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Binomial exponential sums

IGOR E. SHPARLINSKI AND JOSÉ FELIPE VOLOCH

Abstract. We obtain new bounds of exponential sums modulo a prime p with
binomials axk+bxn . In particular, for k = 1, we improve the bound of Karatsuba
(1967) from O(n1/4 p3/4) to O

⇣
p3/4 + n1/3 p2/3

⌘
for any n, and then use it to

improve the bound of Akulinichev (1965) from O(p5/6) to O(p4/5) for n|(p�1).
The result is based on a new bound on the number of solutions and of degrees of
irreducible components of certain equations over finite fields.

Mathematics Subject Classification (2010): 11T06 (primary); 11T23, 14G15
(secondary).

1. Introduction

1.1. Background and motivation

For a prime p we consider the binomial exponential sums

Sk,n(a, b) =
p�1X

x=0
ep

⇣
axk + bxn

⌘

(where ep (x) = e2⇡ i x/p) with positive integers k and n and arbitrary integer coef-
ficients a and b.

There are several bounds and applications of such sums which go beyond the
classical Weil bound, see [1, 5, 6, 9–12, 15] and references therein. In particular,
bounds for such binomial sums played a key role in the approach and resolution
in [5, 7, 12, 14] to the conjecture of Goresky and Klapper [13] and in the closely
related generalised Lehmer conjecture [6]; for very recent development and gener-
alisations see [2, 8].

A standard technique relates bounding these sums to bounding the number
of solutions of certain equations over finite fields. Previous papers have used the

The first author was supported by the ARC Grants DP170100786 and DP180100201.
Received November 09, 2018; accepted in revised form April 16, 2019.
Published online December 2020.



932 IGOR E. SHPARLINSKI AND JOSÉ FELIPE VOLOCH

Weil bound, see [16], when applicable as well as elementary bounds coming from
Bezout’s theorem, in the range where Weil’s bound becomes trivial, to bound the
number of solutions of these equations. Here, we obtain sharper bounds to the
number of solutions of these equations.

The novelty of our approach consists of a combination of two ideas. First,
we use the method of [20] (and particularly the explicit version for plane curves
from [22]) that give improvements of the Weil bound for large degrees. Second,
and perhaps more importantly, the equations we need to study are sometimes not
irreducible and we need to bound from below the degrees of their irreducible com-
ponents and consequently the number of these components. This is achieved by
using ABC-type bounds for solutions of equations over function fields using the
methods of [21]. A connection between irreducible factors and the polynomial
ABC-results for f (X) � f (Y ) where f (X) is a one-variable sparse polynomial
in characteristic zero, is due to Zannier [23]. We have transposed this technique to
positive characteristic for the same kind of polynomials in [19]. Here we extend this
to a wider class of polynomials while sharpening the method and give applications
to new bounds of binomial exponential sums Sk,n(a, b). We expect this method to
have wider applications.

1.2. Set-up and some previous results

Define
Mk,n = max

a,b2Z
gcd(ab,p)=1

�
�Sk,n(a, b)

�
� .

In the special case k = 1 we set

Mn = M1,n.

We also recall the bound of Karatsuba [15, Theorem 1]

Mn  (n � 1)1/4 p3/4, (1.1)

which holds for any n � 1. Furthermore, Akulinichev [1, Theorem 1] has shown
that

Mn  p/
p
gcd(n, p � 1). (1.2)

In particular combining (1.1) and (1.2) we see that if n | p � 1 then

Mn  p5/6, (1.3)

see [1, Corollary]. Here we improve (1.1) for an arbitrary n and then use it to
improve (1.3) and obtain

Mn = O(p4/5),

in the case when n | p � 1; see Corollary 3.3 below.
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Most of the above results are based on new upper bounds on the number Tk,n
of solutions to the system of equations

uk + vk = xk + yk and un + vn = xn + yn, u, v, x, y 2 Fp,

over the finite field Fp of p elements. As before, in the special case k = 1 we define

Tn = T1,n.

For example, Bourgain, Cochrane, Paulhus and Pinner [5, Theorem 3] have shown
that if

gcd(n, p � 1) = 1 and gcd(n � 1, p � 1) 
9
50

p16/23

then
Tn  13658p66/23. (1.4)

Cochrane and Pinner [12, Theorem 7.1] have sharpened the constant in the bound
(1.4) and also extended it to Tk,n .

Here, in Section 2.2, we obtain new bounds. In particular, for k = 1 we
improve in a wide range the trivial bound Tn = O(np2) (used in [15]). This bound
is based on the investigation of irreducible factors of the polynomial

Fn(X,Y ) = Xn + Yn � (X + Y � 1)n � 1 2 Fp[X,Y ], (1.5)

which could be of independent interest, and also an application of some ideas and
results from [20–22].

1.3. Notation

We recall that the notations U = O(V ), U ⌧ V and V � U , are all equivalent to
the statement that |U |  cV for some constant c, which is absolute throughout this
work.

The letters k and n always denote integer numbers and the letter p always
denotes a prime.

ACKNOWLEDGEMENTS. The authors are very grateful to R. Popovych for the cal-
culations mentioned above and to the referee for the very careful reading of the
manuscript and especially for the suggestion to use [10, Theorem 1.2] which has
led to an improvement of our original version of Theorem 3.4.

The second author would like to thank UNSW for the hospitality during which
part of this work was done.
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2. Factors and zeros of some polynomials

2.1. Lower bounds on the degree of irreducible factors

We use some basic facts about the divisors on curves, which can be found in [16].

Lemma 2.1. Let X be the smooth projective model of a plane curve h(x, y) = 0
of degree d such that the homogeneous term of degree d of h is not divisible by x or
y. Then x has degree d as a function on X .

Proof. The poles of x and y are among the branches above the points at infinity
of the plane curve h = 0 and these points at infinity correspond to factors x � ↵y
with ↵ 6= 0 of the homogeneous term of degree d of h, by the hypothesis. The
function x � ↵y vanishes at the corresponding branches so if x has a pole at such
a branch, y also has a pole there of the same order and vice versa. So x and y
have the same polar divisor D. The functions xi y j , i + j  m, belong to the
Riemann-Roch space H0(mD), see [16, page 306] and the linear relations among
them come from multiples of h, so a standard calculation [16, page 329] gives
dim H0(mD) � md + O(1). On the other hand, the Riemann-Roch theorem,
see [16, Chapter IX], gives dim H0(mD) = m deg D + O(1) and it follows that
deg x = deg D � d. But it is clear that deg x  d and this completes the proof.

We now extend the definition of the polynomial Fn(X,Y ) in (1.5) to arbitrary
ground fields

Lemma 2.2. Let K be a field of positive characteristic p and let n < p. If h(X,Y )
is an irreducible polynomial factor of Fn(X,Y ) 2 K [X,Y ] of degree d, other than
X � 1, Y � 1, X + Y , then d � min{p/n, n}.

Proof. Let X be a smooth model of the curve h = 0. The genus of X is at most
(d � 1)(d � 2)/2. On X , the functions x, y and x + y� 1 have at most d zeros and
d poles (the latter on the line at infinity) so they are S-units for some set S of places
ofX with #S  4d. Consider the functions u1 = xn, u2 = yn, u3 = �(x+ y�1)n ,
which are also S-units and satisfy the unit equation u1 + u2 + u3 = 1.

The ui are functions on X so (u1:u2:u3) defines a morphism X ! P2 of
degree at most dn. If dn � p, the desired result follows immediately. If dn < p,
then [21, Theorem 4] holds with the same proof in characteristic p > 0 (as the
morphism has classical orders by [20, Corollary 1.8]). Also deg u1 = nd by Lemma
2.1 since h satisfies the hypothesis being a factor of Fn(X,Y )/((X � 1)(Y � 1)),
so we get

nd  deg u1  3(d(d � 3) + 4d) ⌧ d2

giving the result, provided u1, u2, u3 are linearly independent over K .
If au1 + bu2 + cu3 = 0 and abc 6= 0, then we consider the unit equation

�au1/bu2 � cu3/bu2 = 1. We claim that the degree of �au1/bu2 is nd. This
follows if we show that the degree of x/y is d. Now, x has d zeros counted with
multiplicity, so the same will be true for x/y unless y vanishes at one of the zeros
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of x . This does not happen because Fn(X,Y ) does not vanish at the origin for n
even and Fn(X,Y )/(X + Y ) does not vanish at the origin for n odd. So the same
argument as before gives the inequality of the theorem.

If c = 0 then u1/u2 is constant so x/y is constant, say y = ↵x . The equation
Fn(x,↵x) = 0 has to be satisfied identically, which means by looking at the linear
term that ↵ = �1, that is, x + y = 0 and the constant term forces n to be odd. If
a = 0, a similar argument gives x = 1 and if b = 0 then y = 1.

We now treat the more general polynomials

Fk,n(X,Y ) = (Xn + Yn � 1)k/r � (Xk + Y k � 1)n/r 2 Fp[X,Y ], (2.1)

where k and n are distinct integers and r = gcd(k, n). They reduce to Fn when
k = 1.

Unfortunately, the result that we obtain below about the components of the
polynomials (2.1) is weaker than the corresponding statement for Fn . One reason
is that Lemma 2.1 does not apply for k > 1.

Lemma 2.3. Let K be a field of positive characteristic p and let 1  k, n < p
be distinct integers and let r = gcd(k, n). If h(X,Y ) is an irreducible polynomial
factor of Fk,n(X,Y ) 2 K [X,Y ] of degree d, other than a factor of Xr � 1, Yr � 1
or Xr + Yr , then

d � max
n
min

n
p/k,

p
k/3� r

o
,min

n
p/n,

p
n/3� r

oo
.

Proof. We proceed as in Lemma 2.2 and consider the curve X . We define u1 =
xn, u2 = yn, u3 = 1�xn�yn so that they satisfy the unit equation u1+u2+u3 = 1.
Again, the poles of u1, u2, u3 are among the at most d points at infinity of X with
multiplicity at most n and that u1 (respectively u2) have zeros at the at most d zeros
of x (respectively y). As for u3, note that u

k/r
3 = (xk + yk � 1)n/r , which shows

that each zero of u3 has multiplicity divisible by n/r , as gcd(k/r, n/r) = 1. Since
u3 has degree at most dn, it follows that u3 has at most dr distinct zeros. Hence
u1, u2, u3 are S-units for a set S with #S  (r + 3)d. If dn < p we can apply
the unit equation bound, provided u1, u2, u3 are linearly independent over K , to get
deg u1  3(d(d � 3) + #S)  3(d2 + rd). If u1 is not constant, then deg u1 � n
and we get d �

p
n/3� r . If u1 is constant, then x is constant and it can be shown

that h is a factor of Xr � 1, which was excluded.
If au1 + bu2 + cu3 = 0 and abc 6= 0, then we consider the unit equation

�au1/bu2 � cu3/bu2 = 1 and conclude as before if u1/u2 is not constant. We
note that abc = 0 means some quotient of two of u1, u2, u3 is constant. These
possibilities are ruled out since they lead to h being a factor of Xr � 1, Yr � 1 or
Xr + Yr . So we get d � min{p/n,

p
n/3� r}.

Finally, reversing the roles of n and k gives the inequality d�min{p/k,
p
k/3�

r} and completes the proof.
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2.2. Upper bounds on the number of zeros of some equations

We now derive bounds on

Nk,n = #
n
(x, y) 2 F2p : Fk,n(x, y) = 0

o
,

where Fk,n(X,Y ) 2 Fp[X,Y ] is the polynomial defined by (2.1).
We start with a bound on

Nn = N1,n
which is based on Lemma 2.2.

Theorem 2.4. We have
Nn ⌧ p + n4/3 p2/3.

Proof. Clearly there are
N (0)
n ⌧ p, (2.2)

points on the on linear factors X � 1, Y � 1, X + Y of Fn .
Each of the remaining factors is of degree

d � min{p/n, n}

by Lemma 2.2. Hence the number J of such irreducible factors is

J ⌧
deg Fn

min{p/n, n}
⌧ max{1, n2/p}.

The contribution to Nn from each irreducible factor h | Fn of degree d < p1/4 is
O(p) by the Weil bound (see [16]). Hence the total contribution N (1)

n from such
factors can be estimated as

N (1)
n ⌧ J p ⌧ max{1, n2/p}p ⌧ max{p, n2}. (2.3)

Each irreducible factor h | Fn of degree deg h = d � p1/4 contributes O
�
d4/3 p2/3

�

by [22, Theorem (i)] and, in total they contribute

N (2)
n ⌧

X

h|Fn,irred
deg h�p1/4

(deg h)4/3 p2/3 

0

B
B
@

X

h|Fn,irred
deg h�p1/4

deg h

1

C
C
A

4/3

p2/3

 n4/3 p2/3,

(2.4)

using the convexity of the function z 7! z4/3.
Combining (2.2), (2.3) and (2.4) we obtain

Nn  N (0)
n + N (1)

n + N (2)
n ⌧ p + n2 + n4/3 p2/3.

Since n2  n4/3 p2/3 for n  p, the result follows.
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Corollary 2.5. We have
Tn ⌧ p2 + n4/3 p5/3.

Proof. Eliminating u we obtain that Tn is equal to the number of solutions to the
equation xn + yn = vn + (x + y � v)n . For v = 0 there are at most np values for
(x, y) 2 F2p. If v 6= 0, then replacing x 7! xv, y 7! yv, we obtain xn + yn = 1+

(x+y�1)n . Hence, by Theorem 2.4, we have Tn  np+pNn ⌧ np+p2+n4/3 p5/3.
Since n  p, the result follows.

For an arbitrary k our bound on Nk,n is based on Lemma 2.3.

Theorem 2.6. Let 1  k, n < p be distinct integers and let r = gcd(k, n) and
assume that r  0.5

p
n. Then we have

Nk,n ⌧ k
p
n p/r + (kn/r)4/3 p2/3.

Proof. Let s = gcd(k, n, p � 1) = gcd(r, p � 1). Clearly there are

N (0)
k,n ⌧ sp (2.5)

Fp-rational points on the factors Xr � 1, Yr � 1 or Xr + Yr of Fk,n .
Since r  0.5

p
n, each of the remaining factors is of degree

d � min{p/n,
p
n/3� r} � min{p/n,

p
n}

by Lemma 2.3. Hence, the number J of such irreducible factors is

J ⌧
deg Fk,n

min{p/n,
p
n}

⌧ max{k
p
n/r, kn2/(pr)}.

The contribution to Nk,n from each irreducible factor h | Fk,n of degree d < p1/4 is
O(p) by the Weil bound (see [16]). Hence, similarly to (2.3), the total contribution
N (1)
k,n from such factors can be estimated as

N (1)
k,n ⌧ J p ⌧ max{k

p
n/r, kn2/(pr)}p ⌧ max{k

p
n p/r, kn2/r}. (2.6)

As in the proof of Theorem 2.4, we now use that each irreducible factor h | Fk,n
of degree deg h = d � p1/4 contributes O

�
d4/3 p2/3

�
by [22, Theorem (i)] and, in

total they contribute similarly as in the bound (2.4), using that the degree of Fk, n
is kn/r .

N (2)
k,n ⌧ (kn/r)4/3 p2/3, (2.7)

using the convexity of the function z 7! z4/3.
Combining (2.5), (2.6) and (2.7) we obtain

Nk,n  N (0)
k,n + N (1)

k,n + N (2)
k,n ⌧ sp + k

p
n p/r + kn2/r + (kn/r)4/3 p2/3.
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Since r ⌧ min{k,
p
n} we have

s  r ⌧
p
n ⌧ k

p
n/r

and also n  p we have

kn2/r  n2  n4/3 p2/3  (kn/r)4/3 p2/3.

The result now follows.

Corollary 2.7. Let 1  k, n < p be distinct integers and let

r = gcd(k, n) and s = gcd(r, p � 1).

Assume that r  0.5
p
n, then we have

Tk,n ⌧ k
p
nsp2/r + (kn/r)4/3sp5/3.

Proof. Eliminating u we obtain that Tk,n  sRk,n where Rk,n is the number of
solutions to the equation

(xn + yn � vn)k/r = (xk + yk � vk)n/r

(as for any fixed v, x, y the power ur is uniquely defined and so u either u = 0 or
can take at most s = gcd(r, p � 1) values).

For v = 0 there are at most knp/r values for (x, y) 2 F2p. If v 6= 0, then
replacing x 7! xv, y 7! yv, we obtain (xn + yn � 1)k/r = (xk + yk � 1)n/r .
Hence, by Theorem 2.6, we have

Tk,n  sRk,n  s
⇣
knp/r + k

p
n p2/r + (kn/r)4/3 p5/3

⌘

⌧ sknp/r + k
p
nsp2/r + (kn/r)4/3sp5/3.

Since r  k and n  p, we obtain

Tk,n ⌧ k
p
nsp2/r + (kn/r)4/3sp5/3 (2.8)

and the result follows.

Using the trivial bound s  r we can simplify Corollary 2.7 as

Tk,n ⌧ k
p
n p2 + (kn)4/3r�1/3 p5/3.

Furthermore, let d be the largest divisor of r with gcd(d, p � 1) = 1. If we set

k⇤ = k/d, n⇤ = n/d, r⇤ = r/d
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then r⇤ = gcd(k⇤, n⇤) and gcd(r⇤, p � 1) = gcd(r, p � 1) = s. Since gcd(d, p �
1) = 1 , we clearly have Tk,n = Tk⇤,n⇤ . Thus, using (2.8) with (k⇤, n⇤, r⇤) in place
of (k, n, r) we obtain

Tk,n ⌧ k⇤
p
n⇤sp2/r⇤ + (k⇤n⇤/r⇤)4/3sp5/3

= k
p
nr⇤sp2/(r3/2) + (knr⇤/r2)4/3sp5/3,

provided that r⇤  0.5
p
n. Clearly that if r is squarefree that r⇤ = s in which case

we obtain yet another modification of Corollary 2.7

Tk,n ⌧ k
p
ns3/2 p2r�3/2 + (kn)4/3s7/3 p5/3r�8/3.

3. Exponential sums with binomials

3.1. Preparations

The following relation between Mk,n and Tk,n has appeared implicitly in several
previous works. It is essentially based on the equality of the sums

Sk,n(a, b) = Sk,n
�
az, bzn

�
, z 2 F⇤

p,

and the identity X

�,µ2Fp

�
�Sk,n(�, µ)

�
�4 = p2Tn,

which follows from the orthogonality of exponential functions.
Here we present it in a form which is a special case of [10, Theorem 1.2].

Lemma 3.1. Let 1  k, n < p be distinct integers. Then we have

M4
k,n  pTk,n.

3.2. Bounds of exponential sums

Combining Corollary 2.5 with Lemma 3.1 (used with k = 1), we immediately
obtain:

Theorem 3.2. For 1  n < p, we have

Mn ⌧ p3/4 + n1/3 p2/3.

Using the bound (1.2) for n > p2/5 and Theorem 3.2 otherwise, we obtain

Corollary 3.3. For any n | p � 1, we have

Mn ⌧ p4/5.
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Similarly, combining Corollary 2.7 with Lemma 3.1 we derive:

Theorem 3.4. Let 1  k, n < p be distinct integers and let

r = gcd(k, n) and s = gcd(r, p � 1).

Assume that r  0.5
p
n, then we have

Mk,n ⌧ k1/4n1/8s1/4 p3/4/r1/4 + (kn/r)1/3s1/4 p2/3.

Again, using the trivial bound s  r we derive from Theorem 3.4 that

Mk,n ⌧ k1/4n1/8 p3/4 + (kn)1/3r�1/12 p2/3.

4. Comments

We note that in Lemma 2.3 regardless of whether k < n or k > n both lower bounds
can be of use. However in other results, such as Theorems 2.6 and 3.4, without loss
of generality we can assume that k < n.

A computer calculation for primes p  67 using Magma [4] verified that,
except for n = (p+1)/2, the polynomials Fn , 2  n < p, have a unique irreducible
factor in addition to the trivial factors explicitly given in Lemma 2.2. For n =
(p + 1)/2, on the other hand, Fn factors completely into quadratic polynomials
in addition to the trivial factors. R. Popovych has extended the calculation using
Maple up to p < 200. There are two special cases where we can prove that the
factorisation of Fn is as these calculations suggest, for all p. Namely, we can show
that indeed F(p+1)/2 factors completely into quadratic polynomials in addition to
the trivial factors, while we can show, using the results of [3], that F(p�1)/2 has a
unique irreducible factor in addition to the trivial factors.

The polynomials Fk,n , 2  k < n < p  29, however, all have a unique
irreducible factor in addition to the trivial cyclotomic factors explicitly given in
Lemma 2.3.

We also remark that our approach applies to binomial Laurent polynomials,
that is, when one of k and n is negative.

Finally, we expect that our method can give new results fo exponential sums
with trinomials and other sparse polynomials and Laurent polynomials, see [17,18].
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