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The connecting solution of the Painlevé phase transition model

MARCEL G. CLERC, MICHAL KOWALCZYK AND PANAYOTIS SMYRNELIS

Abstract. The second Painlevé O.DE. y” — xy —2y3 = 0, x € R, is known
to play an important role in the theory of integrable systems, random matrices,
Bose-Einstein condensates and other problems. The generalized second Painlevé
equation Ay —x1y — 2y3 =0, (x1,xp) € RR2, is obtained by multiplying by —x
the linear term u of the Allen-Cahn equation Au = u? — u. It involves a non
autonomous potential H (x1, y) which is bistable for every fixed x; < 0, and thus
describes as the Allen-Cahn equation a phase transition model. The scope of this
paper is to construct a solution y connecting along the vertical direction x,, the
two branches of minima of H parametrized by x;. This solution plays a similar
role that the heteroclinic orbit for the Allen-Cahn equation. It is the the first to
our knowledge solution of the Painlevé P.D.E. both relevant from the applications
point of view (liquid crystals), and mathematically interesting.

Mathematics Subject Classification (2010): 35J91 (primary); 35J20, 35B40,
35B06, 35B25 (secondary).

1. The Allen-Cahn and Painlevé phase transition models

A standard phase transition model is given by the Allen-Cahn O.D.E.:
W' =ud—u, inR, 1.1)

that can alternatively be written u” = W’ (u), where W (1) = %(u2 — )% is adouble
well potential. In this model, u describes the mass fraction of the two phases of a
substance (e.g., an alloy), and takes values approximately +1 or —1 for the pure
phases. Equation (1.1) has a variational structure. Let
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be the Allen-Cahn energy associated to (1.1). To minimize Eac the right balance
between the contributions of the kinetic energy %Iu’ |> and the potential should be

achieved. On the one hand the term %|u’ |> penalizes high variations of u, while on
the other hand the potential term W forces the minimizer to be close to its global
minima £1. It is clear that the trivial solutions %1 are the two global minimizers
of Eac. Thus, it is more relevant to investigate instead, the existence of local mini-
mizers which are also called minimal solutions. While solutions of (1.1) are critical
points of Eac,a minimal solution u of (1.1) satisfies the stronger condition:

Eac(u, supp @) < Eac(u + ¢, supp @),

for all ¢ € C§°(R) (i.e. any perturbation with compact support of u has greater or
equal energy). It turns out that up to translations and change of x by —x, the only
nontrivial minimal solution of (1.1) is the heteroclinic orbit n(x) = tanh(x/ V2),
connecting at oo the two phases +1.

A much more challenging problem is the description of all bounded solutions
of the Allen-Cahn P.D.E.:

Au=u’—u, in R", (12)

which is associated to the functional Eac(u, Q) = fQ (%|VU|2 + JT(uz — 1)2)
(where Q C R” is bounded). De Giorgi in 1978 [17] suggested a striking analogy
with minimal surface theory that led to significant developments in P.D.E. and the
Calculus of Variations, by stating the following conjecture about bounded solutions
on R":

Conjecture 1.1 (De Giorgi). Letu € C 2(R™) be a solution to (1.2) such that

) Jul < 1;
ii) ;T"n > 0 for all x € R”.

Is it true that all the level sets of u are hyperplanes, at least for n < 8?

The relationship with the Bernstein problem for minimal graphs is the reason
why n < 8 appears in the conjecture. We refer to the expository papers of Farina and
Valdinoci [18], and Savin [28] for a detailed account. The conjecture was proved
by Ghoussoub and Gui in [19] for n = 2, for n = 3 by Ambrosio and Cabré in [7]
and for 4 < n < 8 by Savin in [27] under the extra requirement that

Iim  u(xy,...,x;) ==x1. (1.3)

Xp—> 00

If we drop the monotonicity requirement as well as (1.3) and simply ask about the
structure of minimal solutions! of (1.2), then we know from [27] that, for n < 7
any minimal solution u of (1.2) is either trivial, i.e., u = %1 or one dimensional,

1 Again, we say that the solution u is minimal if Eac(u, supp ¢) < Eac(u + ¢, supp ¢), for all
¢ € Cg°(R™).
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ie.,u(x) =n({(x —xp) - v), for some xg € R”, and some unit vector v € R”. Thus
the heteroclinic orbit n of O.D.E. (1.1) plays a crucial role for entire solutions of
PDE. (1.2).

In order to construct other connecting solutions of (1.2), one shall impose some
additional requirements. For instance, when n = 2, (1.2) admits a unique saddle
solution u (cf. [16]) satisfying the following properties:

u(xy, x3) has the same sign as the product x1x3;

u is odd with respect to x1 and x»;

limy, 500 u(x1, X2) = n(x2), and uy, (x1, x2) > 0,Vxy > 0;
lim) oo u(Acosf, Asinf) = 1,V0 € (0, 7/2).

This example also outlines the hierarchical structure of (1.2), since by taking the
limit of a solution along certain directions at infinity, lower dimensional solutions
are obtained (cf. [6, Chapter 8]). For more examples of connecting maps under
symmetry assumptions or in the vector case, we refer to [6, Chapters 6, 7, 9] and
the references therein (in particular [4] and [29]).

The second Painlevé O.D.E.:

y' —xy—=2y2=0, xeR, (1.4)

is basically obtained by multiplying the linear term in the right hand side of (1.1)
by —x. Alternatively, we can write (1.4) as

y//=Hy(x’y), XGR7 (15)

with H(x, y) := %x yz—f—% y*. In contrast with W (defined below (1.1)), the potential
H is non autonomous i.e. it depends both on x and y.

Equation (1.4) is known to play an important role in the theory of integrable
systems [1], random matrices [11,15,20], Bose-Einstein condensates [2,3,24,30]
and other problems [5,23,25]. Recently [12] it has been shown that when the right
hand side of (1.4) is allowed to be a constant « € R then it describes local profiles of
the so-called shadow kink in the theory of light-matter interaction of nematic liquid
crystals (cf. also [31,32]). In [8,13,14] further relation between other types of non
topological defects (shadow vortices, shadow domain walls) and the generalized
Painlevé equation

Ay —x1y =2y =0, Vx = (x1,x2) € R?, (1.6)

was established showing that their local structure is determined by special solutions
of (1.6). One of the characteristics of these solutions is that they should be entire,
another is that they should be minimal. To explain what this means, let @ € R? be
a bounded subset of R? and

E u, Q) = —|Vul”+ =x1u” + -u s
PH Q 2 2 ! 2
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be the functional associated to the generalized second Painlevé equation. By defi-
nition a solution of (1.6) is minimal if

EPH (y’ supp ¢) < EPH (y + ¢9 supp ¢) (1 7)

for all ¢ € Cy° (R?). This notion of minimality is standard for many problems in
which the energy of a localized solution is actually infinite due to non compactness
of the domain. The study of minimal solutions of (1.4) has been recently initiated
in [12] where we have showed that the Hastings-McLeod solution, denoted in this
paper by #, is, up to the sign change, the only minimal solution which is bounded
at +00. We recall (¢f. [22]) that & : R — R is positive, strictly decreasing (' < 0)
and such that

h(x) ~ Ai(x), X — 00,
h(x) ~+/|x]/2, X — —00. (1.8)

Clearly, the asympotic behaviour of % is determined by the location of the global
minima of the potential H (x, y) associated to the equation (1.4). Indeed for x fixed,

H attains its global minimum equal to O when y = 0 and x > 0, and equal to —%

when y = +./|x|/2 and x < 0. Thus, the global minima of H bifurcate from the
origin, and the two minimal solutions £/ of (1.4) interpolate these two branches of
minima.

Equation (1.6) or equivalently Ay = H,(x1, y), with x = (x1, x2) € R? and
H(xy,y) = %xl y2 + %y“ (cf. the expression of Ep,;), involves a non autonomous
potential which is bistable for every fixed x; < 0. Hence the Painlevé general-
ized equation (1.6) describes as the Allen-Cahn equation a phase transition model.
For the latter the phase transition connects the two minima 1 while for the for-
mer the phase transition connects the two branches &./(—x;)* /2 of minima of H
parametrized by x;. Note that in the Painlevé model the phase transition occurs only
in the PD.E. case, i.e., when the domain is R"t! = R x R” with n > 1. The scope
of this paper is to construct a solution y of (1.6) connecting as xo — +00 and x; is
fixed, the two branches of minima of H (cf. Theorem 1.2 below). It is the first to our
knowledge example of solution of the generalized Painlevé equation both relevant
from the applications point of view and mathematically interesting. The solution
y has similar properties as the heteroclinic orbit #: it is odd and monotonous with
respect to x», and as x; — —oo its rescaled profile is actually given by n. Af-
ter the statement of Theorem 1.2, we will further discuss its similarities with the
heteroclinic orbit 7.

Theorem 1.2. There exists a solution y : R> — R to

Ay —x1y =2y =0,  Vx=(x1, )€ R (19)
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such that

(i) y is positive in the upper-half plane and odd with respect to x i.e. y(x1, x2) =
_y(-xla _XZ);
(ii) y and its derivatives are bounded in the half-planes [sg, 00) x R, Vsg € R;
(iii) y is minimal with respect to perturbations ¢ € C§° (R?) such that ¢(x1,x2) =
—¢(x1, —x2);

(iv) |y1(4’fl(xf§)l O(1), as x; — oo (uniformly in x»);

~ 2 _1
(v) Forevery xp €R fixed, let y(t1, o) := ‘3/5 : y(—(—%t1)3,xz+t2(—%t1) 3).

(—3t1)3

Then
tanh(r2/v/2) when x, =0
l_l)ir_noofz(tl +1,)=11 when xp > 0 (1.10)
-1 when x, < 0

for the C10C (R?) convergence;
(Vi) yy,(x1,x2) <0,Vx; € R, Vx3 > 0;
(vii) yxZ(xl,xg) > 0, Vxi,x2 € R, and limy_ 10 y(x1,x2 + 1) = Lh(xy) in

Cioc 2 (R?), where h is the Hastings-McLeod solution of (1.4).

The solution provided by Theorem 1.2 has a form of a quadruple connection be-
tween the Airy function Ai, the two one dimensional Hastings-McLeod solutions
=44, and the heteroclinic orbit 7 of the one dimensional Allen-Cahn equation. Com-
paring (iv) with (1.8) we see that as x; — oo the function y(x1, x2) behaves sim-
ilarly as the Hastings-McLeod solution /#(x1). At the same time, as x; — =00
we have y(x1,x0) — =+h(x1), x — Z£oo. Perhaps the most interesting aspect
of the above solution y is stated in property (v), since after rescaling we obtain as
x] — —o0, the convergence to the heteroclinic orbit n(x) = tanh(x/ V2) of the
Allen-Cahn O.D.E. (1.1). In the proof of Theorem 1.2 it is shown that a minimal
solution of (1.9) rescaled as in (v), converges as x; — —oo to a minimal solution of
(1.2). This deep connection of the structure of the Painlevé equation with the Allen-
Cahn P.D.E., suggests that several properties of the Allen-Cahn equation should be
transfered to the Painlevé equation. Although by construction the solution y is only
minimal for odd perturbations, we expect that y is actually minimal for general per-
turbations, and plays a similar role that the heteroclinic orbit for the Allen-Cahn
equation. What’s more the two global minimizers £1 of the functional Eac have
their counterparts in the two minimal solutions &/ of the Painlevé equation. In-
deed, property (vii) establishes that y connects monotonically along the vertical
direction x;, the two minimal solutions £/ (x1), in the same way that n connects
monotonically the two global minimizers +1. While 7 is a one dimensional object,
the solution y(x, x2) is two dimensional, since x; parametrizes the branches of
minima of the potential H, and only x; is involved in the phase transition.

We believe that in higher dimension y : Rt 5> R, (n > 1) the structure of
solutions of (1.9) exactly mirrors that of (1.2), and going further, one may ask: is it
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true that that in dimension n <7, any minimal solution ¥ : R"*! — R of (1.9) is ei-
ther Y'(x1, x2, ..., Xpt1) ==h(x1) or Y (x1, X2, ..., Xp1) =y (X1, (X2, ..+, Xpt1)
n + b), for some constant » € R, and some unit vector n € S"~! 2

2. Odd minimizers of the Ginzburg-Landau type energy

We consider the energy functional

E(w) /GIVIQ L ou? + St @.1)
u) = —|Vul|* — —u(x)u —u”, .
e 2 2" 4e

where u € H'(R?) and € > 0 is a small parameter. We suppose that ;. € C*®(R?)
is radial, i.e., u(x) = prad(|x|), with prag € C°°(R) an even function. In addition
we assume that

u e L°°(R2), /’L;ad < 01in (0, 00), and pd(p) = 0 for aunique p > 0, (2.2)

In the physical context described in [8] the function p is specific

|x|?

ux)=e " —x, with some x € (0, 1), fx) = —%Vp,(x),

but this particular form is irrelevant here. The Euler-Lagrange equation of E is
2 Au + nx)u — u> =0, x = (x1, x2) € R?, (2.3)

and we also write its weak formulation:
f —2Vu - VY + puy — udy =0, vy € HY(R?), (2.4)
R2

where - denotes the inner product in R?. Note that due to the radial symmetry of u
the energy (2.1) and equation (2.3) are invariant under orthogonal transformations
in the domain, and sign change in the range. Our strategy to construct the solution
of (1.9) enjoying the properties described in Theorem 1.2 is to find first an odd with
respect to xp minimizer u. of E and then scaling and passing to the limit € N\ O
recover y - this gives us existence. Second, in Section 3 we show all the properties
of y stated in Theorem 1.2.

We explain, formally at the moment, the relation between (1.9) and the energy
E. Looking at the energy density of E it is evident that as ¢ — 0 the modulus of the
global or odd minimizer u. should approach a nonnegative root of the polynomial

—ux)z + 2 =0,

or in other words, |u.| — /ut as € — 0 in some, perhaps weak, sense. This
function, called the Thomas-Fermi limit of the minimizer is not in H'(R?) and
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therefore the transition near the set ;(x) = 0 has to be mediated somehow. To see
this let us consider a point & such that £ (£) = 0. By (2.2) £ = pe’?. At £ introduce
local orthogonal frame (e'?,ie'?) and coordinates s = (s1, s2) associated with it.
Let u. be any solution of (2.3) and

z(s) = 6_1/3145(%' + €2/35).
Noting that u(§ + €23s) = €*Psipuy + ... with u < 0 we get that z satisfies
AsZ +S1012 — 2= o(l), ase 0.

The equation on the left becomes the second Painlevé equation after passing to the
limit and suitable scaling. Now, suppose that u, is the odd minimizer of E, i.e.
uc(x1, x2) = —ue(x1, —x3). Except for the points x = (£p, 0) the limiting func-
tion z could be one of the Hastings-McLeod one dimensional solutions. However,
at (£p, 0) we should have z(s1, s2) = —z(s1, —s2), which means that z genuinely
depends on both variables. This is the idea behind the proof of the existence part
in Theorem 1.2. Showing properties of the solution is a different story and depends
on rather tricky application of the moving plane method.

Our first purpose in this paper is to study qualitative properties of the global
minimizers of E as € \( 0. In our previous work [12] we studied the following
energy

1 1
E(u,]R):/ %|ux|2—Z—/L(x)u2+—|u|4—af(x)u, u: R — R,
R € 4e

where a > 0 is a parameter and f = —%;ﬂ , and in [13] we studied its analog for
maps u: R? — R?.

By proceeding as in [13], one can see that under the above assumptions there
exists a global minimizer v of E in H!(R?), namely that E(v) = min Hir2) E. In
addition, we show that v is a classical solution of (2.3), and v is radial. Similarly, in
the class H!\ (R?) := {u € H'(R?) : u(xy, x2) = —u(xy, —x2)} of odd functions
with respect to x, there exists an odd minimizer ¥ which also solves (2.3) and
satisfies u(x1, x2) = u(—xp, x2). Although in the sequel we will focus on the odd
minimizer for completeness we chose to present our next result in a slightly more
general framework.

Theorem 2.1. For € < 1 let u. be a solution of (2.3) converging to 0 as |x| — oo
(which may be the odd or global minimizer). Let p > 0 be the zero of jiraa and
let 1y = u;ad(p) < 0. For every £ = pe'?, we consider the local coordinates

s = (s1, $2) in the basis (¢'?, ie'?), and the rescaled functions:

we(s) = 2712 (=€) Pu, (s + /3 2.5)

o)
(—u)'3 )"
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As € — 0, the function we converges in C12OC (R?) up to subsequence, to a function

y bounded in the half-planes [so, 00) x R, for every so € R, which is a solution of
Ay(s) =s1y(s) =2y°(s) =0, Vs = (s1,5:) € R, (2.6)

In particular, if we take u¢ to be the odd minimizer of E and £ = (£p, 0), then
the solution y satisfies y(s1, s2) = —y(s1, —s2), and is minimal with respect to
perturbations ¢ € C8°(R2), ¢ (s1,52) = —@p(s1, —s2). On the other hand, if we
take u¢ to be the global minimizer then y(s1, s2) = h(sy) or y(s1, s2) = —h(s1).

We observe that as a corollary of [14, Theorem 1.1.] it can be proven that
[ve| — \/[F in CI%C(D(O; 0)), where D(0; p) is the disc of radius p centered at
0. Because of the analogy between the functional E and the Gross-Pitaevskii func-
tional in the theory of Bose-Einstein condensates we will call \//,T+ the Thomas-
Fermi limit of ve. Theorem 2.1 gives account on how non smoothness of the limit
of ve is mediated near the circumference |x| = p, where p changes sign, through
the solution of (2.6). We should mention here that detailed description of the mini-
mizers for yet more general setting of the energy can be found in [13,14].

Before proving the theorem we gather general results for minimizers and so-
lutions that are valid for any values of the parameters € > 0. For the rest of this
paper v or v, will be the global minimizer and u or u#, will be the odd minimizer or
a critical point of E. We first prove the existence of global and odd minimizers.

Lemma 2.2. For every € >0 there exists v € H'(R?) such that E (v) =ming: ®)E.
As a consequence, v is a C* classical solution of (2.3). Moreover, for € < 1 the
global minimizer v is unique up to change of v by —v, and it can be written as
v(x) = vad(|x]), with viag € C*°(R), positive, even, and such that limeg Vrag = 0.

Proof. We proceed as in [13, Lemma 2.1] to establish that the global minimizer
exists and is a smooth solution of (2.3) converging to 0 as |x| — oo. Next, we
notice that v # 0 for € <« 1. Indeed, by choosing a test function ¥ £ O supported
in D(0; p) N {x» > 0}, and such that > < 2u, one can see that

E<w>=5/ |Wf|2+i/ W -2 <0, e<l.
2 R2 4de R2

Let xo € R? be such that v(xg) % 0. Without loss of generality we may assume
that v(xp) > 0. Next, consider v = |v| which is another global minimizer and
thus another solution. Clearly, in a neighborhood of xop we have v = |v|, and
as a consequence of the unique continuation principle (cf. [26]) we deduce that
v = 7 > 0 on R%. Furthermore, the maximum principle implies that v > 0, since
v # 0. To prove that v is radial we consider the reflection with respect to the line
x1 = 0. We can check that E(v, {x; > 0}) = E(v, {x; < 0}), since otherwise by
even reflection we can construct a map in H' with energy smaller than v. Thus, the
map v(x) = v(]x], x2) is also a minimizer, and since v = v on {x; > 0}, it follows
by unique continuation that # = v on R?. Repeating the same argument for any line



THE CONNECTING SOLUTION OF THE PAINLEVE MODEL 985

of reflection, we deduce that v is radial. To complete the proof, it remains to show
the uniqueness of v up to change of v by —v. Let ¥ be another global minimizer
such that v > 0, and v # v. Choosing ¥ = u in (2.4), we find for any solution
u € H'(R?) of (2.3) the following alternative expression of the energy:

4
E(u):—/ Z—. 2.7)
R2 €

Formula (2.7) implies that v and v intersect for |x| = r > 0. However, setting

v(x) for|x|<r
w(x) = 1.
v(x) for|x|>r,
we can see that w is another global minimizer, and again by the unique continuation
principle we have w = v = v. This completes the proof of Lemma 2.2. U

On the other hand, in the class Holdd(Rz) = {u € H'@R?) : u(x;, xp) =
—u(xy1, —x2)} of odd functions with respect to x,, there exists an odd minimizer
with the following properties:

Lemma 2.3. For every e >0 there exists uc H, oldd (R?) such that E () = min L, (R2)E .
As a consequence, u is a C* classical solution of (2.3). Moreover

(1) u(x) — Oas |x| — ooy
(ll) M(.x] ) x2) = M(—X] ) x2);
(iil) up to transformation u — —u we have u(xy, x) > 0,V(xy, x2) € Rx (0, 00),
provided that € < 1.

. l 2 _ .
Proof. The existence of u € H_4,(R“) such that E(u) = min 1R E, follows as

in [13, Lemma 2.1], and clearly u is a critical point of E in the subspace Holdd(Rz).
In view of the radial symmetry of w it is easy to see that the Euler-Lagrange equation
(2.4) holds also for every ¢ € H'(R?), such that ¢ (x1, x2) = ¢(x1, —x2). As a
consequence, u is a C* classical solution of (2.3).

For the proof of (i) we refer to [13, Lemma 2.1]. To show that u(xy, x2) =
u(—x1, x2), we first note that E(u, [0, 00) X R) = E(u, (—o0, 0] x R). Indeed, if
we assume without loss of generality that E (u, [0, o0) x R) < E(u, (—o0, 0] x R),
the function

u(xy, x2) when x; > 0

u(xy, x2) = { (2.8)

u(—x1,x2) whenx; <0,
has strictly less energy than u, which is a contradiction. Thus, E (u, [0, 0c0) x R) =
E(u, (—00,0] x R), and as a consequence the function # is also an odd mini-
mizer and a solution. It follows by unique continuation [26] that & = u, that is,
u(xy, x2) = u(—x1, x2).
Now, it remains to establish the uniqueness of the odd minimizer u, when
€ < 1. Proceeding as in Lemma 2.2, we can see that u # 0 for ¢ < 1, and that
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eitheru > 0Qoru < 0 on R x (0, 0c0). Assume that u; and u; are two minimizers of
E in Holdd(Rz) such that u; > 0 and u» > 0 on R x (0, 00). Next, define the maps

i , X2), , h >0
U (x1. x0) = {mln(u1(X1 X2), uz(x1,x2))  when x 2.9)

max(u(xy, x2), u2(x1, x2)) whenxy <0,

W (. x0) = {max(ul(m,m), uz(x1, x2)) whenxp; >0 (2.10)

min(u(x1, x2), uz2(x1, x2)) whenx, <0,

and the set A := {(x1, x2) € Rx (0, 00) : u1(x1, x2) < up(x1, x2)}. We can see that
E(ui, A) = E(up, A) since otherwise we have either E (uy) < E(up) or E(u*) <
E (u1), which contradicts the minimality of | and u>. As a consequence, E (i) =
E(up) = E(uy) = E(u*), and it follows that u, and u* are also minimizers and
solutions. Next, by unique continuation [26], we obtain that either u; = u, or
u; = u*,i.e. we have either 0 < uy; <wuporu; > uy >0o0nR x [0, c0). Finally,
applying (2.7) to E(u;) = E(u2), we conclude in view of the ordering of © and u;
that u; = u,. This completes the proof. O

To study the limit of solutions as € — 0, we need uniform bounds. Modifying
slightly the arguments in [13, Section 2], we obtain:

Lemma 2.4. We have |lucll @2y < +/1(0), for all solutions ue of (2.3) converg-
ingto 0 as |x| — oo, and all € > 0.

Proof. We drop the index and write u := u.. Since u is bounded, the roots of the
cubic equation u> — (x)u = 0 belong to a bounded interval, for all values of x.
If u takes positive values, then it attains its maximum 0 < maxg2 u = u(xp), at a
point xg € R2. In view of (2.3):

0 > €2 Au(xp) = u”(x0) — (x0)u(xo),

thus it follows that u#(xg) is uniformly bounded above by /w1 (0). In the same way,
we prove the uniform lower bound for u. O

Lemma 2.5. For € < 1 let uc be a solution of (2.3) converging to 0 as |x| — oo.
Then, there exist a constant K > 0 such that

lue(¥)| < K (v/max(u(x),0) +€'/3),  vx e R% 2.11)

As a consequence, if for every § = pe'? we consider the local coordinates s =
(51, 82) in the basis (¢!, ie'?), then the rescaled functions we(s) defined in (2.5)
are uniformly bounded on the half-planes [so, 00) X R, Vsg € R.

Proof. As above we write u := u.. Let us define the following constants:

e M > 0 is the uniform bound of |u,| (c¢f. Lemma 2.4);
e L > Oissuch that 3upq(p — k) < 2Mh,Vh € [0, pl;
e « > 0 is such that k* > 6x.
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Next, we construct the following comparison function

Mp-w+5) okl =p
x(x) = 2:T“x| —p—€H2 forp <|x| <p+e€? (2.12)
0 for |x| > p + €2/3.

One can check that x € C1(R? \ {0}) N H'(R?) satisfies Ay < 2/3 in HY(R?).

2
Finally, we define the function v := % — x — k€%, and compute:

ezAw = 62(|Vu|2 4+ ulAu — Ay)
> —plul® + u|* — € Ax (2.13)
> —plu)? + |ul* — 26*3.

Now, one can see that when x € w:={x € R? : Yv(x)> 0}, we have 4 |u|2 >0,
since
| |4 2N 2/3 )
x €0 DO: p) = - = 3 (p = Il + 5 ) ul’ = pulul”.

In the open set w we also have: @ > %e‘w > 264/3)», thus Ay > 0 in w in the
H' sense. To conclude, we apply Kato’s inequality that gives: A+ > 0 on R? in
the H' sense. Since ¥ T is subharmonic with compact support, we obtain by the
maximum principle that = = 0 or equivalently ¥/ < 0 in R?. The statement of
the lemma follows by adjusting the constant K . O

After this preparation we are ready to prove the main result of this section.

Proof Theorem 2.1. For every § = pe'? we consider the local coordinates s =
(s1,52) in the basis (¢/?,ie’?), and we rescale the solutions by setting ii(s) =

2/3
ueEHE™)  Clearly Adi(s) = eAu(€ + se), thus,

W(E + s€*/3) _

Adi(s) + 73 ii(s) —ii>(s) =0, Vs € R2.
€

Writing j1(§ + h) = p1hy +h - A(h), with g := ul4(p) <0, A € C*(R? R?),
and A(0) = 0, we obtain

Aii(s) + (nis1 + A(se??) - s)ii(s) — ii>(s) = 0, Vs € R2. (2.14)

Next, we define the rescaled energy by

B 1 €2/3
E(f‘)=/Rz (ywwﬁ—% 2o+ 5 ~4<s)> (2.15)
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With this definition £ n) = 5 75 E(u). From Lemma 2.5 and (2.14), it follows that
A, and also Vii, are unlformly bounded on compact sets. Moreover, by differenti-
ating (2.14) we also obtain the boundedness of the second derivatives of &. Thanks
to these uniform bounds, we can apply the theorem of Ascoli via a diagonal argu-
ment to obtain the convergence of i in CZ (R? (up to a subsequence) to a solution
Zof

loc

AZ(s) + puis1z(s) — 23(s) =0, Vs € R?, (2.16)

which is associated to the functional
3 _ ! 2_ M1 o2 14
Eo(p,J) = §|V¢>(S)| - 7S1¢> (s) + Zd) (s) ) ds. (2.17)
J

Given ¥ (s) a test function supported in the compact set K, let

) 2/3
¥ (x) —61/31/;( 2/5) < Ys) = Vit seT) :_I/S; ).

In the case where we take u to be the global minimizer v, since E (ve +, supp yr) =
E(ve, supp V), we have E(U€+I/f K) > E(vé, K), and at the limit Eo(z—i—w K) >
Eo(z K). Thus, 7 is a minimal solution of (2.16). In addition, the radial sym-
metry of v, implies that Z depends only on the variable s;. Indeed, noticing that
2
lime_,o EF6LI=p — ¢ it follows that D (s, s2) = e(s1 + o(1),0), and
€3

Z(s1, $2) = 7(s1, 0). Similarly, in the case where we take u to be the odd minimizer
and & = (£p, 0), we can see that Z is a minimal solution of (2. 16) for perturbations
such that W(Sl $7) = —¢(Sl, —s7). Finally, setting y(s) := N TEE (( m)m)

(2.16) reduces to (2.6), that is, y solves (2.6). In the case where we take u to be the
global minimizer v, we can see that either y(s, s2) = h(sy) or y(sq, s2) = —h(s1),
since &/ are the only minimal solutions of (1.4) (¢f. [12, Theorem 1.3]). On the
other hand, in the case where we take u to be the odd minimizer and & = (£p, 0),
it is clear that y is odd with respect to s, and minimal for perturbations such that

U (s1,52) = =V (s1, —s2). O

3. Proof of Theorem 1.2

We will proceed in few steps. The proof of (i), (ii) and (iii) follows from Theo-
rem 2.1, Lemma 2.5, and the fact that a minimal solution of 1.9 cannot be identically
zero. To establish (v) we proceed as in Theorem 2.1. After rescaling appropriately
y as x; — —oo, we compute uniform bounds of the rescaled functions. Then, by
the theorem of Ascoli, we obtain at the limit a minimal solution of the Allen-Cahn
equation (1.2). The proof of (vi) and (vii) is based on the moving plane method
applied in a sector contained in the upper half-plane. The main difficulty is due
to the unboundedness of the domain and to the availability of boundary conditions
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only on the x; axis where y(x1,0) = 0. We also utilize the asymptotic behaviour
of y, as x| — =00, provided respectively by (v) and Lemma 3.2. Our main tool is
a version of the maximum principle in unbounded domains (¢f. Lemma 3.1), that
allows us to compute bounds for y,, and yy, when x; is large enough and x, > 0
(cf. Lemmas 3.3 and 3.4). Next, these bounds are extended to the whole half-plane
x2 > 0 by applying the sliding method (c¢f. Lemma 3.5).

Proof of (1), (ii) and (iii). By applying Theorem 2.1 in a neighborhood of the point
& = (p, 0) to the odd minimizer u, such that u > 0 on R x (0, 00), it is clear that
we obtain a solution y of (2.6) which is odd with respect to the second variable s7,
and such that y > 0, on R x (0, 00). For the sake of convenience in what follows
we substitute the variables (s, s2) by (x1, x2). The properties (ii) and (iii) are also
straightforward by Theorem 2.1 and Lemma 2.5. Thus, it remains to show that
y(x1,x2) > 0,Vx € R x (0, 00). Assume by contradiction that y(x;, x) = 0, for
some x € R x (0, 00), then it follows from the maximum principle that y = 0. To
conclude we are going to show that a solution y of (1.9) which is minimal for odd
perturbations, cannot be identically zero. Indeed, the minimality of y implies that
the second variation of the energy Ep,; is nonnegative:

/R LIVOWI® + (6y*(x) +x)p*(1))dx = 0, ¥ € Co(R?),

such that ¢ (x1, x2) = —@(x1, —x2).

(3.1)

Clearly (3.1) does not hold when y = 0, if we take ¢ (x) = ¢o(x1 +1, x2), with —
00, and ¢y € C}(R?) fixed, such that ¢ (x1, x2) = —¢o(x1, —x2),and ¢ £ 0. [

Next we recall a useful version of the maximum principle in unbounded do-
mains [9, Lemma 2.1].

Lemma 3.1. Let D be a domain (open connected set) in R", possibly unbounded.
Assume that D is disjoint from the closure of an infinite open connected cone X.
Suppose there is a function z in C (D) that is bounded above and satisfies for some
continuous function c(x)
Az —c(x)z > 0in D withc(x) >0
z<0o0onobD.

Then z <0in D.

As a first application of Lemma 3.1 we prove the exponential convergence of y to
0,as x; — oo.

32
Lemma 3.2. |y(x1, x2)| = O(e_%xl ), as x1 — oo (uniformly in x).

3/2

Proof. We define ¥ (x1, x2) = Me_-%xl , in the domain D := {(x1,x2) : x| >
1,x» > 0}, where M > e% SUP,, >0 y(1, x) is a constant. It is easy to see that
Ay <xiyin D,and A(y — ) > x1(y —¥)in D. Sincey — ¢ <0onadD,it
follows from Lemma 3.1 that y < ¢ in D. O
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Proof of (v). We set (11, 12) == ( — %(—xl)%, (—xl)%r), where x; < —landr €
R. Equivalently we have (x1,r) = ( — (—%tl)%, tg(—%n)*%). Next we define

y(t1, 1) = :/E = y(x1, 7 4+ x3), for every x, € R fixed, or equivalently
(=313
1
y(x1,r +x2) = (T3 y(t1, ©2). (3.2)
V2

We are going to show that y(#1, f2) is uniformly bounded up to the second deriva-
tives, when 7, belongs to a compact interval and #{ — —oo. By differentiating (3.2)
with respect to x| and r we obtain

V290, (x1, 7+ x2) = (—x1) I, (11, 12), (3.3a)
3.
V2000, (X1, 7+ X2) = (=X1) 2 Fpp1, (11, 12), (3.3b)
1 1 -
\/nyl(m, r+x3) = —5(—161) 2y(t1, 1) + (—=x1)yy (11, 12) (3.3¢)
ro_
- EyZZ(tl’ 12),
- 3. r 1.
V2Yx000 = =1y + (—X1) 2 Fty1, — 5 (XD, (3.3d)
1 3. 3 r 1.
ﬁyx.xl = ——(=x1)725 = =9, + —(=x1) "' Py, (3.3e)
4 2 4
2

3. 1. r _1 .
+ (=x1) 2y —r(=X1)2 Y1 + Z(_XI) 2 V1,10

Since by construction (cf. (2.11) in Lemma 2.5) y satisfies | y(x1, x2)| = O(|—x1]| %)
as x; — —oo (i.e. y is bounded), we obtain by (1.9) and standard elliptic estimates
[21, Section 3.4 page 37] that

3 5
IVy(x1, x2)| = O(| — x112) and | D*y(x1, x2)| = O(| — x1|2),as x| — —00. (3.4)

From (3.4) and (3.3) it follows that

~ 1 ~
V3@, 12)| = O(| — x1]7) and | D*§(11, 12)| = O(] — x1), as x1 — —00, (3.5)

provided that (¢t1,1) € X4, = {(f1,0) : 71 < fo, 2] < ro(—%tl)%}, where
to < 0 and rg > O are arbitrary constants. In particular, we have \/EAy (x1,x2) =
(—=x1)2AF(t1. 1) + O(| — x1]2). for (11, 2) € .5, On the other hand it is clear
by (1.9) that v2Ay(x1. x2) = (—x1)3 (7 (11, 12) — §(t1, 12)). thus

|AY(t1, t)| and |VY(t1, 12)| are bounded, Y(z1, 12) € 4 - 3.6)
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Similarly, by differentiating once more equations (3.3) with respect to x| and r, one
can show that
|D*5(11, 12)| is bounded, V(11, 12) € DI (3.7)

Next, we apply the theorem of Ascoli to the sequence y(t; +1, 1) asl — —oo. Up
to a subsequence /,, — —o00, we obtain via a diagonal argument, the convergence
in CIIOC(RZ) of y,(t1,n) := y(t; + l,, 12) to a bounded function z(z1, ;) that we
are going to determine. Our claim is that the limit z is a minimal solution of the
Allen-Cahn equation (1.2), which is independent of the subsequence /,. The proof
of this property is based on the following energy considerations. Let (e;, e2) be the

canonical basis of R?. The energy functional

EPH()’, A)
1 M 1, (3.8)
= SIVyxr, r+x) "+ sx1y (xn, r+x2) + 2y (x, r+x2) | dxadr,
A—x2e2 2 2 2
associated to (1.9), becomes after changing variables as in (3.2)
Epy(y. A) = Ep, (3, A) = F(5. A) + R(J. A), (3.9)
where
A:={(t1(x1), 2 (x1,7)) : (x1,7) € A — x2e2}, (3.10)
o 1, 3 \3[1 . , FAn.n) | L n)
F(y,A:=[ = —=t1) |=|Vy(,t — dridr, (3.11
(y)Az(zl)[2|yclz>| S dndn, (3.11)
and
L. J+ 09> G+ 0y
RG. A :=/~ o+ zyz2)4 O+ 2yz2)lyt, dnydiy. (3.12)
AL 16(=31)35  4(=31)3

Let ¢(t1, 1) € CSO(RZ) be a test function such that B := suppq~> C {(f,n) :
¢ —d < t; <c},for some constants ¢ € R and d > 0. Given ! € R, we consider
the translated functions ¢~>_l(t1, ) = qg(tl —1,1), and y’(n, 1) = y(t + 1, 12).
Note that B! := suppq’;_l =B+ ley, and suppqg_l C {(t1, ) : 1 < —1} when
[ <1—c.Thus,for! <1—c,wecandefine ' € Cgo(Rz) by O (x1,r+x2) =

1 .
—(_yi)z ¢~ L1, 1) asin(3.2). Let B! := {(x1(t1), r(t1, 1) + x2) : (11, 12) € B'}.

We first examine the case where x, =0, and assume that qNS(tl )= —(;3(1,‘1 ,—1).
In view of the minimality of y and (3.9), we have

Ep,(5+ ¢~ B = Epy(y + ¢!, B) = Ep, (v, B)) = Ep, (3, B).  (3.13)

On the one hand, it is clear that the boundedness of y and (3.6) imply that
lim;_, oo RGG+¢ 7, B) =0and lim;_, _ R(3, B') = 0. Next, setting 19 := c+1,
we have

1

3 % 3 % d 3 B A4 d 3.14
—Zt <=4 —Zh YVt € [to —d, 1] )
( 21) _< 20) + ( 20) 1 €[t 0] (3.14)
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Thus, we obtain

GG, BY + 0l %)

1
2
PR RO (3.15)
=3(=50) 66" B+ 0an).
and
Fos o -l pl 1 3 NS o i -1
FG+¢7 B) =5(=50) 66 +67 B) + 00l ™)
202 (3.16)
L3 %G”’ 5. B)+ O(to] 3 |
=5(=3510)"6G"+. B+ 0™,

where we have set G(Z, B) := fg(% |VZ)? — % + %)dl. Finally, since 7 (t1, 1) —

Z(t1, 1) in Clloc (R?), as n — oo, we conclude that

G(Z + (Z)a é) = nll)n'olo %EPH(&& + ¢;9 é)
(_j(c+ n))- (3.17)

2 . -~ Y
> lim —————— Ep, (5" + ¢, B) = G, B),
n—oo , 3 2

(—3(c+1p))3

orequivalently Eac(3+¢, B) > Eac(Z, B). This means that 7 is a minimal solution
of the Allen-Cahn equation (1.2) for odd perturbations ¢. In particular 7 0, and as
a consequence of the maximum principle, z(¢;,0) = 0,V# € R, and Z(t1, ) > 0,
Y(t1, 1) € R x (0, 00), imply that Z(¢1, 1) > 0,V(¢1, 12) € R x (0, 00). Thus, from
[10, Theorem 1.5], it follows that 7 is a function of only #,, which is the heteroclinic
connection Z(t1,2) = n(tz) = tanh(fp/ V/2). Furthermore, since the limit Z is
uniquely determined, the convergence 7' (t1, 1) — Z(11, t2) holds as | — —o0.

It remains to examine the case where x; 7# 0. Without loss of generality
we assume that x; > 0. Now (3.13) holds for arbitrary test functions (j;(tl, ) €
Cé’o(]Rz), since B! C {(x1,x2) : xp > 0} as I — —oo. Repeating the previous
arguments we find that Z is a nonnegative minimal solution of (1.2). Applying [6,
Corollary 5.2], we deduce that 7 = 1. This completes the proof of (v). O

Proof of (vi) and (vii). The proofs of (vi) and (vii) which are based on the moving
plane method, follow from the next lemmas.

Lemma 3.3. We have y,, (x1,x2) < 0, Vx; > 0, Vx > 0. In addition, for every
d > 0, there holds SUPy, >4 Vx| (1, x2) <0, and infy,>4 y(1, x2) > 0.

Proof. Given A > 0, we define the function v, (x1, x2) := y(x1, x2) — y(—x1 +
2A, xp) for (x1,x2) € D) := {(x1,x2) : X1 > A,x2 > 0}. One can check that
Y, =0on dD,,and

Ay —c(xy, x2) ¥ = 2(x1 — M) y(—=x1 + 24, x2) =0,
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with ¢(x1,22) =x142(y% (x1,2) +y (¥1,02) y (=x1 +2%,22) + 32 (=x1 424, x2)) > 0.
Furthermore, v, is bounded above by Theorem 1.2 (ii), and not identically zero by
Theorem 1.2 (v). As a consequence of Lemma 3.1, it follows that ¥, (x1, x2) < 0,
Vx; > A, Vxp > 0, and thus by Hopf’s Lemma %(A,xz) = 2yy, (A, x2) < 0,
Vx; > 0. To establish that SUpPy, >4 Yx, (1, x2) < 0, we proceed by contradic-
tion and assume the existence of a sequence {/,} such that lim,_, ., = oo and
lim, 00 yx, (1, Ip) = 0. Next, we set y,(x1, x2) = y(x1, x2 + [;). In view of the
bounds provided in Theorem 1.2 (ii), we obtain by the theorem of Ascoli that (up
to subsequence) y, converges in CllOC to a nonnegative minimal solution y of (1.9).
Since ¥y, (1, 0) = limy— o0 ¥, (1, 1) = 0, and yy, (x1, x2) < 0,Vx; > 0,Vx2 € R,
the maximum principle applied to

AFy, = 5+ (01 + 65Dy, = (x1 + 6595y, (3.18)

implies that yy, (x1, x2) = 0,Vx; > 0, Vxz € R. Then, since limy, o y(x1, X2) =
0, Vxp € R, it follows that y = O in the half-plane x; > 0. Finally, we de-
duce by unique continuation that § = 0 in R?, which is a contradiction since ¥ is
minimal. Thus we have established that sup, -, yx, (1, x2) < 0. The proof that
infy,>q ¥(1, x2) > O is similar. L]

Lemma 3.4. For every vector n = 0+ ¢ C ~ R2, with6 € (0, ), there exists
sp > 0 such that Vy(x1,x3) -n > 0, Vx| > sy, Vxp > 0.

Proof. Our first claim is that there is a constant k; > 0, such that k1 yy, (x1, x2) <
—/x1y(x1,x2), Vx1 > 1, Vxp > 0. Indeed, let ¥ (x1,x2) = kiyy, (x1,x2) +
JX1y(x1, x2) for (x1, x2) € D := {x1 > 1, x, > 0}, where the constant k; will be
adjusted later. It is clear that ¥ (x;, 0) = 0,Vx; > 1. We also note that y,, ,(1,0) <
0 by Hopf’s Lemma, since the function yy, vanishes at (1, 0), is negative in {x; >
0, x> > 0}, and satisfies (3.18). This and sup,., -, yx, (1, x2) < 0,Vd > 0, imply
that when k; is large enough, we have (1, x2) < 0, Vx, > 0. Next, we compute

Ay ( +6y% + )k ( o2y K ! )
=(x — X — — — )
1 y k \/— lyxl 1 y \/ﬂ x% ly

= (n+2y? +j—j€_l—%)w+(4y2 k\lﬁ \k} l)klyﬂ
1

By choosing k1 large enough we can ensure that (x1 +2y% + j—;—l - ﬁ) > 0 and
1

k .
(4y2 + klj/xT \/;171 + é) < 0, when x; > 1 and x > 0. Thus, by applying

Lemma 3.1, our claim follows.

Similarly, we are going to establish that there is a constant k, > 0, such that
Yo, (X1, X2) > —koy(x1,x2), Vx1 > 1, Vxo > 0. To do this we let ¥ (x1, x2) =
—¥x, (X1, x2) — k2y(x1, x2) for (x1,x2) € D, where the constant k» will again
be adjusted later. We first note that yy,(x1,0) > 0, Vx; € R, since the func-
tion y vanishes at (x1,0), is positive in {x; > 0}, and satisfies (1.9). This and
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infy,>¢ y(1,x2) > 0, Vd > 0, imply that when k; is large enough, we have
¥ (1, x2) <0,Vxy > 0. On the other hand, it is clear that ¥ (x1, 0) < 0, Vx; > 1.
Next, we compute

AV = (x1 + 6Y%) (—yny) + (x1 + 29D (—kay) > (x1 + 69Dy

Thus, by applying Lemma 3.1, it follows that ¢ < 0 in D. Finally, given 6
(0, /2), we have

A

Vy n= —Yyy sinf + y,, cosf > %y sinf — koycosf, Vx; > 1, Vxp >0,
1

and therefore Vy - n > 0 for x| > s, 1= (Qfg)z, and xp > 0. O

Lemma 3.5. Let 0 € (0, %) be fixed, and consider for every 1 € R the reflection
o). with respect to the line '), := {(x1, x2) : xo = tan0(x; — X)}, and the domain
D, = {(x1,x2) : 0 < xp < tanB(x; — A)}. Then, the function ¥ (x1, x2) =
y(x1, x2) — y(on(x1, x2)) is negative in D;, for every A € R.

Proof. We setn = ¢/®*t2) asin Lemma 3 4, and denote by (p/, ¢’) the image by o;,
of a point (p, g) € D, ,and by D/A the set 0 (D;,). It is obvious that ¥ (x1,0) < 0,
Vx1 > A, and that ¥ (x1, x2) = 0, V(x1, x2) € I'y. Moreover, i, satisfies

AYL(p.q) —c(p. ¥ = (p— Py, q) =0, V(p,q) € Dy,

with c(p,q) = p +20*(p. ) + y(p. 9)y(p'. 4') + y*(p', ). Foreach 1 € R
we consider the statement

Vi(p.q) <0, ¥(p.q) € D;. (3.19)

We shall first establish Lemma 3.5 in the case where 8 € (0, %). According to
Lemma 3.4, (3.19) is valid for each A > s,. Set Ap = inf{A € R : ¢, <
0 holds in D,,, for each u > A}. We will prove Lo = —o0. Assume instead Ao € R.
Then, there exist a sequence Ay < Ag such that limg_, - Ax = Ag, and a sequence
(Pk, qx) € Dj, ,suchthat y(px, qx) = y(py., q;). According to Lemma 3 4, we have
p,@ < sn, thus the sequence (py, gi) is bounded, since by assumption 8 € (0, 7 /4).
Up to subsequence we may assume that limy_, o (pk, gx) = (po, qo) € D—AO, with
Py < Su. By definition of A, we have ¥, < 0 in Dy, and ¥, (po, go) = O i.e.
y(po, 90) = y(py» q))- Now we distinguish the following cases. If (po, go) € Dy,
the maximum principle implies that vy, = 0 in D,,. Clearly, this situation is
excluded, since y is positive in the half-plane {x, > 0}. On the other hand, the
maximum principle also implies that 3?f%(p, q) = ZS—f’(p, q) > 0, provided that
(p,q) € Ty, and g > 0. Furthermore, the previous inequality still holds at the
vertex (p, q) = (Ao, 0), since yy,(x1,0) > 0 and yy, (x1,0) = 0, Vx; € R (cf.
the proof of Lemma 3.4). As a consequence, in a neighborhood of the line seg-
ment {(x1,x2) : xp = tanf(x; — 1),0 < x; < s,}, we have that g—f’ > 0, and it
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A8y v
Figure 3.1. The sets Ay, A}, B;.,, B;_,,and the lines 'y, A, , in the case where A > s,
and A < sp,.

follows that (po, go) cannot belong to I'y,. Finally, since the case where py > Ao
and gp = 0 is ruled out (because y is positive in the half-plane {x, > 0}), we have
reached a contradiction.

Next, we establish Lemma 3.5 in the case where 6 € [7, 5), which is a little
bit more involved. When 6 = %, it is clear that (3.19) is valid for each A > s,,.
Otherwise, when 6 € (%, %), let A} := {(p'.q') € D} : p’ < sp},and let A; =
0,.(A}). Our first claim is that m := inf LY > 0. Indeed, proceeding as in the
proof of Theorem 1.2 (v), one can see that

| V2

im
(xl,xz)eA;n+1,x1—>—oo —X]

y(x1,x2) = 1.

In addition, proceeding as in the proof of Lemma 3.4, we obtain that inf{y(x1, x2) :
(x1,x2) € A;n+1’ sn — 1 < x1 < s} > 0, for every constant / > 0. Thus, m > 0.
On the other hand, we have lim)_, o sup{y(xy, x2) : (x1,x2) € A} = 0, since
lim;) o inf{x; : (x1,x2) € A)} = 0 (¢f. Lemma 3.2). As a consequence when
A > s + 1 is large enough, we have y(p’,q¢") > m > y(p, q),¥(p,q) € A;, and
also y(p’, ¢") > y(p,q),V(p,q) € D; \ A;, by definition of s,,. This establishes
that (3.19) holds for A large enough. Then, defining Ao as previously, we assume
by contradiction that Ag € R, and deduce in a similar way the existence of the
sequences Ay and (pi, qk) € Dj,. We need to show that (pi, gx) is bounded.
Forv > A, let M, := (v,tanf(v — X)) € Iy, and let A, = {(x1,x2) : x» =
tan(6 + %)(xl —v)+tan 6 (v — A)} be the line parallel to n and passing through M,,.
Let also B)/\,v ={(p'.q") € A, : ¢’ > tan(0 + )(p’ — v) +tanf(v — 1)} be the
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subset of A;L which is above A,, and B) , := GA(B)/L ,). Proceeding as previously,
we can see that Vv > Ag+2,VA > Ao — 1, we have inf B, Y >m for some constant

m > 0, while lim,_, o sup{y(x1, x2) : (x1, x2) € By v} =0. As a consequence, for
v large enough and A > 1o — 1, we have y(p’,q") > m > y(p,q),¥(p,q) € B,
and thus (px, qx) ¢ B, ». Furthermore, since p,/{ < s, by Lemma 3.4, we have
established the boundedness of (py, gx). To complete the proof we utilize the same
arguments detailed in the case where 6 € (0, %). O

Lemma 3.5 implies that V6 € (0, Z),VA € R, and (p, g) € '), withg > 0, we

have %(p, q) = 2%(p, q) > 0,where n = ¢T3 Tt follows that Y, (X1, x2) <
0, and yy,(x1,x2) > 0, Vx; € R, Vxp > 0. Moreover, in the half-plane x, > 0,
Vx, and y,, satisfy respectively Ay, > (x| + 6y2)yxl ,and Ay, = (x1 + 6y2)yX2,
thus yy, (resp. yx,) cannot vanish in the open half-plane x, > 0, since otherwise we
would obtain by the maximum principle yy, = 0 (resp. yx, = 0). These situations
are excluded by the fact that y > 0 in the open half-plane x, > 0, and y,, (x1,0) >
0,Vx; € R. Therefore we have proved that yy, (x1, x2) < 0,Vx; € R, Vxy > 0, and
Yx, (X1, x2) > 0,Vxy, x2 € R. Finally, setting y;(x1, x2) = y(x1, x2 + 1), we obtain
by the Theorem of Ascoli, that up to a subsequence /[y, — oo, y;, converges in ClzO .
to a nonnegative minimal solution Yo, of (1.9). Furthermore, the monotonicity of
y along the x; direction implies that y, is independent of x,. Thus, since 4 is the
only nonnegative minimal solution of (1.9) (¢f. [12, Theorem 1.3]), we deduce that
Yoo (X1, X2) = h(x1), and that lim;_, o, y(x1, X2 + [) = h(x1) is independent of the
subsequence /. We also note that |y(x, x2)| < h(x1), V(x1, x2) € R2, from which
Theorem 1.2 (iv) follows. This completes the proof of Theorem 1.2. O
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