorem.

9

Lemma 4.7. Let X and Y be Banach spaces and T : X — Y a linear operator.
Suppose that there exist constants M > 0 and 0 < ¢ < 1 with the following
property: For every y € B(Y), there exists x € X with ||x||lx < M and ||Tx —
vlly < e.Then T is onto.

Now we are ready to state the next result on the stability of isomorphisms.

Theorem 4.8. Let X = (Xo, X1) and Y = (Yo, Y1) be Banach couples such that,
foralls € (0, 1), B([X] ) and B([Y]S) are closed in Xo +- Xy and Yo + Y1, respec-
tively. Assume that T : X — YissuchthatT: [X 1% — [Y]e0 is an invertible oper-
ator. Then there exists a § > 0 such that |0 — 6y| < & implies that T : [X]e — [Y]G
is an invertible operator.

Proof. We considered injectivity in Theorem 4.5; we concentrate on surjectivity.
Fix y € B([Yo, Y11?). Then we can find g € G(Y) such that y = g/(#) with

lllg, < 20¥lgp <2

In particular this implies
1" @)l gy < 2.
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Since T : [}_f' 1% — [)7 1% is an invertible operator by hypothesis, there exists xo €
[X1% such that Txo = g’ (6y) with

||.X()||[)‘(]90 = ”T_l”[f/]Go_)[)}]% ||g/(90)||[)7]90 <2C,

where C := ||T_1||[;,]90_)[)}]90.
We choose f € G(X) such that xo = f/(6p) with

”f”g()}) = 2||X()||[)}J90. (4.2)

Nowleth :=Tf — g € Q(?). Then h'(z) = T(f'(z)) — g'(z) forall z € S and
hence i’ (6p) = 0. Thus we obtain, by Corollary 4.3,

0= [IK'@) 70 = I @)l —d©O.60)lIglg 7
Combining the above estimates gives that

IT (£ ©0)) = Yligpe = IT(f©O) — & Ol = 11 Ol 5y
=d®,00)lgllgyy =2dO, 00yl yp = 2d©, 6o).

Since d(0,6y) — 0 as 8 — 6Oy, we deduce that there exists § > 0 such that
|6 — 6| < § implies that

1
ITCFO) = yligp < 5-
To conclude, we observe that f € g(f( ), combined with (4.2), imply that for all
6 € (0, 1) we have

L' Oz < 41T 50 70

and so Lemma 4.7 applies with M = 4| T~! II[;,]eO_)[;(]e(, and ¢ = 1/2. O

Corollary 4.9. Let X = (Xo, X1), Y = (Yo, Y}) be couples of Banach lattices with
the Fatou property. Assume that T: X — Y is such that T : LX]Q0 —>_’[Y]90 is
an invertible operator. Then there exists 6 > 0 such that T : [X1? — [Y1? is an
invertible operator whenever |0 — 6| < 8.

Proof. It was shown in [21, Corollary 3.3] that for any couple X = (Xo, X1) of
Banach lattices and all # € (0, 1) we have that [Xo, X1’ = X(l)_GX? and Xé_eXf
is a maximal Banach lattice. In particular this implies that the unit ball of [ X, X{]°
is closed in Xo + X; for all s € (0, 1). To conclude it is enough to apply Theo-
rem 4.8. ]
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5. Application to elliptic PDE with non-smooth coefficients

In recent years a lot of activity has been devoted to the boundary-value problems and
layer potential operators associated to the elliptic differential operator —divAVu,
where A is an elliptic matrix; that is, there are some real numbers v; > vy > 0 such
that, if n, & € C**! and if x € R", 1 € R, then

volnl*> <Re (- A(x,0)n), |&- Alx, )l < vil&llnl.
The following Dirichlet problem
divAVu =0, in R’}jl with Tru = f onR”,

where Tr denotes the trace operator, and the Neumann problem
divAVu =0, in Rf’pq with v- AVu = f on R”

were studied by many authors with data in a special type of spaces (here we identify
R” with aR" ).

In this section we will apply our generalized Morrey spaces to elliptic differ-
ential equations with non-smooth coefficients. We do not employ the heat kernel
to solve this problem. A natural starting point in the study of problems mentioned
above is when the coefficients A(x,7) = A(x) are independent of the (n + 1)st
coordinate, often called the ¢-coordinate.

The celebrated solution of the Kato conjecture in [3] motivated, in recent years,
the study of the above Dirichlet and Neumann problems with data in L? and in
Sobolev WP spaces. We mention here that the Kato conjecture asserts that

Dom(y'Lo) = H'R"),  |VLof |2 = IV F Iz

where noog P
Lo := —divAV = —lai— ).
’ ' inZ:] dx; <al] axj)

We consider an elliptic differential operator L with non-smooth coefficients gener-
ated by a symmetric matrix A = [a;;]} j=1 € (L"o(]R”))"2 given by

= =1- —aii— ).
0 l.jzlaxi ljaxj

Here and below I stands for the identity operator in a Banach space X. For given
I < g < p < oo we define the non-local Morrey space M,‘; (R™) to be the space of

all f e LI (R"™) endowed with the norm given by

loc

1/l == sup |B<x,r>|%—3(/3( )|f<y>|qdy>q.

xeR” r>1

When 1 < g < p < 00, one has that Mg (R™) is a proper subspace of M,‘; (R™) as
1 1

the example of the function f(x) = |x| 27~ 2 shows.
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We observe that Méj (R™) falls under the scope of generalized Morrey spaces
[27]. In fact we have M) (R") = M (R") with ¢(t) = min{t"/9,+"/P} for all
t > 0, where for a given function ¢: (0, co) — (0, 00), M? is defined to be the
Banach space of all f € Lfo .(R") endowed with the norm

1 7
1 £l == sup so(r)(— |f<y)|‘fdy>.

xeR" r>0 |Q(x, )| O(x,r)

Lets € Rand 1 < p < oo. Throughout this section we define WSMé7 (R™) to be
the space of all f € §'(R") for which (I — A)%f € Mé’ (R™). One defines

1 lwspay =1L = D)3 Fllygp. f € WMER™.

This type of generalized Sobolev space falls under the scope of [13,18], so that
WSMg (R™) is a Banach space such that S(R") — W* qu (R™y — S’ (R").

We notice that singular integral operators such as the Riesz transform are
bounded on Mcf R") = ./\/lg(R”) according to the criterion in [11] and so

”f”W'Mg' < ||f||MqP + ”vf”(qu)n
forall f € M} (R") with Vf € MJ(R")".

Another observation is that for any givena > 1 and all f € M,‘; (R™), we have

1
_1 q
i (/ O dy)
xeR" r>a B(x,r)

==

1 gy = 1 f g0 == sup 1B, )|

for all measurable functions f. It is easy to show that u € WlMé’ R +— Lu €
w-l Mé’ (R™) is bounded. We note that W* M,f (R™) is a variant studied extensively
in [33].

Remark that L maps Wle (R™) boundedly to W_le (R™). In fact, for
any u € W'MJ®R"), we have Vu € (M3 (R™)". Thus, A - Vu € (M5 (R™)",
so it remains to combine this with the boundedness of Mcf R"Y > f—> Vf €
wiMf (R,

We will need the estimate established in the following lemma:

Lemma 5.1. Let p > 2. Then for all u € Wle(]R”)

lullpgp + 1Dullprpyn < WLl yy—1p7-
Proof. Fix ¢ € (0,37"vp). It suffices to show that
||l/t||M§;€71 + ||Du||(M21’;871)n < ||Lu||W*1M2p;g*l

for all u € Wlep (R™). Let ¢ be a bump function that equals 1 on a cube Q of
volume &~ and vanishes outside its triple 3Q and satisfies |V |looc < Mie. We
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put f :=Lu € W_le(]R"). Then we have

(fvu) = /R ) (u(x)%v(x) + () D @i (03 (0)d;u(x)

i, j=1
+ Z aij(x)u(x)aiu(x)ajl//(x)> dx.
ij=1

Thus we have
n n
vo<||u||iz(Q) +) ||a,<u||§2(Q)> —e ) 8juljag — elulliag,
j=1 j=1

=< fRn w(X)<u(X)2 + aij(x)aiu(x)aj”(x)> dx

i,j=1
+ /R > @i @)u)du)d (x) dx = (. yu).
n ij=1

Denote by M the Hardy—Littlewood maximal operator. Recall that for 6 € (-1, 1)
and f € Ll (R™), we have (M f)‘) € Aj and the Aj-constant depends only 6;

loc
see [8]. Then we have

n n
vo<||u||iz(Q)+Z||aju||’iz@>—3"s sup (Z ||aju||iz(m+||u||iz<m)
j=1

ReD i=1
IRl=" 7

< [(Mx)? (1 = A2 f 21 Mx0) 0 (1 — MV (ru)l 2

n
< I f =gz 2 1M x@)*8;(1 = 2728, w2
Jj=1

Recall that 9;(1 — A)_% is a singular integral operator considered in [8]. Thus,

(M x0)08;(1 — A)TV28; ()l 2 < (M xo) ™8 (u)ll 2.

Using this estimate, we obtain

n n
vo<||u||iz(Q)+Z||aju||iz@)—3"8 sup (Z||aju||iz(R)+||u||iz(R))
j=1

ReD i=1
IRl=e"

< lhy-taee D MM x) ™0 (W)l 2
Jj=l1

<1 ly-tase (M x@) uV 2 + (M x @)™ ¥Vl 2)

<1 Ty-raagie (102 upp0) + V8 2 uppt )
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Thus, we obtain

n

(v —3"e) sup (Z 190072, + ||u||iz(R)>
Za S J=l1

|R|=¢""

< M llw-1apse (”””L%supp(w» + ||V“||L2<supp<w>>) :

By taking the supremum over Q and divide both sides by [lullz2(upp(y)) +
ullz2 , we obtain the desired result.
IVaell 12 supp(y)) btain the desired resul [

As an application of Lemma 5.1, we obtain the bijectivity of L as long as vy
and v; in the assumption given in the beginning of this section are not so different.

Corollary 5.2. Let vg > 0 and p > 2 be fixed. If |vi — vo| < & for a sufficiently
small § > 0, Then (1—A)~V2L(1—A)~1V/2: Mf(]R”) — Mf(]R”) is an invertible
operator.

Proof. If L = 1 — v A, then this is a consequence of the fact that singular integral
operators are bounded in M2 (R"). In general, ||(1 — A)~1/2L(1 — A)71/2 f|| =
Il M where the implicit constant depends on vg, v;. As is in [10], by connecting
1 —vpA and L by a segment, we obtain the desired result. O

Corollary 53. Let A = [a;;]! j be a symmetric elliptic matrix with a;; € L*°(R").
Let L be an elliptic differential operator with non-smooth coefficients A = [a;;]} i
Suppose that the parameters 0 € (0,1),1 < gy < pp <ocand1 < q; < p; <

satisfy

1 1-6 6 1 1-6 6
—= +— 5= +—, and L1
p Do P 2 q0 q1 q P

Then there exists an open set U containing (1/2,1/2) such that (1 — A)~Y2L(1 —
A2 is an isomorphism from M;’(]R”) to M[‘ID(]R") whenever (1/p,1/q) € U
\{(d/p,1/2): p =2}

Proof. 1t is easy to verify that M(f (R™) is a maximal Banach lattice. We have
M7 R") = Mg (R Mg (R = (Mg (R"), Mg} (R’

by Theorem 2.2 and [21, Corollary 3.3] (or by [12, Theorem 2]). Thus the statement
follows from Corollary 4.6. O

A similar argument works for the amalgam space Lﬁloc (R™). Recall that the
amalgam space (the uniformly local Lebesgue space) LEIOC(R") is the set of all
f e LI (R") for which

loc

||f||L‘f1 = sup || fllLam+10,11)
uloc e 7n
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is finite. It should be noted for any ¢ > 0

I fllga =< sup || fllLa@m+i0.e1)
uloc n

mez.
and that 1
min(r", 1) ‘
lfllga =< sup (7 lf )1 dy) :
Luloc X€R" r>0 |Q(x,r)| Q(x,r)

Although singular integral operators fail to be bounded in LZlo (R™) [11], we have
the following result:

Proposition 54. Let 1 < g < co. Then
18,1 = &) 2l < A1fle

forall f € LY, (R"). In particular, for g € LT (R"), (1 — A)'/?g e LY (R")

uloc uloc uloc

ifand only if Vg € LY (R™". Furthermore for such g,

uloc
10— 8)Pgllg < Ngllzg, + V8l

Proof. The second inequality is an consequence of the first inequality. We invoke
an equality from [31]. The operator (1 — A)_% is a convolution operator with kernel

00 2
K(x):L/ exp<_n|x| _L)t%(—n—i-l)ﬂ’
2w Jo t 4 t

from which we can easily deduce that
IVK ()| < |x|™""!, xeR"
With this in mind, we prove at first the required estimate
18,1 =272 fllpa < 11flle . f € Lijoc (R,
Let m € Z" be fixed. Then we have

18;(1 = A2 Fll Lamet10,17m)

< > 18,0 = AVl 1.20 FlllLamio.am
lezZl

< I lzagmri-ram + D00~ + D7 s Fll oo
lez"

< .
£l 0
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Leta € Rand 1 < g < oo. The space W*LY (R") consists of f € S'(R")

uloc

for which “f”W“qu = = A)a/2f||qu _is finite. Going through the same
argument as before, we obtain the following conclusion:

Lemma 5.5. Forallu € W'L?,_(R")

uloc

u Du < ||Lul|y- .
” ”Lﬁloc + ” ”(Lﬁloc)n ” ”W lLﬁloc

Combining these results with the latter half of Theorem 2.2 in a similar manner, we
obtain the following corollary:

Corollary 5.6. Let g be sufficiently close to 2.
Then (1—A)~Y2L(1=A)"V/2; Lﬁloc(R”) — L% (R™) is an invertible oper-

uloc
ator, or equivalently, L : Wleloc R") — W_leloc(R”) is a linear isomorphism.
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