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The connecting solution of the Painlevé phase transition model

MARCEL G. CLERC, MICHA L KOWALCZYK AND PANAYOTIS SMYRNELIS

Abstract. The second Painlevé O.D.E. y00 � xy � 2y3 = 0, x 2 R, is known
to play an important role in the theory of integrable systems, random matrices,
Bose-Einstein condensates and other problems. The generalized second Painlevé
equation1y� x1y� 2y3 = 0, (x1, x2) 2 R2, is obtained by multiplying by�x1
the linear term u of the Allen-Cahn equation 1u = u3 � u. It involves a non
autonomous potential H(x1, y) which is bistable for every fixed x1 < 0, and thus
describes as the Allen-Cahn equation a phase transition model. The scope of this
paper is to construct a solution y connecting along the vertical direction x2, the
two branches of minima of H parametrized by x1. This solution plays a similar
role that the heteroclinic orbit for the Allen-Cahn equation. It is the the first to
our knowledge solution of the Painlevé P.D.E. both relevant from the applications
point of view (liquid crystals), and mathematically interesting.

Mathematics Subject Classification (2010): 35J91 (primary); 35J20, 35B40,
35B06, 35B25 (secondary).

1. The Allen-Cahn and Painlevé phase transition models

A standard phase transition model is given by the Allen-Cahn O.D.E.:

u00 = u3 � u, in R, (1.1)

that can alternatively be written u00 = W 0(u), whereW (u) = 1
4 (u

2�1)2 is a double
well potential. In this model, u describes the mass fraction of the two phases of a
substance (e.g., an alloy), and takes values approximately +1 or �1 for the pure
phases. Equation (1.1) has a variational structure. Let

EAC(u, (a, b)) :=
Z b

a

✓
1
2
|u0|2 +

1
4
(u2 � 1)2
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be the Allen-Cahn energy associated to (1.1). To minimize EAC the right balance
between the contributions of the kinetic energy 1

2 |u
0|2 and the potential should be

achieved. On the one hand the term 1
2 |u

0|2 penalizes high variations of u, while on
the other hand the potential term W forces the minimizer to be close to its global
minima ±1. It is clear that the trivial solutions ±1 are the two global minimizers
of EAC. Thus, it is more relevant to investigate instead, the existence of local mini-
mizers which are also called minimal solutions. While solutions of (1.1) are critical
points of EAC, a minimal solution u of (1.1) satisfies the stronger condition:

EAC(u, supp�)  EAC(u + �, supp�),

for all � 2 C1
0 (R) (i.e. any perturbation with compact support of u has greater or

equal energy). It turns out that up to translations and change of x by �x , the only
nontrivial minimal solution of (1.1) is the heteroclinic orbit ⌘(x) = tanh(x/

p
2),

connecting at ±1 the two phases ±1.
A much more challenging problem is the description of all bounded solutions

of the Allen-Cahn P.D.E.:

1u = u3 � u, in Rn, (1.2)

which is associated to the functional EAC(u,�) :=
R
�

�1
2 |ru|

2 + 1
4 (u

2 � 1)2
�

(where � ⇢ Rn is bounded). De Giorgi in 1978 [17] suggested a striking analogy
with minimal surface theory that led to significant developments in P.D.E. and the
Calculus of Variations, by stating the following conjecture about bounded solutions
on Rn:
Conjecture 1.1 (De Giorgi). Let u 2 C2(Rn) be a solution to (1.2) such that

i) |u| < 1;
ii) @u

@xn > 0 for all x 2 Rn .

Is it true that all the level sets of u are hyperplanes, at least for n  8?
The relationship with the Bernstein problem for minimal graphs is the reason

why n  8 appears in the conjecture. We refer to the expository papers of Farina and
Valdinoci [18], and Savin [28] for a detailed account. The conjecture was proved
by Ghoussoub and Gui in [19] for n = 2, for n = 3 by Ambrosio and Cabré in [7]
and for 4  n  8 by Savin in [27] under the extra requirement that

lim
xn!±1

u(x1, . . . , xn) = ±1. (1.3)

If we drop the monotonicity requirement as well as (1.3) and simply ask about the
structure of minimal solutions1 of (1.2), then we know from [27] that, for n  7
any minimal solution u of (1.2) is either trivial, i.e., u ⌘ ±1 or one dimensional,

1 Again, we say that the solution u is minimal if EAC(u, supp�)  EAC(u + �, supp�), for all
� 2 C1

0 (Rn).
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i.e., u(x) = ⌘((x � x0) · ⌫), for some x0 2 Rn , and some unit vector ⌫ 2 Rn . Thus
the heteroclinic orbit ⌘ of O.D.E. (1.1) plays a crucial role for entire solutions of
P.D.E. (1.2).

In order to construct other connecting solutions of (1.2), one shall impose some
additional requirements. For instance, when n = 2, (1.2) admits a unique saddle
solution u (cf. [16]) satisfying the following properties:

• u(x1, x2) has the same sign as the product x1x2;
• u is odd with respect to x1 and x2;
• limx1!1 u(x1, x2) = ⌘(x2), and ux1(x1, x2) > 0, 8x2 > 0;
• lim�!1 u(� cos ✓, � sin ✓) = 1, 8✓ 2 (0,⇡/2).

This example also outlines the hierarchical structure of (1.2), since by taking the
limit of a solution along certain directions at infinity, lower dimensional solutions
are obtained (cf. [6, Chapter 8]). For more examples of connecting maps under
symmetry assumptions or in the vector case, we refer to [6, Chapters 6, 7, 9] and
the references therein (in particular [4] and [29]).

The second Painlevé O.D.E.:

y00 � xy � 2y3 = 0, x 2 R, (1.4)

is basically obtained by multiplying the linear term in the right hand side of (1.1)
by �x . Alternatively, we can write (1.4) as

y00 = Hy(x, y), x 2 R, (1.5)

with H(x, y) := 1
2 xy

2+ 1
2 y
4. In contrast withW (defined below (1.1)), the potential

H is non autonomous i.e. it depends both on x and y.
Equation (1.4) is known to play an important role in the theory of integrable

systems [1], random matrices [11, 15, 20], Bose-Einstein condensates [2, 3, 24, 30]
and other problems [5, 23, 25]. Recently [12] it has been shown that when the right
hand side of (1.4) is allowed to be a constant ↵ 2 R then it describes local profiles of
the so-called shadow kink in the theory of light-matter interaction of nematic liquid
crystals (cf. also [31, 32]). In [8, 13, 14] further relation between other types of non
topological defects (shadow vortices, shadow domain walls) and the generalized
Painlevé equation

1y � x1y � 2y3 = 0, 8x = (x1, x2) 2 R2, (1.6)

was established showing that their local structure is determined by special solutions
of (1.6). One of the characteristics of these solutions is that they should be entire,
another is that they should be minimal. To explain what this means, let � 2 R2 be
a bounded subset of R2 and

EPII(u,�) =
Z

�


1
2
|ru|2 +

1
2
x1u2 +

1
2
u4
�

,
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be the functional associated to the generalized second Painlevé equation. By defi-
nition a solution of (1.6) is minimal if

EPII(y, supp�)  EPII(y + �, supp�) (1.7)

for all � 2 C1
0 (R2). This notion of minimality is standard for many problems in

which the energy of a localized solution is actually infinite due to non compactness
of the domain. The study of minimal solutions of (1.4) has been recently initiated
in [12] where we have showed that the Hastings-McLeod solution, denoted in this
paper by h, is, up to the sign change, the only minimal solution which is bounded
at +1. We recall (cf. [22]) that h : R ! R is positive, strictly decreasing (h0 < 0)
and such that

h(x) ⇠ Ai(x), x ! 1,

h(x) ⇠
p

|x |/2, x ! �1. (1.8)

Clearly, the asympotic behaviour of h is determined by the location of the global
minima of the potential H(x, y) associated to the equation (1.4). Indeed for x fixed,
H attains its global minimum equal to 0 when y = 0 and x � 0, and equal to � x2

8
when y = ±

p
|x |/2 and x < 0. Thus, the global minima of H bifurcate from the

origin, and the two minimal solutions ±h of (1.4) interpolate these two branches of
minima.

Equation (1.6) or equivalently 1y = Hy(x1, y), with x = (x1, x2) 2 R2 and
H(x1, y) := 1

2 x1y
2 + 1

2 y
4 (cf. the expression of EPII ), involves a non autonomous

potential which is bistable for every fixed x1 < 0. Hence the Painlevé general-
ized equation (1.6) describes as the Allen-Cahn equation a phase transition model.
For the latter the phase transition connects the two minima ±1 while for the for-
mer the phase transition connects the two branches ±

p
(�x1)+/2 of minima of H

parametrized by x1. Note that in the Painlevé model the phase transition occurs only
in the P.D.E. case, i.e., when the domain is Rn+1 = R ⇥ Rn with n � 1. The scope
of this paper is to construct a solution y of (1.6) connecting as x2 ! ±1 and x1 is
fixed, the two branches of minima of H (cf. Theorem 1.2 below). It is the first to our
knowledge example of solution of the generalized Painlevé equation both relevant
from the applications point of view and mathematically interesting. The solution
y has similar properties as the heteroclinic orbit ⌘: it is odd and monotonous with
respect to x2, and as x1 ! �1 its rescaled profile is actually given by ⌘. Af-
ter the statement of Theorem 1.2, we will further discuss its similarities with the
heteroclinic orbit ⌘.

Theorem 1.2. There exists a solution y : R2 ! R to

1y � x1y � 2y3 = 0, 8x = (x1, x2) 2 R2, (1.9)
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such that

(i) y is positive in the upper-half plane and odd with respect to x2 i.e. y(x1, x2) =
�y(x1,�x2);

(ii) y and its derivatives are bounded in the half-planes [s0,1) ⇥ R, 8s0 2 R;
(iii) y is minimal with respect to perturbations � 2 C1

0 (R2) such that �(x1, x2) =
��(x1,�x2);

(iv) |y(x1,x2)|
Ai(x1) = O(1), as x1 ! 1 (uniformly in x2);

(v) For every x22R fixed, let ỹ(t1, t2) :=
p
2

(� 3
2 t1)

1
3
y
�
�(�3

2 t1)
2
3 , x2+t2(�3

2 t1)
� 1
3
�
.

Then

lim
l!�1

ỹ(t1 + l, t2) =

8
><

>:

tanh(t2/
p
2) when x2 = 0

1 when x2 > 0
�1 when x2 < 0

(1.10)

for the C1loc(R2) convergence;
(vi) yx1(x1, x2) < 0, 8x1 2 R, 8x2 > 0;
(vii) yx2(x1, x2) > 0, 8x1, x2 2 R, and liml!±1 y(x1, x2 + l) = ±h(x1) in

C2loc(R2), where h is the Hastings-McLeod solution of (1.4).

The solution provided by Theorem 1.2 has a form of a quadruple connection be-
tween the Airy function Ai , the two one dimensional Hastings-McLeod solutions
±h, and the heteroclinic orbit ⌘ of the one dimensional Allen-Cahn equation. Com-
paring (iv) with (1.8) we see that as x1 ! 1 the function y(x1, x2) behaves sim-
ilarly as the Hastings-McLeod solution h(x1). At the same time, as x2 ! ±1
we have y(x1, x2) ! ±h(x1), x2 ! ±1. Perhaps the most interesting aspect
of the above solution y is stated in property (v), since after rescaling we obtain as
x1 ! �1, the convergence to the heteroclinic orbit ⌘(x) = tanh(x/

p
2) of the

Allen-Cahn O.D.E. (1.1). In the proof of Theorem 1.2 it is shown that a minimal
solution of (1.9) rescaled as in (v), converges as x1 ! �1 to a minimal solution of
(1.2). This deep connection of the structure of the Painlevé equation with the Allen-
Cahn P.D.E., suggests that several properties of the Allen-Cahn equation should be
transfered to the Painlevé equation. Although by construction the solution y is only
minimal for odd perturbations, we expect that y is actually minimal for general per-
turbations, and plays a similar role that the heteroclinic orbit for the Allen-Cahn
equation. What’s more the two global minimizers ±1 of the functional EAC have
their counterparts in the two minimal solutions ±h of the Painlevé equation. In-
deed, property (vii) establishes that y connects monotonically along the vertical
direction x2, the two minimal solutions ±h(x1), in the same way that ⌘ connects
monotonically the two global minimizers ±1. While ⌘ is a one dimensional object,
the solution y(x1, x2) is two dimensional, since x1 parametrizes the branches of
minima of the potential H , and only x2 is involved in the phase transition.

We believe that in higher dimension y : Rn+1 ! R, (n � 1) the structure of
solutions of (1.9) exactly mirrors that of (1.2), and going further, one may ask: is it
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true that that in dimension n7, any minimal solution Y : Rn+1!R of (1.9) is ei-
ther Y (x1, x2, . . . , xn+1)=±h(x1) or Y (x1, x2, . . . , xn+1)= y(x1, (x2, . . . , xn+1) ·
n+ b), for some constant b 2 R, and some unit vector n 2 Sn�1 ?

2. Odd minimizers of the Ginzburg-Landau type energy

We consider the energy functional

E(u) =
Z

R2

✏

2
|ru|2 �

1
2✏

µ(x)u2 +
1
4✏
u4, (2.1)

where u 2 H1(R2) and ✏ > 0 is a small parameter. We suppose that µ 2 C1(R2)
is radial, i.e., µ(x) = µrad(|x |), with µrad 2 C1(R) an even function. In addition
we assume that

µ 2 L1(R2), µ0
rad < 0 in (0,1), and µrad(⇢) = 0 for a unique ⇢ > 0, (2.2)

In the physical context described in [8] the function µ is specific

µ(x) = e�|x |2 � �, with some � 2 (0, 1), f (x) = �
1
2
rµ(x),

but this particular form is irrelevant here. The Euler-Lagrange equation of E is

✏21u + µ(x)u � u3 = 0, x = (x1, x2) 2 R2, (2.3)

and we also write its weak formulation:
Z

R2
�✏2ru · r + µu � u3 = 0, 8 2 H1(R2), (2.4)

where · denotes the inner product in R2. Note that due to the radial symmetry of µ
the energy (2.1) and equation (2.3) are invariant under orthogonal transformations
in the domain, and sign change in the range. Our strategy to construct the solution
of (1.9) enjoying the properties described in Theorem 1.2 is to find first an odd with
respect to x2 minimizer u✏ of E and then scaling and passing to the limit ✏ & 0
recover y - this gives us existence. Second, in Section 3 we show all the properties
of y stated in Theorem 1.2.

We explain, formally at the moment, the relation between (1.9) and the energy
E . Looking at the energy density of E it is evident that as ✏ ! 0 the modulus of the
global or odd minimizer u✏ should approach a nonnegative root of the polynomial

�µ(x)z + z3 = 0,

or in other words, |u✏ | !
p

µ+ as ✏ ! 0 in some, perhaps weak, sense. This
function, called the Thomas-Fermi limit of the minimizer is not in H1(R2) and
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therefore the transition near the set µ(x) = 0 has to be mediated somehow. To see
this let us consider a point ⇠ such that µ(⇠) = 0. By (2.2) ⇠ = ⇢e i✓ . At ⇠ introduce
local orthogonal frame (e i✓ , ie i✓ ) and coordinates s = (s1, s2) associated with it.
Let u✏ be any solution of (2.3) and

z(s) = ✏�1/3u✏(⇠ + ✏2/3s).

Noting that µ(⇠ + ✏2/3s) = ✏2/3s1µ1 + . . . with µ1 < 0 we get that z satisfies

1s z + s1µ1z � z3 = o(1), as ✏ & 0.

The equation on the left becomes the second Painlevé equation after passing to the
limit and suitable scaling. Now, suppose that u✏ is the odd minimizer of E , i.e.
u✏(x1, x2) = �u✏(x1,�x2). Except for the points x̄ = (±⇢, 0) the limiting func-
tion z could be one of the Hastings-McLeod one dimensional solutions. However,
at (±⇢, 0) we should have z(s1, s2) = �z(s1,�s2), which means that z genuinely
depends on both variables. This is the idea behind the proof of the existence part
in Theorem 1.2. Showing properties of the solution is a different story and depends
on rather tricky application of the moving plane method.

Our first purpose in this paper is to study qualitative properties of the global
minimizers of E as ✏ & 0. In our previous work [12] we studied the following
energy

E(u, R) =
Z

R

✏

2
|ux |2 �

1
2✏

µ(x)u2 +
1
4✏

|u|4 � a f (x)u, u : R ! R,

where a � 0 is a parameter and f = �1
2µ

0, and in [13] we studied its analog for
maps u : R2 ! R2.

By proceeding as in [13], one can see that under the above assumptions there
exists a global minimizer v of E in H1(R2), namely that E(v) = minH1(R2) E . In
addition, we show that v is a classical solution of (2.3), and v is radial. Similarly, in
the class H1odd(R2) := {u 2 H1(R2) : u(x1, x2) = �u(x1,�x2)} of odd functions
with respect to x2, there exists an odd minimizer u which also solves (2.3) and
satisfies u(x1, x2) = u(�x1, x2). Although in the sequel we will focus on the odd
minimizer for completeness we chose to present our next result in a slightly more
general framework.

Theorem 2.1. For ✏ ⌧ 1 let u✏ be a solution of (2.3) converging to 0 as |x | ! 1
(which may be the odd or global minimizer). Let ⇢ > 0 be the zero of µrad and
let µ1 := µ0

rad(⇢) < 0. For every ⇠ = ⇢ei✓ , we consider the local coordinates
s = (s1, s2) in the basis (ei✓ , iei✓ ), and the rescaled functions:

w✏(s) = 2�1/2(�µ1✏)
�1/3u✏

✓
⇠ + ✏2/3

s
(�µ1)1/3

◆
. (2.5)
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As ✏ ! 0, the function w✏ converges in C2loc(R2) up to subsequence, to a function
y bounded in the half-planes [s0,1) ⇥ R, for every s0 2 R, which is a solution of

1y(s) � s1y(s) � 2y3(s) = 0, 8s = (s1, s2) 2 R2. (2.6)

In particular, if we take u✏ to be the odd minimizer of E and ⇠ = (±⇢, 0), then
the solution y satisfies y(s1, s2) = �y(s1,�s2), and is minimal with respect to
perturbations � 2 C1

0 (R2), �(s1, s2) = ��(s1,�s2). On the other hand, if we
take u✏ to be the global minimizer then y(s1, s2) = h(s1) or y(s1, s2) = �h(s1).

We observe that as a corollary of [14, Theorem 1.1.] it can be proven that
|v✏ | !

p
µ+ in C0loc(D(0; ⇢)), where D(0; ⇢) is the disc of radius ⇢ centered at

0. Because of the analogy between the functional E and the Gross-Pitaevskii func-
tional in the theory of Bose-Einstein condensates we will call

p
µ+ the Thomas-

Fermi limit of v✏ . Theorem 2.1 gives account on how non smoothness of the limit
of v✏ is mediated near the circumference |x | = ⇢, where µ changes sign, through
the solution of (2.6). We should mention here that detailed description of the mini-
mizers for yet more general setting of the energy can be found in [13,14].

Before proving the theorem we gather general results for minimizers and so-
lutions that are valid for any values of the parameters ✏ > 0. For the rest of this
paper v or v✏ will be the global minimizer and u or u✏ will be the odd minimizer or
a critical point of E . We first prove the existence of global and odd minimizers.

Lemma 2.2. For every ✏>0 there exists v2H1(R2) such that E(v)=minH1(R2)E .
As a consequence, v is a C1 classical solution of (2.3). Moreover, for ✏ ⌧ 1 the
global minimizer v is unique up to change of v by �v, and it can be written as
v(x) = vrad(|x |), with vrad 2 C1(R), positive, even, and such that lim1 vrad = 0.

Proof. We proceed as in [13, Lemma 2.1] to establish that the global minimizer
exists and is a smooth solution of (2.3) converging to 0 as |x | ! 1. Next, we
notice that v 6⌘ 0 for ✏ ⌧ 1. Indeed, by choosing a test function  6⌘ 0 supported
in D(0; ⇢) \ {x2 > 0}, and such that  2 < 2µ, one can see that

E( ) =
✏

2

Z

R2
|r |2 +

1
4✏

Z

R2
 2( 2 � 2µ) < 0, ✏ ⌧ 1.

Let x0 2 R2 be such that v(x0) 6= 0. Without loss of generality we may assume
that v(x0) > 0. Next, consider ṽ = |v| which is another global minimizer and
thus another solution. Clearly, in a neighborhood of x0 we have v = |v|, and
as a consequence of the unique continuation principle (cf. [26]) we deduce that
v ⌘ ṽ � 0 on R2. Furthermore, the maximum principle implies that v > 0, since
v 6⌘ 0. To prove that v is radial we consider the reflection with respect to the line
x1 = 0. We can check that E(v, {x1 > 0}) = E(v, {x1 < 0}), since otherwise by
even reflection we can construct a map in H1 with energy smaller than v. Thus, the
map ṽ(x) = v(|x1|, x2) is also a minimizer, and since ṽ = v on {x1 > 0}, it follows
by unique continuation that ṽ ⌘ v onR2. Repeating the same argument for any line
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of reflection, we deduce that v is radial. To complete the proof, it remains to show
the uniqueness of v up to change of v by �v. Let ṽ be another global minimizer
such that ṽ > 0, and ṽ 6⌘ v. Choosing  = u in (2.4), we find for any solution
u 2 H1(R2) of (2.3) the following alternative expression of the energy:

E(u) = �
Z

R2

u4

4✏
. (2.7)

Formula (2.7) implies that v and ṽ intersect for |x | = r > 0. However, setting

w(x) =

(
v(x) for |x |  r
ṽ(x) for |x | � r,

we can see thatw is another global minimizer, and again by the unique continuation
principle we have w ⌘ v ⌘ ṽ. This completes the proof of Lemma 2.2.

On the other hand, in the class H1odd(R2) := {u 2 H1(R2) : u(x1, x2) =
�u(x1,�x2)} of odd functions with respect to x2, there exists an odd minimizer
with the following properties:

Lemma 2.3.For every ✏>0 there exists u2H1odd(R2) such that E(u)=minH1odd(R2)E .
As a consequence, u is a C1 classical solution of (2.3). Moreover

(i) u(x) ! 0 as |x | ! 1;
(ii) u(x1, x2) = u(�x1, x2);
(iii) up to transformation u 7! �u we have u(x1, x2) > 0, 8(x1, x2) 2 R⇥(0,1),

provided that ✏ ⌧ 1.

Proof. The existence of u 2 H1odd(R2) such that E(u) = minH1odd(R2) E , follows as
in [13, Lemma 2.1], and clearly u is a critical point of E in the subspace H1odd(R2).
In view of the radial symmetry ofµ it is easy to see that the Euler-Lagrange equation
(2.4) holds also for every � 2 H1(R2), such that �(x1, x2) = �(x1,�x2). As a
consequence, u is a C1 classical solution of (2.3).

For the proof of (i) we refer to [13, Lemma 2.1]. To show that u(x1, x2) =
u(�x1, x2), we first note that E(u, [0,1) ⇥ R) = E(u, (�1, 0] ⇥ R). Indeed, if
we assume without loss of generality that E(u, [0,1)⇥R) < E(u, (�1, 0]⇥R),
the function

ũ(x1, x2) =

(
u(x1, x2) when x1 � 0
u(�x1, x2) when x1  0,

(2.8)

has strictly less energy than u, which is a contradiction. Thus, E(u, [0,1) ⇥ R) =
E(u, (�1, 0] ⇥ R), and as a consequence the function ũ is also an odd mini-
mizer and a solution. It follows by unique continuation [26] that ũ ⌘ u, that is,
u(x1, x2) = u(�x1, x2).

Now, it remains to establish the uniqueness of the odd minimizer u, when
✏ ⌧ 1. Proceeding as in Lemma 2.2, we can see that u 6⌘ 0 for ✏ ⌧ 1, and that
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either u > 0 or u < 0 onR⇥ (0,1). Assume that u1 and u2 are two minimizers of
E in H1odd(R2) such that u1 > 0 and u2 > 0 on R ⇥ (0,1). Next, define the maps

u⇤(x1, x2) =

(
min(u1(x1, x2), u2(x1, x2)) when x2 � 0
max(u1(x1, x2), u2(x1, x2)) when x2  0,

(2.9)

u⇤(x1, x2) =

(
max(u1(x1, x2), u2(x1, x2)) when x2 � 0
min(u1(x1, x2), u2(x1, x2)) when x2  0,

(2.10)

and the set A := {(x1, x2) 2 R⇥(0,1) : u1(x1, x2) < u2(x1, x2)}. We can see that
E(u1, A) = E(u2, A) since otherwise we have either E(u⇤) < E(u2) or E(u⇤) <
E(u1), which contradicts the minimality of u1 and u2. As a consequence, E(u⇤) =
E(u2) = E(u1) = E(u⇤), and it follows that u⇤ and u⇤ are also minimizers and
solutions. Next, by unique continuation [26], we obtain that either u1 ⌘ u⇤ or
u1 ⌘ u⇤, i.e. we have either 0  u1  u2 or u1 � u2 � 0 on R ⇥ [0,1). Finally,
applying (2.7) to E(u1) = E(u2), we conclude in view of the ordering of u1 and u2
that u1 ⌘ u2. This completes the proof.

To study the limit of solutions as ✏ ! 0, we need uniform bounds. Modifying
slightly the arguments in [13, Section 2], we obtain:

Lemma 2.4. We have ku✏kL1(R2) 
p

µ(0), for all solutions u✏ of (2.3) converg-
ing to 0 as |x | ! 1, and all ✏ > 0.

Proof. We drop the index and write u := u✏ . Since µ is bounded, the roots of the
cubic equation u3 � µ(x)u = 0 belong to a bounded interval, for all values of x .
If u takes positive values, then it attains its maximum 0  maxR2 u = u(x0), at a
point x0 2 R2. In view of (2.3):

0 � ✏21u(x0) = u3(x0) � µ(x0)u(x0),

thus it follows that u(x0) is uniformly bounded above by
p

µ(0). In the same way,
we prove the uniform lower bound for u.

Lemma 2.5. For ✏ ⌧ 1 let u✏ be a solution of (2.3) converging to 0 as |x | ! 1.
Then, there exist a constant K > 0 such that

|u✏(x)|  K (
p
max(µ(x), 0) + ✏1/3), 8x 2 R2. (2.11)

As a consequence, if for every ⇠ = ⇢ei✓ we consider the local coordinates s =
(s1, s2) in the basis (ei✓ , iei✓ ), then the rescaled functions w✏(s) defined in (2.5)
are uniformly bounded on the half-planes [s0,1) ⇥ R, 8s0 2 R.
Proof. As above we write u := u✏ . Let us define the following constants:

• M > 0 is the uniform bound of |u✏ | (cf. Lemma 2.4);
• � > 0 is such that 3µrad(⇢ � h)  2�h, 8h 2 [0, ⇢];
•  > 0 is such that 4 � 6�.
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Next, we construct the following comparison function

�(x) =

8
><

>:

�
⇣
⇢ � |x | + ✏2/3

2

⌘
for |x |  ⇢

�
2✏2/3 (|x | � ⇢ � ✏2/3)2 for ⇢  |x |  ⇢ + ✏2/3

0 for |x | � ⇢ + ✏2/3.

(2.12)

One can check that � 2 C1(R2 \ {0}) \ H1(R2) satisfies 1�  2�
✏2/3

in H1(R2).
Finally, we define the function  := |u|2

2 � � � 2✏2/3, and compute:

✏21 = ✏2(|ru|2 + u1u �1�)

� �µ|u|2 + |u|4 � ✏21� (2.13)
� �µ|u|2 + |u|4 � 2✏4/3�.

Now, one can see that when x 2! :={x 2 R2 :  (x)> 0}, we have |u|4
3 �µ|u|2 � 0,

since

x 2 ! \ D(0; ⇢) )
|u|4

3
�
2�
3

⇣
⇢ � |x | +

✏2/3

2

⌘
|u|2 � µ|u|2.

In the open set ! we also have: |u|4
3 � 4

3 ✏
4/3 � 2✏4/3�, thus 1 � 0 in ! in the

H1 sense. To conclude, we apply Kato’s inequality that gives: 1 + � 0 on R2 in
the H1 sense. Since  + is subharmonic with compact support, we obtain by the
maximum principle that  + ⌘ 0 or equivalently   0 in R2. The statement of
the lemma follows by adjusting the constant K .

After this preparation we are ready to prove the main result of this section.

Proof Theorem 2.1. For every ⇠ = ⇢ei✓ we consider the local coordinates s =
(s1, s2) in the basis (ei✓ , iei✓ ), and we rescale the solutions by setting ũ(s) =
u✏(⇠+s✏2/3)

✏1/3
. Clearly 1ũ(s) = ✏1u(⇠ + s✏2/3), thus,

1ũ(s) +
µ(⇠ + s✏2/3)

✏2/3
ũ(s) � ũ3(s) = 0, 8s 2 R2.

Writing µ(⇠ + h) = µ1h1 + h · A(h), with µ1 := µ0
rad(⇢) < 0, A 2 C1(R2, R2),

and A(0) = 0, we obtain

1ũ(s) + (µ1s1 + A(s✏2/3) · s)ũ(s) � ũ3(s) = 0, 8s 2 R2. (2.14)

Next, we define the rescaled energy by

Ẽ(ũ) =
Z

R2

 
1
2
|rũ(s)|2 �

µ(⇠ + s✏2/3)
2✏2/3

ũ2(s) +
1
4
ũ4(s)

!

ds. (2.15)
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With this definition Ẽ(ũ) = 1
✏5/3

E(u). From Lemma 2.5 and (2.14), it follows that
1ũ, and also rũ, are uniformly bounded on compact sets. Moreover, by differenti-
ating (2.14) we also obtain the boundedness of the second derivatives of ũ. Thanks
to these uniform bounds, we can apply the theorem of Ascoli via a diagonal argu-
ment to obtain the convergence of ũ in C2loc(R2) (up to a subsequence) to a solution
z̃ of

1z̃(s) + µ1s1 z̃(s) � z̃3(s) = 0, 8s 2 R2, (2.16)

which is associated to the functional

Ẽ0(�, J ) =
Z

J

✓
1
2
|r�(s)|2 �

µ1
2
s1�2(s) +

1
4
�4(s)

◆
ds. (2.17)

Given  ̃(s) a test function supported in the compact set K , let

 (x) := ✏1/3 ̃

✓
x � ⇠

✏2/3

◆
,  ̃(s) =

 (⇠ + s✏2/3)
✏1/3

.

In the case where we take u to be the global minimizer v, since E(v✏+ , supp ) �
E(v✏, supp ), we have Ẽ(ṽ✏+ ̃, K ) � Ẽ(ṽ✏, K ), and at the limit Ẽ0(z̃+ ̃, K ) �
Ẽ0(z̃, K ). Thus, z̃ is a minimal solution of (2.16). In addition, the radial sym-
metry of v, implies that z̃ depends only on the variable s1. Indeed, noticing that

lim✏!0
|⇠+✏

2
3 (s1,s2)|�⇢

✏
2
3

= s1, it follows that ṽ✏(s1, s2) = ṽ✏(s1 + o(1), 0), and

z̃(s1, s2) = z̃(s1, 0). Similarly, in the case where we take u to be the odd minimizer
and ⇠ = (±⇢, 0), we can see that z̃ is a minimal solution of (2.16) for perturbations
such that  ̃(s1, s2) = � ̃(s1,�s2). Finally, setting y(s) := 1p

2(�µ1)1/3
z̃
� s

(�µ1)1/3

�
,

(2.16) reduces to (2.6), that is, y solves (2.6). In the case where we take u to be the
global minimizer v, we can see that either y(s1, s2) = h(s1) or y(s1, s2) = �h(s1),
since ±h are the only minimal solutions of (1.4) (cf. [12, Theorem 1.3]). On the
other hand, in the case where we take u to be the odd minimizer and ⇠ = (±⇢, 0),
it is clear that y is odd with respect to s2, and minimal for perturbations such that
 ̃(s1, s2) = � ̃(s1,�s2).

3. Proof of Theorem 1.2

We will proceed in few steps. The proof of (i), (ii) and (iii) follows from Theo-
rem 2.1, Lemma 2.5, and the fact that a minimal solution of 1.9 cannot be identically
zero. To establish (v) we proceed as in Theorem 2.1. After rescaling appropriately
y as x1 ! �1, we compute uniform bounds of the rescaled functions. Then, by
the theorem of Ascoli, we obtain at the limit a minimal solution of the Allen-Cahn
equation (1.2). The proof of (vi) and (vii) is based on the moving plane method
applied in a sector contained in the upper half-plane. The main difficulty is due
to the unboundedness of the domain and to the availability of boundary conditions
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only on the x1 axis where y(x1, 0) = 0. We also utilize the asymptotic behaviour
of y, as x1 ! ±1, provided respectively by (v) and Lemma 3.2. Our main tool is
a version of the maximum principle in unbounded domains (cf. Lemma 3.1), that
allows us to compute bounds for yx1 and yx2 when x1 is large enough and x2 > 0
(cf. Lemmas 3.3 and 3.4). Next, these bounds are extended to the whole half-plane
x2 > 0 by applying the sliding method (cf. Lemma 3.5).

Proof of (i), (ii) and (iii). By applying Theorem 2.1 in a neighborhood of the point
⇠ = (⇢, 0) to the odd minimizer u, such that u > 0 on R ⇥ (0,1), it is clear that
we obtain a solution y of (2.6) which is odd with respect to the second variable s2,
and such that y � 0, on R ⇥ (0,1). For the sake of convenience in what follows
we substitute the variables (s1, s2) by (x1, x2). The properties (ii) and (iii) are also
straightforward by Theorem 2.1 and Lemma 2.5. Thus, it remains to show that
y(x1, x2) > 0, 8x 2 R ⇥ (0,1). Assume by contradiction that y(x1, x2) = 0, for
some x 2 R ⇥ (0,1), then it follows from the maximum principle that y ⌘ 0. To
conclude we are going to show that a solution y of (1.9) which is minimal for odd
perturbations, cannot be identically zero. Indeed, the minimality of y implies that
the second variation of the energy EPII is nonnegative:

Z

R2
(|r�(x)|2 + (6y2(x) + x1)�2(x))dx � 0, 8� 2 C10(R2),

such that �(x1, x2) = ��(x1,�x2).
(3.1)

Clearly (3.1) does not hold when y ⌘ 0, if we take �(x) = �0(x1+ l, x2), with l !
1, and �0 2 C10(R2) fixed, such that �0(x1, x2) = ��0(x1,�x2), and �0 6⌘ 0.

Next we recall a useful version of the maximum principle in unbounded do-
mains [9, Lemma 2.1].

Lemma 3.1. Let D be a domain (open connected set) in Rn , possibly unbounded.
Assume that D is disjoint from the closure of an infinite open connected cone 6.
Suppose there is a function z in C(D) that is bounded above and satisfies for some
continuous function c(x)

1z � c(x)z � 0 in D with c(x) � 0
z  0 on @D.

Then z  0 in D.

As a first application of Lemma 3.1 we prove the exponential convergence of y to
0, as x1 ! 1.

Lemma 3.2. |y(x1, x2)| = O(e�
2
3 x
3/2
1 ), as x1 ! 1 (uniformly in x2).

Proof. We define  (x1, x2) := Me�
2
3 x
3/2
1 , in the domain D := {(x1, x2) : x1 >

1, x2 > 0}, where M � e
2
3 supx2�0 y(1, x2) is a constant. It is easy to see that

1  x1 in D, and 1(y �  ) � x1(y �  ) in D. Since y �   0 on @D, it
follows from Lemma 3.1 that y   in D.
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Proof of (v). We set (t1, t2) :=
�
� 2

3 (�x1)
3
2 , (�x1)

1
2 r
�
, where x1  �1 and r 2

R. Equivalently we have (x1, r) =
�

� (�3
2 t1)

2
3 , t2(�3

2 t1)
� 1
3
�
. Next we define

ỹ(t1, t2) :=
p
2

(� 3
2 t1)

1
3
y(x1, r + x2), for every x2 2 R fixed, or equivalently

y(x1, r + x2) =
(�x1)

1
2

p
2

ỹ(t1, t2). (3.2)

We are going to show that ỹ(t1, t2) is uniformly bounded up to the second deriva-
tives, when t2 belongs to a compact interval and t1 ! �1. By differentiating (3.2)
with respect to x1 and r we obtain

p
2yx2(x1, r + x2) = (�x1)ỹt2(t1, t2), (3.3a)

p
2yx2x2(x1, r + x2) = (�x1)

3
2 ỹt2t2(t1, t2), (3.3b)

p
2yx1(x1, r + x2) = �

1
2
(�x1)�

1
2 ỹ(t1, t2) + (�x1)ỹt1(t1, t2) (3.3c)

�
r
2
ỹt2(t1, t2),

p
2yx1x2 = �ỹt2 + (�x1)

3
2 ỹt1t2 �

r
2
(�x1)

1
2 ỹt2,t2, (3.3d)

p
2yx1x1 = �

1
4
(�x1)�

3
2 ỹ �

3
2
ỹt1 +

r
4
(�x1)�1 ỹt2 (3.3e)

+ (�x1)
3
2 ỹt1t1 � r(�x1)

1
2 ỹt1t2 +

r2

4
(�x1)�

1
2 ỹt2,t2 .

Since by construction (cf. (2.11) in Lemma 2.5) y satisfies |y(x1, x2)| = O(|�x1|
1
2 )

as x1 ! �1 (i.e. ỹ is bounded), we obtain by (1.9) and standard elliptic estimates
[21, Section 3.4 page 37] that

|ry(x1, x2)|=O(| � x1|
3
2 ) and |D2y(x1, x2)|=O(| � x1|

5
2 ), as x1 ! �1. (3.4)

From (3.4) and (3.3) it follows that

|r ỹ(t1, t2)| = O(| � x1|
1
2 ) and |D2 ỹ(t1, t2)| = O(| � x1|), as x1 ! �1, (3.5)

provided that (t1, t2) 2 6t0,r0 := {(t1, t2) : t1  t0, |t2|  r0(�3
2 t1)

1
3 }, where

t0 < 0 and r0 > 0 are arbitrary constants. In particular, we have
p
21y(x1, x2) =

(�x1)
3
21ỹ(t1, t2) + O(| � x1|

3
2 ), for (t1, t2) 2 6t0,r0 . On the other hand it is clear

by (1.9) that
p
21y(x1, x2) = (�x1)

3
2 (ỹ3(t1, t2) � ỹ(t1, t2)), thus

|1ỹ(t1, t2)| and |r ỹ(t1, t2)| are bounded, 8(t1, t2) 2 6t0,r0 . (3.6)



THE CONNECTING SOLUTION OF THE PAINLEVÉ MODEL 991

Similarly, by differentiating once more equations (3.3) with respect to x1 and r , one
can show that

|D2 ỹ(t1, t2)| is bounded, 8(t1, t2) 2 6t0,r0 . (3.7)
Next, we apply the theorem of Ascoli to the sequence ỹ(t1 + l, t2) as l ! �1. Up
to a subsequence ln ! �1, we obtain via a diagonal argument, the convergence
in C1loc(R2) of ỹn(t1, t2) := ỹ(t1 + ln, t2) to a bounded function z̃(t1, t2) that we
are going to determine. Our claim is that the limit z̃ is a minimal solution of the
Allen-Cahn equation (1.2), which is independent of the subsequence ln . The proof
of this property is based on the following energy considerations. Let (e1, e2) be the
canonical basis of R2. The energy functional
EPII(y, A)

=
Z

A�x2e2


1
2
|ry(x1, r + x2)|2+

1
2
x1y2(x1, r+x2)+

1
2
y4(x1, r+x2)

�
dx1dr,

(3.8)

associated to (1.9), becomes after changing variables as in (3.2)

EPII(y, A) = ẼPII(ỹ, Ã) = F̃(ỹ, Ã) + R̃(ỹ, Ã), (3.9)

where

Ã :={(t1(x1), t2(x1, r)) : (x1, r) 2 A � x2e2}, (3.10)

F̃(ỹ, Ã) :=
Z

Ã

1
2

⇣
�
3
2
t1
⌘ 2
3

"
1
2
|r ỹ(t1, t2)|2 �

ỹ2(t1, t2)
2

+
ỹ4(t1, t2)

4

#

dt1dt2, (3.11)

and

R̃(ỹ, Ã) :=
Z

Ã

"
(ỹ + t2 ỹt2)2

16(�3
2 t1)

4
3

�
(ỹ + t2 ỹt2)ỹt1
4(�3

2 t1)
1
3

#

dt1dt2. (3.12)

Let �̃(t1, t2) 2 C1
0 (R2) be a test function such that B̃ := supp �̃ ⇢ {(t1, t2) :

c � d  t1  c}, for some constants c 2 R and d > 0. Given l 2 R, we consider
the translated functions �̃�l(t1, t2) := �̃(t1 � l, t2), and ỹl(t1, t2) = ỹ(t1 + l, t2).
Note that B̃l := supp �̃�l = B̃ + le1, and supp �̃�l ⇢ {(t1, t2) : t1 < �1} when
l < 1� c. Thus, for l < 1� c, we can define ��l 2 C1

0 (R2) by ��l(x1, r + x2) =

(�x1)
1
2

p
2
�̃�l(t1, t2) as in(3.2). Let Bl := {(x1(t1), r(t1, t2) + x2) : (t1, t2) 2 B̃l}.

We first examine the case where x2=0, and assume that �̃(t1,t2)=��̃(t1,�t2).
In view of the minimality of y and (3.9), we have

ẼPII(ỹ + �̃�l , B̃l) = EPII(y + ��l , Bl) � EPII(y, B
l) = ẼPII(ỹ, B̃

l). (3.13)

On the one hand, it is clear that the boundedness of ỹ and (3.6) imply that
liml!�1 R̃(ỹ+�̃�l , B̃l) = 0 and liml!�1 R̃(ỹ, B̃l) = 0. Next, setting t0 := c+l,
we have

✓
�
3
2
t1
◆ 2
3



✓
�
3
2
t0
◆ 2
3

+ d
✓

�
3
2
t0
◆� 1

3
,8t1 2 [t0 � d, t0]. (3.14)
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Thus, we obtain

F̃(ỹ, B̃l) =
1
2

⇣
�
3
2
t0
⌘ 2
3 G̃(ỹ, B̃l) + O(|t0|�

1
3 )

=
1
2

⇣
�
3
2
t0
⌘ 2
3 G̃(ỹl , B̃) + O(|t0|�

1
3 ),

(3.15)

and

F̃(ỹ + �̃�l , B̃l) =
1
2

⇣
�
3
2
t0
⌘ 2
3 G̃(ỹ + �̃�l , B̃l) + O(|t0|�

1
3 )

=
1
2

⇣
�
3
2
t0
⌘ 2
3 G̃(ỹl + �̃, B̃) + O(|t0|�

1
3 ),

(3.16)

where we have set G̃(z̃, B̃) :=
R
B̃(12 |r z̃|

2� z̃2
2 + z̃4

4 )dt . Finally, since ỹln (t1, t2) !
z̃(t1, t2) in C1loc(R2), as n ! 1, we conclude that

G̃(z̃ + �̃, B̃) = lim
n!1

2

(�3
2 (c + ln))

2
3
ẼPII(ỹ

ln + �̃, B̃)

� lim
n!1

2

(�3
2 (c + ln))

2
3
ẼPII(ỹ

ln + �̃, B̃) = G̃(z̃, B̃),

(3.17)

or equivalently EAC(z̃+�̃, B̃) � EAC(z̃, B̃). This means that z̃ is a minimal solution
of the Allen-Cahn equation (1.2) for odd perturbations �̃. In particular z̃ 6⌘ 0, and as
a consequence of the maximum principle, z̃(t1, 0) = 0, 8t1 2 R, and z̃(t1, t2) � 0,
8(t1, t2) 2 R⇥ (0,1), imply that z̃(t1, t2) > 0, 8(t1, t2) 2 R⇥ (0,1). Thus, from
[10, Theorem 1.5], it follows that z̃ is a function of only t2, which is the heteroclinic
connection z̃(t1, t2) = ⌘(t2) = tanh(t2/

p
2). Furthermore, since the limit z̃ is

uniquely determined, the convergence ỹl(t1, t2) ! z̃(t1, t2) holds as l ! �1.
It remains to examine the case where x2 6= 0. Without loss of generality

we assume that x2 > 0. Now (3.13) holds for arbitrary test functions �̃(t1, t2) 2
C1
0 (R2), since Bl ⇢ {(x1, x2) : x2 > 0} as l ! �1. Repeating the previous
arguments we find that z̃ is a nonnegative minimal solution of (1.2). Applying [6,
Corollary 5.2], we deduce that z̃ ⌘ 1. This completes the proof of (v).

Proof of (vi) and (vii). The proofs of (vi) and (vii) which are based on the moving
plane method, follow from the next lemmas.

Lemma 3.3. We have yx1(x1, x2) < 0, 8x1 � 0, 8x2 > 0. In addition, for every
d > 0, there holds supx2�d yx1(1, x2) < 0, and infx2�d y(1, x2) > 0.

Proof. Given � � 0, we define the function  �(x1, x2) := y(x1, x2) � y(�x1 +
2�, x2) for (x1, x2) 2 D� := {(x1, x2) : x1 > �, x2 > 0}. One can check that
 � = 0 on @D�, and

1 � � c(x1, x2) � = 2(x1 � �)y(�x1 + 2�, x2) � 0,
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with c(x1,x2)= x1+2(y2(x1,x2)+y(x1,x2)y(�x1+2�,x2)+y2(�x1+2�, x2))� 0.
Furthermore,  � is bounded above by Theorem 1.2 (ii), and not identically zero by
Theorem 1.2 (v). As a consequence of Lemma 3.1, it follows that  �(x1, x2) < 0,
8x1 > �, 8x2 > 0, and thus by Hopf’s Lemma @ �

@x1 (�, x2) = 2yx1(�, x2) < 0,
8x2 > 0. To establish that supx2�d yx1(1, x2) < 0, we proceed by contradic-
tion and assume the existence of a sequence {ln} such that limn!1 ln = 1 and
limn!1 yx1(1, ln) = 0. Next, we set ỹn(x1, x2) = y(x1, x2 + ln). In view of the
bounds provided in Theorem 1.2 (ii), we obtain by the theorem of Ascoli that (up
to subsequence) ỹn converges in C1loc to a nonnegative minimal solution ỹ of (1.9).
Since ỹx1(1, 0) = limn!1 yx1(1, ln) = 0, and ỹx1(x1, x2)  0, 8x1 � 0, 8x2 2 R,
the maximum principle applied to

1ỹx1 = ỹ + (x1 + 6ỹ2)ỹx1 � (x1 + 6ỹ2)ỹx1, (3.18)

implies that ỹx1(x1, x2) = 0, 8x1 � 0, 8x2 2 R. Then, since limx1!1 ỹ(x1, x2) =
0, 8x2 2 R, it follows that ỹ ⌘ 0 in the half-plane x1 � 0. Finally, we de-
duce by unique continuation that ỹ ⌘ 0 in R2, which is a contradiction since ỹ is
minimal. Thus we have established that supx2�d yx1(1, x2) < 0. The proof that
infx2�d y(1, x2) > 0 is similar.

Lemma 3.4. For every vector n = ei(✓+
⇡
2 ) 2 C ⇠ R2, with ✓ 2 (0, ⇡2 ), there exists

sn > 0 such that ry(x1, x2) · n > 0, 8x1 > sn, 8x2 > 0.

Proof. Our first claim is that there is a constant k1 > 0, such that k1yx1(x1, x2) 
�

p
x1y(x1, x2), 8x1 � 1, 8x2 � 0. Indeed, let  (x1, x2) = k1yx1(x1, x2) +p

x1y(x1, x2) for (x1, x2) 2 D := {x1 > 1, x2 > 0}, where the constant k1 will be
adjusted later. It is clear that (x1, 0) = 0, 8x1 � 1. We also note that yx1x2(1, 0) <
0 by Hopf’s Lemma, since the function yx1 vanishes at (1, 0), is negative in {x1 >
0, x2 > 0}, and satisfies (3.18). This and supx2�d yx1(1, x2) < 0, 8d > 0, imply
that when k1 is large enough, we have  (1, x2)  0, 8x2 � 0. Next, we compute

1 =
⇣
x1 + 6y2 +

1
k1

p
x1

⌘
k1yx1 +

⇣
x1 + 2y2 +

k1
p
x1

�
1
4x21

⌘p
x1y

=
⇣
x1 + 2y2 +

k1
p
x1

�
1
4x21

⌘
 +

⇣
4y2 +

1
k1

p
x1

�
k1

p
x1

+
1
4x21

⌘
k1yx1 .

By choosing k1 large enough we can ensure that
�
x1 + 2y2 + k1px1

� 1
4x21

�
� 0 and

�
4y2 + 1

k1
px1

� k1px1
+ 1

4x21

�
 0, when x1 � 1 and x2 � 0. Thus, by applying

Lemma 3.1, our claim follows.
Similarly, we are going to establish that there is a constant k2 > 0, such that

yx2(x1, x2) � �k2y(x1, x2), 8x1 � 1, 8x2 � 0. To do this we let  (x1, x2) =
�yx2(x1, x2) � k2y(x1, x2) for (x1, x2) 2 D, where the constant k2 will again
be adjusted later. We first note that yx2(x1, 0) > 0, 8x1 2 R, since the func-
tion y vanishes at (x1, 0), is positive in {x2 > 0}, and satisfies (1.9). This and
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infx2�d y(1, x2) > 0, 8d > 0, imply that when k2 is large enough, we have
 (1, x2)  0, 8x2 � 0. On the other hand, it is clear that  (x1, 0) < 0, 8x1 � 1.
Next, we compute

1 = (x1 + 6y2)(�yx2) + (x1 + 2y2)(�k2y) � (x1 + 6y2) .

Thus, by applying Lemma 3.1, it follows that   0 in D. Finally, given ✓ 2
(0,⇡/2), we have

ry · n = �yx1 sin ✓ + yx2 cos ✓ �
p
x1
k1

y sin ✓ � k2y cos ✓, 8x1 � 1, 8x2 � 0,

and therefore ry · n > 0 for x1 > sn :=
� k1k2
tan ✓

�2, and x2 > 0.

Lemma 3.5. Let ✓ 2 (0, ⇡2 ) be fixed, and consider for every � 2 R the reflection
�� with respect to the line 0� := {(x1, x2) : x2 = tan ✓(x1 � �)}, and the domain
D� := {(x1, x2) : 0 < x2 < tan ✓(x1 � �)}. Then, the function  �(x1, x2) :=
y(x1, x2) � y(��(x1, x2)) is negative in D�, for every � 2 R.

Proof. We set n = ei(✓+
⇡
2 ) as in Lemma 3.4, and denote by (p0, q 0) the image by ��

of a point (p, q) 2 D�, and by D0
� the set ��(D�). It is obvious that  �(x1, 0) < 0,

8x1 > �, and that  �(x1, x2) = 0, 8(x1, x2) 2 0�. Moreover,  � satisfies

1 �(p, q) � c(p, q) � = (p � p0)y(p0, q 0) � 0, 8(p, q) 2 D�,

with c(p, q) = p + 2(y2(p, q) + y(p, q)y(p0, q 0) + y2(p0, q 0)). For each � 2 R
we consider the statement

 �(p, q) < 0, 8(p, q) 2 D�. (3.19)

We shall first establish Lemma 3.5 in the case where ✓ 2 (0, ⇡4 ). According to
Lemma 3.4, (3.19) is valid for each � � sn. Set �0 = inf{� 2 R :  µ <
0 holds in Dµ, for each µ � �}. We will prove �0 = �1. Assume instead �0 2 R.
Then, there exist a sequence �k < �0 such that limk!1 �k = �0, and a sequence
(pk, qk) 2 D�k , such that y(pk, qk) � y(p0

k, q
0
k). According to Lemma 3.4, we have

p0
k  sn, thus the sequence (pk, qk) is bounded, since by assumption ✓ 2 (0,⇡/4).
Up to subsequence we may assume that limk!1(pk, qk) = (p0, q0) 2 D�0 , with
p0
0  sn. By definition of �0, we have  �0  0 in D�0 , and  �0(p0, q0) = 0 i.e.
y(p0, q0) = y(p0

0, q
0
0). Now we distinguish the following cases. If (p0, q0) 2 D�0 ,

the maximum principle implies that  �0 ⌘ 0 in D�0 . Clearly, this situation is
excluded, since y is positive in the half-plane {x2 > 0}. On the other hand, the
maximum principle also implies that @ �0@n (p, q) = 2 @y@n (p, q) > 0, provided that
(p, q) 2 0�0 and q > 0. Furthermore, the previous inequality still holds at the
vertex (p, q) = (�0, 0), since yx2(x1, 0) > 0 and yx1(x1, 0) = 0, 8x1 2 R (cf.
the proof of Lemma 3.4). As a consequence, in a neighborhood of the line seg-
ment {(x1, x2) : x2 = tan ✓(x1 � �), 0  x1  sn}, we have that @y@n > 0, and it
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Figure 3.1. The sets A�, A0
�, B�,⌫ , B

0
�,⌫ , and the lines 0�,1⌫ , in the case where � > sn

and � < sn.

follows that (p0, q0) cannot belong to 0�0 . Finally, since the case where p0 > �0
and q0 = 0 is ruled out (because y is positive in the half-plane {x2 > 0}), we have
reached a contradiction.

Next, we establish Lemma 3.5 in the case where ✓ 2 [⇡4 , ⇡2 ), which is a little
bit more involved. When ✓ = ⇡

4 , it is clear that (3.19) is valid for each � � sn.
Otherwise, when ✓ 2 (⇡4 , ⇡2 ), let A0

� := {(p0, q 0) 2 D0
� : p0  sn}, and let A� =

��(A0
�). Our first claim is that m := infA0

sn+1
y > 0. Indeed, proceeding as in the

proof of Theorem 1.2 (v), one can see that

lim
(x1,x2)2A0

xn+1,x1!�1

p
2

p
�x1

y(x1, x2) = 1.

In addition, proceeding as in the proof of Lemma 3.4, we obtain that inf{y(x1, x2) :
(x1, x2) 2 A0

sn+1, sn � l  x1  sn} > 0, for every constant l > 0. Thus, m > 0.
On the other hand, we have lim�!1 sup{y(x1, x2) : (x1, x2) 2 A�} = 0, since
lim�!1 inf{x1 : (x1, x2) 2 A�} = 0 (cf. Lemma 3.2). As a consequence when
� � sn + 1 is large enough, we have y(p0, q 0) � m > y(p, q), 8(p, q) 2 A�, and
also y(p0, q 0) > y(p, q), 8(p, q) 2 D� \ A�, by definition of sn. This establishes
that (3.19) holds for � large enough. Then, defining �0 as previously, we assume
by contradiction that �0 2 R, and deduce in a similar way the existence of the
sequences �k and (pk, qk) 2 D�k . We need to show that (pk, qk) is bounded.
For ⌫ > �, let M⌫ := (⌫, tan ✓(⌫ � �)) 2 0�, and let 1⌫ := {(x1, x2) : x2 =
tan(✓+ ⇡

2 )(x1�⌫)+ tan ✓(⌫��)} be the line parallel to n and passing through M⌫ .
Let also B0

�,⌫ := {(p0, q 0) 2 A0
� : q 0 � tan(✓ + ⇡

2 )(p0 � ⌫) + tan ✓(⌫ � �)} be the
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subset of A0
� which is above 1⌫ , and B�,⌫ := ��(B0

�,⌫). Proceeding as previously,
we can see that 8⌫ > �0+2, 8� > �0�1, we have infB0

�,⌫
y > m for some constant

m > 0, while lim⌫!1 sup{y(x1, x2) : (x1, x2) 2 B�,⌫} = 0. As a consequence, for
⌫ large enough and � > �0 � 1, we have y(p0, q 0) � m > y(p, q), 8(p, q) 2 B�,⌫ ,
and thus (pk, qk) /2 B�k ,⌫ . Furthermore, since p0

k  sn by Lemma 3.4, we have
established the boundedness of (pk, qk). To complete the proof we utilize the same
arguments detailed in the case where ✓ 2 (0, ⇡4 ).

Lemma 3.5 implies that 8✓ 2 (0, ⇡2 ), 8� 2 R, and (p, q) 2 0� with q > 0, we
have @ �@n (p, q) = 2 @y@n (p, q) > 0, where n = ei(✓+

⇡
2 ). It follows that yx1(x1, x2) 

0, and yx2(x1, x2) � 0, 8x1 2 R, 8x2 � 0. Moreover, in the half-plane x2 � 0,
yx1 and yx2 satisfy respectively 1yx1 � (x1 + 6y2)yx1 , and 1yx2 = (x1 + 6y2)yx2 ,
thus yx1 (resp. yx2) cannot vanish in the open half-plane x2 > 0, since otherwise we
would obtain by the maximum principle yx1 ⌘ 0 (resp. yx2 ⌘ 0). These situations
are excluded by the fact that y > 0 in the open half-plane x2 > 0, and yx2(x1, 0) >
0, 8x1 2 R. Therefore we have proved that yx1(x1, x2) < 0, 8x1 2 R, 8x2 > 0, and
yx2(x1, x2) > 0, 8x1, x2 2 R. Finally, setting ỹl(x1, x2) = y(x1, x2 + l), we obtain
by the Theorem of Ascoli, that up to a subsequence lk ! 1 , ỹlk converges in C2loc
to a nonnegative minimal solution ỹ1 of (1.9). Furthermore, the monotonicity of
y along the x2 direction implies that ỹ1 is independent of x2. Thus, since h is the
only nonnegative minimal solution of (1.9) (cf. [12, Theorem 1.3]), we deduce that
ỹ1(x1, x2) = h(x1), and that liml!1 y(x1, x2 + l) = h(x1) is independent of the
subsequence lk . We also note that |y(x1, x2)| < h(x1), 8(x1, x2) 2 R2, from which
Theorem 1.2 (iv) follows. This completes the proof of Theorem 1.2.
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